Math 118 Winter 2015 Lecture 3 (Jan. 8, 2015)

- Recall

$$
\begin{align*}
\int x^{\alpha} \mathrm{d} x & =\frac{1}{1+\alpha} x^{1+\alpha}+C \quad \alpha \in \mathbb{R}, \quad \alpha \neq 1 ; \tag{1}\\
\int \frac{\mathrm{d} x}{x} & =\ln |x|+C ; \tag{2}\\
\int e^{x} \mathrm{~d} x & =e^{x}+C ; \tag{3}\\
\int \cos x \mathrm{~d} x & =\sin x+C ; \tag{4}\\
\int \sin x \mathrm{~d} x & =-\cos x+C ; \tag{5}\\
\int \frac{\mathrm{d} x}{(\cos x)^{2}} & =\tan x+C ; \tag{6}\\
\int \frac{\mathrm{d} x}{(\sin x)^{2}} & =-\cot x+C ; \tag{7}\\
\int \frac{\mathrm{d} x}{\sqrt{1-x^{2}}} & =\arcsin x+C ; \tag{8}\\
\int \frac{\mathrm{d} x}{1+x^{2}} & =\arctan x+C . \tag{9}
\end{align*}
$$

- Integration by substitution (change of variables)
- Observation: If $F^{\prime}=f$, then

$$
\begin{equation*}
F(u(x))^{\prime}=f(u(x)) u^{\prime}(x) . \tag{10}
\end{equation*}
$$

Therefore, if $\int f(x) \mathrm{d} x=F(x)+C$, then $\int f(u(x)) u^{\prime}(x) \mathrm{d} x=F(u(x))+C$. This leads to

- Type I change of variables:

To calculate $\int f(x) \mathrm{d} x$, we find appropriate $f_{1}(x), u(x)$ such that

$$
\begin{equation*}
f(x)=f_{1}(u(x)) u^{\prime}(x) \tag{11}
\end{equation*}
$$

and furthermore $\int f_{1}(x) \mathrm{d} x=F_{1}(x)+C$ is easy to calculate. Then

$$
\begin{equation*}
\int f(x) \mathrm{d} x=F_{1}(u(x))+C . \tag{12}
\end{equation*}
$$

Exercise 1. Justify this method.
Example 1. Calculate $\int \cos ^{3} x \mathrm{~d} x$.
Solution. Set $u(x)=\sin x$ and $f_{1}(x)=1-x^{2}$. Then we have

$$
\begin{equation*}
\cos ^{3} x=f_{1}(u(x)) u^{\prime}(x) . \tag{13}
\end{equation*}
$$

As $\int\left(1-x^{2}\right) \mathrm{d} x=x-\frac{x^{3}}{3}+C$, we have

$$
\begin{equation*}
\int \cos ^{3} x \mathrm{~d} x=\sin x-\frac{\sin ^{3} x}{3}+C \tag{14}
\end{equation*}
$$

Exercise 2. Check that (14) indeed holds.

- On the other hand, we could go "backwards" and have Type II change of variables:

To calculate $\int f(x) \mathrm{d} x$, we find appropriate $u(t)$ such that an anti-derivative $F_{1}(t)$ of the function $f(u(t)) u^{\prime}(t)$ is easy to calculate. Then we have

$$
\begin{equation*}
\int f(x) \mathrm{d} x=F_{1}(T(x))+C \tag{15}
\end{equation*}
$$

where $T(x)$ is the inverse function of $u(t)$.
Exercise 3. Justify the method for the case $u^{\prime}(t)>0$ or <0 for all t,
Example 2. Calculate $\int e^{2 x} \mathrm{~d} x$.
Solution 1. We apply type I change of variable with $f_{1}(x)=e^{x}$ (which gives $F_{1}(x)=e^{x}$) and $u(x)=2 x$. Then we have

$$
\begin{equation*}
e^{2 x}=\frac{1}{2} f_{1}(u(x)) u^{\prime}(x) \tag{16}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\int e^{2 x} \mathrm{~d} x=\frac{1}{2}\left[F_{1}(u(x))+C\right]=\frac{1}{2} e^{2 x}+C \tag{17}
\end{equation*}
$$

