Math 118 Winter 2015 Lecture 9 (Jan. 19, 2015)

- More examples.

Example 1. Calculate $\int \frac{x^{2}+2}{(x+1)^{2}(x-2)} \mathrm{d} x$.
Solution. We write

$$
\begin{equation*}
\frac{x^{2}+2}{(x+1)^{2}(x-2)}=\frac{A}{(x-2)}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}} . \tag{1}
\end{equation*}
$$

Multiply both sides by $x-2$ and set $x=2$, we see that $A=\frac{2}{3}$. Now multiply both sides by $(x+1)^{2}$ and then set $x=-1$, we have $C=-1$. Finally, multiply both sides by $(x+1)^{2}(x-2)$ we have

$$
\begin{equation*}
x^{2}+2=A(x+1)^{2}+B(x+1)(x-2)+C(x-2) . \tag{2}
\end{equation*}
$$

Equating the coefficients for $x^{2}: 1=A+B \Longrightarrow B=\frac{1}{3}$.
Finally

$$
\begin{align*}
\int \frac{x^{2}+2}{(x+1)^{2}(x-2)} \mathrm{d} x & =\int\left[\frac{2 / 3}{x-2}+\frac{1 / 3}{x+1}+\frac{-1}{(x+1)^{2}}\right] \mathrm{d} x \\
& =\frac{2}{3} \ln |x-2|+\frac{1}{3} \ln |x+1|+\frac{1}{x+1}+C . \tag{3}
\end{align*}
$$

Example 2. Calculate $\int \frac{\mathrm{d} x}{x^{2}-6 x+5}$.
Solution. What is new here is that $Q(x)=x^{2}-6 x+5$ is not factorized. However as Q is quadratic, this is not a problem. We easily solve

$$
\begin{equation*}
x^{2}-6 x+5=0 \Longrightarrow x=1,5 \Longrightarrow x^{2}-6 x+5=(x-1)(x-5) . \tag{4}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\int \frac{\mathrm{d} x}{x^{2}-6 x+5}=\frac{1}{4} \int\left[\frac{1}{x-5}-\frac{1}{x-1}\right] \mathrm{d} x=\frac{1}{4} \ln \left|\frac{x-5}{x-1}\right|+C . \tag{5}
\end{equation*}
$$

Exercise 1. Calculate $\int \frac{\mathrm{d} x}{x^{2}+3 x+1}$.
Exercise 2. Calculate $\int \frac{x^{3}}{x^{2}+4 x+8}$.

- Factorization of Q.

When Q is cubic or higher, factorizing by hand becomes difficult or even impossible. The following theorem helpls a bit.

Theorem 3. Let $\frac{p}{q}$ with p, q co-prime, $q>0$, solve $a_{n} x^{n}+\cdots+a_{1} x+a_{0}=0$ where a_{0}, a_{1}, \ldots, $a_{n} \in \mathbb{Z}$, then $p\left|a_{0}, q\right| a_{n}$.

Proof. We have

$$
\begin{equation*}
a_{n}\left(\frac{p}{q}\right)^{n}+\cdots+a_{1} \frac{p}{q}+a_{0}=0 . \tag{6}
\end{equation*}
$$

Multiply both sides by q^{n} we reach

$$
\begin{equation*}
a_{n} p^{n}+\cdots+a_{1} p q^{n-1}+a_{0} q^{n}=0 . \tag{7}
\end{equation*}
$$

This gives $p \mid a_{0} q^{n}$. As $(p, q)=1$, we have $\left(p, q^{n}\right)=1$ and therefore there must hold $p \mid a_{0}$. Similarly $q \mid a_{n}$.

Example 4. Prove ${ }^{4} \sqrt{7} \notin \mathbb{Q}$.
Proof. Let $\alpha:={ }^{4} \sqrt{7}$. Then α solves $x^{4}-7=0$. Now assume $\alpha=\frac{p}{q}$. By the above theorem we have $p|-7, q| 1$. Therefore one of the following must hold:

$$
\begin{equation*}
\alpha=\frac{7}{1}, \quad \alpha=\frac{-7}{1} . \tag{8}
\end{equation*}
$$

But as $1^{4}<7,0^{4}<7,(-1)^{4}<7, n^{4}>7$ for all $n \neq-1,0,1$, clearly $\alpha \notin \mathbb{Z}$. Contradiction.
Exercise 3. Prove that $\sqrt{2}+{ }^{4} \sqrt{3} \notin \mathbb{Q}$.

- More examples.

