Math 118 Winter 2015 Homework 1 Solutions

Due Thursday Jan. 15 3pm in Assignment Box

Question 1. (5 pts) Let $F(x)$ be differentiable on (a, b) and let $c \in(a, b)$. Assume that both $\lim _{x \rightarrow c+} F^{\prime}(x), \lim _{x \rightarrow c-} F^{\prime}(x)$ exist and are finite. Prove that the two limits are equal.

Proof. As $F(x)$ is differentiable at c, we have

$$
\begin{equation*}
\lim _{x \rightarrow c} \frac{F(x)-F(c)}{x-c}=F^{\prime}(c) \tag{1}
\end{equation*}
$$

On the other hand, let $x \in(c, b)$ be arbitrary. As $[c, x] \subset(a, b)$, we see that $F(x)$ is continuous on $[c, x]$ and differentiable on (c, x), therefore we can apply MVT to obtain

$$
\begin{equation*}
\frac{F(x)-F(c)}{x-c}=F^{\prime}(\xi) \tag{2}
\end{equation*}
$$

where $\xi \in(c, x)$. Now denote $m:=\lim _{x \rightarrow c+} F^{\prime}(x)$ and let $\varepsilon>0$ be arbitrary. There is $\delta>0$ such that for all $x \in(c, c+\delta),\left|F^{\prime}(x)-m\right|<\varepsilon$. Consequently, for every $x \in(c, c+\delta)$, we have

$$
\begin{equation*}
\left|\frac{F(x)-F(c)}{x-c}-m\right|=\left|F^{\prime}(\xi)-m\right|<\varepsilon \tag{3}
\end{equation*}
$$

Thus by definition, we have proved

$$
\begin{equation*}
\lim _{x \rightarrow c+} \frac{F(x)-F(c)}{x-c}=m \tag{4}
\end{equation*}
$$

But following (1) we see that $\lim _{x \rightarrow c+} \frac{F(x)-F(c)}{x-c}=F^{\prime}(c)$. Consequently $\lim _{x \rightarrow c+} F^{\prime}(x)=F^{\prime}(c)$. Similarly we have prove $\lim _{x \rightarrow c-} F^{\prime}(x)=F^{\prime}(c)$ and the proof ends.

Question 2. (5 PTS) Let $a, b \in \mathbb{R}, b \neq 0$, and $\int f(x) \mathrm{d} x=F(x)+C$. Calculate $\int a f(b x) \mathrm{d} x$ and justify your result.

Solution. Set $u(x):=b x$, we have

$$
\begin{equation*}
\int a f(b x) \mathrm{d} x=\int \frac{a}{b} f(u(x)) u^{\prime}(x) \mathrm{d} x=\frac{a}{b} F(u(x))+C=\frac{a}{b} F(b x)+C . \tag{5}
\end{equation*}
$$

To justify, we calculate

$$
\begin{equation*}
\left(\frac{a}{b} F(b x)\right)^{\prime}=\frac{a}{b} F^{\prime}(b x) b=a f(b x) \tag{6}
\end{equation*}
$$

Question 3. (10 PTs) Calculate the following indefinite integrals. Please provide enough details, in particular those about the substitutions you made.
a) $(2 \mathrm{PTS}) \int \frac{(x+1)^{3}}{x} \mathrm{~d} x$;
b) (2 PTS $) \int \frac{x}{x^{2}+1} \mathrm{~d} x$;
c) $(2 \mathrm{PTS}) \int \cot x \mathrm{~d} x$;
d) $(2 \mathrm{PTS}) \int \frac{\mathrm{d} x}{\sqrt{x}+{ }^{3} \sqrt{x}}$;
e) $(2 \mathrm{PTS}) \int \frac{\mathrm{d} x}{1+\cos ^{2} x}$.

Solution.

a) We have

$$
\begin{equation*}
\int \frac{(x+1)^{3}}{x} \mathrm{~d} x=\int\left[x^{2}+3 x+3+\frac{1}{x}\right] \mathrm{d} x=\frac{x^{3}}{3}+\frac{3}{2} x^{2}+3 x+\ln |x|+C . \tag{7}
\end{equation*}
$$

b) Set $u(x)=x^{2}$. We have

$$
\begin{equation*}
\int \frac{x \mathrm{~d} x}{x^{2}+1}=\frac{1}{2} \int \frac{\mathrm{~d} u}{1+u}=\frac{1}{2} \ln |1+u|+C=\frac{1}{2} \ln \left(1+x^{2}\right)+C . \tag{8}
\end{equation*}
$$

c) We have

$$
\begin{equation*}
\int \cot x \mathrm{~d} x=\int \frac{\mathrm{d}(\sin x)}{\sin x}=\ln |\sin x|+C . \tag{9}
\end{equation*}
$$

d) Set $x=t^{6}$. We have

$$
\begin{align*}
\int \frac{\mathrm{d} x}{\sqrt{x}+{ }^{3} \sqrt{x}} & =\int \frac{6 t^{5} \mathrm{~d} t}{t^{3}+t^{2}} \\
& =6 \int \frac{t^{3}}{1+t} \mathrm{~d} t \\
& =6 \int\left[t^{2}-t+1-\frac{1}{1+t}\right] \mathrm{d} t \\
& =6\left[\frac{t^{3}}{3}-\frac{t^{2}}{2}+t-\ln |1+t|\right]+C \\
& =6\left[\frac{x^{1 / 2}}{3}-\frac{x^{1 / 3}}{2}+x^{1 / 6}-\ln \left|1+x^{1 / 6}\right|\right]+C \\
& =2 x^{1 / 2}-3 x^{1 / 3}+6 x^{1 / 6}-6 \ln \left|1+x^{1 / 6}\right|+C . \tag{10}
\end{align*}
$$

e) We have

$$
\begin{align*}
\int \frac{\mathrm{d} x}{1+\cos ^{2} x} & =\int \frac{\frac{1}{\cos ^{2} x} \mathrm{~d} x}{1+\frac{1}{\cos ^{2} x}} \\
& =\int \frac{\mathrm{d}(\tan x)}{2+\tan ^{2} x} \\
& =\frac{1}{\sqrt{2}} \arctan \left(\frac{\tan x}{\sqrt{2}}\right)+C . \tag{11}
\end{align*}
$$