Solution 2. We try type II change of variable. Set $u(t)=\frac{t}{2}$. Then we have

$$
\begin{equation*}
f_{1}(t)=f(u(t)) u^{\prime}(t)=\frac{1}{2} e^{t} \tag{18}
\end{equation*}
$$

Thus we have $F_{1}(t)=\frac{1}{2} e^{t}$ and

$$
\begin{equation*}
\int e^{2 x} \mathrm{~d} x=\frac{1}{2} e^{T(x)}+C=\frac{1}{2} e^{2 x}+C \tag{19}
\end{equation*}
$$

With the help of integration by substitution, we could significantly expand the table of indefinite integrals.

Example 3. Calculate the following:
a) $\int \cos 2 x d x$;
b) $\int \frac{1}{\cos ^{2} 3 x} \mathrm{~d} x$;
c) $\int \frac{\mathrm{d} x}{x-3}$;
d) $\int \frac{\mathrm{d} x}{(x-7)^{5}}$;
e) $\int x e^{-x^{2} / 2} \mathrm{~d} x$.

Solution.

a) We apply type I change of variables with $u(x)=2 x$ and $f_{1}(x)=\cos x$ to obtain

$$
\begin{equation*}
\int \cos 2 x \mathrm{~d} x=\frac{1}{2} \sin 2 x+C \tag{20}
\end{equation*}
$$

b) We apply type I change of variables with $u(x)=3 x$ and $f_{1}(x)=\frac{1}{\cos ^{2} x}$ to obtain

$$
\begin{equation*}
\int \frac{1}{\cos ^{2} 3 x} \mathrm{~d} x=\frac{1}{3} \tan (3 x)+C . \tag{21}
\end{equation*}
$$

c) We apply type I change of variables with $u(x)=x-3$ and $f_{1}(x)=\frac{1}{x}$ to obtain

$$
\begin{equation*}
\int \frac{\mathrm{d} x}{x-3}=\ln |x-3|+C \tag{22}
\end{equation*}
$$

d) We apply type I change of variables with $u(x)=x-7$ and $f_{1}(x)=x^{-5}$ to obtain

$$
\begin{equation*}
\int \frac{\mathrm{d} x}{(x-7)^{5}}=-\frac{1}{4(x-7)^{4}}+C . \tag{23}
\end{equation*}
$$

e) We apply type I change of variables with $u(x)=-x^{2} / 2$ and $f_{1}(x)=-e^{x}$ to obtain

$$
\begin{equation*}
\int x e^{-x^{2} / 2} \mathrm{~d} x=-e^{-x^{2} / 2}+C . \tag{24}
\end{equation*}
$$

Exercise 4. Calculate a) - d) using type II change of variables.
Exercise 5. Try to apply type II change of variables to e). Is there any difficulty?

- We notice that in the table, two very natural integrals

$$
\begin{equation*}
\int \frac{\mathrm{d} x}{1-x^{2}}, \quad \int \frac{\mathrm{~d} x}{\sqrt{1+x^{2}}} \tag{25}
\end{equation*}
$$

are missing.
Example 4. Calculate $\int \frac{\mathrm{d} x}{1-x^{2}}$.
Solution. We notice that

$$
\begin{equation*}
\frac{2}{1-x^{2}}=\frac{1}{x+1}-\frac{1}{x-1} \tag{26}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\int \frac{\mathrm{d} x}{1-x^{2}}=\frac{1}{2}\left[\int \frac{\mathrm{~d} x}{x+1}-\frac{\mathrm{d} x}{x-1}\right]=\frac{1}{2} \ln \left|\frac{x+1}{x-1}\right|+C . \tag{27}
\end{equation*}
$$