Example 5. Calculate $\int \frac{x^{2}-2 x-5}{x^{3}+6 x^{2}+11 x+6} \mathrm{~d} x$.
Solution. First check

$$
\begin{equation*}
\operatorname{deg}\left(x^{2}-2 x-5\right)<\operatorname{deg}\left(x^{3}+6 x^{2}+11 x+6\right) . \tag{9}
\end{equation*}
$$

Next we factorize. Let $\frac{p}{q}$ solve $x^{3}+6 x^{2}+11 x+6=0$. Then by Theorem 3 the only possibilities are $q=1, p= \pm 1, \pm 2, \pm 3, \pm 6$. Clearly 1 is not a solution by -1 is. Thus we have $(x+1) \mid\left(x^{3}+6 x^{2}+11 x+6\right)$ and perform division to obtain

$$
\begin{equation*}
x^{3}+6 x^{2}+11 x+6=(x+1)\left(x^{2}+5 x+6\right)=(x+1)(x+2)(x+3) . \tag{10}
\end{equation*}
$$

Now write

$$
\begin{equation*}
\frac{x^{2}-2 x-5}{(x+1)(x+2)(x+3)}=\frac{A}{x+1}+\frac{B}{x+2}+\frac{C}{x+3} . \tag{11}
\end{equation*}
$$

The usual procedure gives

$$
\begin{equation*}
A=-1, \quad B=-3, \quad C=5 . \tag{12}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\int \frac{x^{2}-2 x-5}{x^{3}+6 x^{2}+11 x+6} \mathrm{~d} x=-\ln |x+1|-3 \ln |x+2|+5 \ln |x+3|+C . \tag{13}
\end{equation*}
$$

Example 6. Calculate $\int \frac{\mathrm{d} x}{x^{3}-1}$.
Solution. Clearly 1 solves $x^{3}-1=0$. So we have

$$
\begin{equation*}
x^{3}-1=(x-1)\left(x^{2}+x+1\right) . \tag{14}
\end{equation*}
$$

As $x^{2}+x+1=0$ has no real solution, the factorization is complete. Now we write

$$
\begin{equation*}
\frac{1}{(x-1)\left(x^{2}+x+1\right)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+x+1} . \tag{15}
\end{equation*}
$$

Multiply by $x-1$ and set $x=1$ we have $A=\frac{1}{3}$. Setting $x=0$ we have $-1=-A+C \Longrightarrow C=-\frac{2}{3}$. Finally multiply both sides by $(x-1)\left(x^{2}+x+1\right)$ and compare the x^{2} term, we have

$$
\begin{equation*}
0=A+B \Longrightarrow B=-\frac{1}{3} \tag{16}
\end{equation*}
$$

Thus we have

$$
\begin{align*}
& \int \frac{\mathrm{d} x}{x^{3}-1}=\int \frac{1 / 3}{x-1} \mathrm{~d} x-\frac{1}{3} \int \frac{x+2}{x^{2}+x+1} \mathrm{~d} x \\
&=\frac{1}{3} \ln |x-1|-\frac{1}{3} \int \frac{x+2}{(x+1 / 2)^{2}+(\sqrt{3} / 2)^{2}} \mathrm{~d} x \\
&=\frac{1}{3} \ln |x-1|-\frac{1}{3} \frac{4}{3} \int \frac{x+2}{\left(\frac{x+1 / 2}{\sqrt{3} / 2}\right)^{2}+1} \mathrm{~d} x \\
& \xlongequal{t=\frac{x+1 / 2}{\sqrt{3} / 2}} \frac{1}{3} \ln |x-1|-\frac{1}{3} \int \frac{t+\sqrt{3}}{t^{2}+1} \mathrm{~d} t \\
&=\frac{1}{3} \ln |x-1|-\frac{1}{6} \ln \left|t^{2}+1\right|-\frac{\sqrt{3}}{3} \arctan t+C \\
&=\frac{1}{3} \ln |x-1|-\frac{1}{6} \ln \left(x^{2}+x+1\right)-\frac{\sqrt{3}}{3} \arctan \left(\frac{2 x+1}{\sqrt{3}}\right)+C . \tag{17}
\end{align*}
$$

Exercise 4. Calculate the following integrals.

$$
\begin{equation*}
\int \frac{x+3}{x^{3}-3 x^{2}+4} \mathrm{~d} x ; \quad \int \frac{\mathrm{d} x}{x^{3}+1} ; \quad \int \frac{\mathrm{d} x}{x^{4}-1} \tag{18}
\end{equation*}
$$

Exercise 5. Calculate the following integrals.

$$
\begin{equation*}
\int \frac{\mathrm{d} x}{x^{4}+1} ; \quad \int \frac{\mathrm{d} x}{x^{4}+5 x^{2}+4} ; \quad \int \frac{\mathrm{d} x}{x^{4}+x^{2}+1} . \tag{19}
\end{equation*}
$$

