MATH 117 FALL 2014 HOMEWORK 7 SOLUTIONS

DUE THURSDAY NOV. 6 3PM IN ASSIGNMENT BOX

QUESTION 1. (5 PTS) Prove by ε - δ that the Heaviside function $H(x) := \begin{cases} 1 & x > 0 \\ 0 & x \leq 0 \end{cases}$ is continuous at a = 0.

Proof. Let $a \neq 0$. For every $\varepsilon > 0$, take $\delta = |a|$. Then for every $|x - a| < \delta$, we see that x and a share the same sign. Therefore $|f(x) - f(a)| = 0 < \varepsilon$ and consequently H(x) is continuous at a.

At 0, we prove the working negation of continuity:

$$\exists \varepsilon > 0, \ \forall \delta > 0, \ \exists |x - a| < \delta, \qquad |f(x) - f(a)| \ge \varepsilon.$$
(1)

Let $\delta > 0$ be arbitrary. Then there is x > 0 such that $|x - 0| < \delta$. For this x we have $|f(x) - f(0)| \ge 1$. Thus ends the proof.

QUESTION 2. (5 PTS) Let
$$f(x) := \begin{cases} e^{-1/x} & x > 0 \\ 0 & x \le 0 \end{cases}$$
. Prove that $f(x)$ is continuous at every $a \in \mathbb{R}$.

Proof. First as e^x is continuous everywhere and $-\frac{1}{x}$ is continuous at every $a \neq 0$, the composite function $e^{-1/x}$ is continuous at every $a \neq 0$.

Now let $a \in \mathbb{R}$ be arbitrary. There are three cases.

- 1. a > 0. For every $\varepsilon > 0$, as $e^{-1/x}$ is continuous at a, there is $\delta_1 > 0$ such that $|x a| < \delta_1 \Longrightarrow |e^{-1/x} e^{-1/a}| < \varepsilon$. Set $\delta = \min \{\delta_1, |a|\}$. Then for every $|x a| < \delta$, we have x > 0 and $|x a| < \delta_1$. Consequently $|f(x) f(a)| = |e^{-1/x} e^{-1/a}| < \varepsilon$.
- 2. a < 0. For every $\varepsilon > 0$, set $\delta = |a|$. For every $|x a| < \delta$ we have x < 0 and $|f(x) f(a)| = |0 0| = 0 < \varepsilon$.
- 3. a = 0. For every $\varepsilon > 0$, set $\delta = \left(\ln \frac{1}{\varepsilon} \right)^{-1}$. Then for every $|x a| < \delta$, we have two cases:
 - a. x > 0. In this case $|f(x) f(a)| = e^{-1/x} < e^{-1/\delta} = \varepsilon;$

b.
$$x < 0$$
. In this case $|f(x) - f(a)| = |0 - 0| = 0 < \varepsilon$.

Thus ends the proof.

QUESTION 3. (5 PTS) Prove that the equation $7x^6 - 9x^5 - 1 = 0$ has at least two real solutions.

Proof. Denote $f(x) := 7x^6 - 9x^5 - 1$. Since f(x) is a polynomial, it is continuous everywhere. Now observe f(0) = -1 < 0, f(2) = 159 > 0, f(-1) = 1 > 0.

- Apply IVT on [0, 2], we see there is $c_1 \in (0, 2)$ such that $f(c_1) = 0$;
- Apply IVT on [-1,0], we see there is $c_2 \in (-1,0)$ such that $f(c_2) = 0$.

As $c_1 > 0 > c_2$ they are different and consequently we have two real solutions.

QUESTION 4. (5 PTS) Let $f(x): \mathbb{R} \mapsto \mathbb{R}$ be such that for every $s \in \mathbb{R}$, there are **exactly** two solutions to f(x) = s. Prove that f is not continuous (we say a function is "continuous" if it is continuous everywhere in its domain).

Proof. Assume the contrary. Since $0 \in \mathbb{R}$ there are a < b such that f(a) = f(b) = 0. By IVT either f(x) > 0 for all $x \in (a, b)$ or f(x) < 0 for all $x \in (a, b)$. Wlog consider the first case. Denote $M := \sup_{[a,b]} f(x) > 0$. By assumption there are c < d such that f(c) = f(d) = M and at least one of them is in (a, b) due to continuity of f(f) attains maximum and minimum). There are two cases.

- 1. One of c, d is in (a, b). Wlog a < c < b < d. Let $s \in (0, M)$. Then we have f(a) < s < f(c); f(c) > s > f(b); f(b) < s < f(d). Applying IVT on [a, c], [c, b], [b, d] we see there are $\xi_1 \in (a, c)$, $\xi_2 \in (c, b), \xi_3 \in (b, d)$ such that $f(\xi_1) = f(\xi_2) = f(\xi_3) = s$. Contradiction.
- 2. Both $c, d \in (a, b)$. Since c, d are the only places where f equals M, we have $\forall x \in (c, d)$, f(x) < M. Denote $m := \inf_{[c,d]} f(x) < M$. Then by continuity of f there is at least one point $e \in (c, d)$ such that f(e) = m. Now take $s \in \mathbb{R}$ such that $\max\{m, 0\} < s < M$. Application of IVT on [a, c], [c, e], [e, d], [d, b] leads to four different points where f equals s. Contradiction.