Math 117 Fall 2014 Homework 7 Solutions

Due Thursday Nov. 6 3pm in Assignment Box

Question 1. (5 PTS) Prove by $\varepsilon-\delta$ that the Heaviside function $H(x):=\left\{\begin{array}{ll}1 & x>0 \\ 0 & x \leqslant 0\end{array}\right.$ is continuous at $a \neq 0$ but discontinuous at $a=0$.

Proof. Let $a \neq 0$. For every $\varepsilon>0$, take $\delta=|a|$. Then for every $|x-a|<\delta$, we see that x and a share the same sign. Therefore $|f(x)-f(a)|=0<\varepsilon$ and consequently $H(x)$ is continuous at a.

At 0, we prove the working negation of continuity:

$$
\begin{equation*}
\exists \varepsilon>0, \forall \delta>0, \exists|x-a|<\delta, \quad|f(x)-f(a)| \geqslant \varepsilon \tag{1}
\end{equation*}
$$

Let $\delta>0$ be arbitrary. Then there is $x>0$ such that $|x-0|<\delta$. For this x we have $|f(x)-f(0)| \geqslant 1$. Thus ends the proof.

QUESTION 2. (5 PTS) Let $f(x):=\left\{\begin{array}{ll}e^{-1 / x} & x>0 \\ 0 & x \leqslant 0\end{array}\right.$. Prove that $f(x)$ is continuous at every $a \in \mathbb{R}$.
Proof. First as e^{x} is continuous everywhere and $-\frac{1}{x}$ is continuous at every $a \neq 0$, the composite function $e^{-1 / x}$ is continuous at every $a \neq 0$.

Now let $a \in \mathbb{R}$ be arbitrary. There are three cases.

1. $a>0$. For every $\varepsilon>0$, as $e^{-1 / x}$ is continuous at a, there is $\delta_{1}>0$ such that $|x-a|<\delta_{1} \Longrightarrow$ $\left|e^{-1 / x}-e^{-1 / a}\right|<\varepsilon$. Set $\delta=\min \left\{\delta_{1},|a|\right\}$. Then for every $|x-a|<\delta$, we have $x>0$ and $|x-a|<\delta_{1}$. Consequently $|f(x)-f(a)|=\left|e^{-1 / x}-e^{-1 / a}\right|<\varepsilon$.
2. $a<0$. For every $\varepsilon>0$, set $\delta=|a|$. For every $|x-a|<\delta$ we have $x<0$ and $|f(x)-f(a)|=$ $|0-0|=0<\varepsilon$.
3. $a=0$. For every $\varepsilon>0$, set $\delta=\left(\ln \frac{1}{\varepsilon}\right)^{-1}$. Then for every $|x-a|<\delta$, we have two cases:
a. $x>0$. In this case $|f(x)-f(a)|=e^{-1 / x}<e^{-1 / \delta}=\varepsilon$;
b. $x<0$. In this case $|f(x)-f(a)|=|0-0|=0<\varepsilon$.

Thus ends the proof.
Question 3. (5 PTs) Prove that the equation $7 x^{6}-9 x^{5}-1=0$ has at least two real solutions.
Proof. Denote $f(x):=7 x^{6}-9 x^{5}-1$. Since $f(x)$ is a polynomial, it is continuous everywhere. Now observe $f(0)=-1<0, f(2)=159>0, f(-1)=1>0$.

- Apply IVT on $[0,2]$, we see there is $c_{1} \in(0,2)$ such that $f\left(c_{1}\right)=0$;
- Apply IVT on $[-1,0]$, we see there is $c_{2} \in(-1,0)$ such that $f\left(c_{2}\right)=0$.

As $c_{1}>0>c_{2}$ they are different and consequently we have two real solutions.
QUESTION 4. (5 PTs) Let $f(x): \mathbb{R} \mapsto \mathbb{R}$ be such that for every $s \in \mathbb{R}$, there are exactly two solutions to $f(x)=s$. Prove that f is not continuous (we say a function is "continuous" if it is continuous everywhere in its domain).

Proof. Assume the contrary. Since $0 \in \mathbb{R}$ there are $a<b$ such that $f(a)=f(b)=0$. By IVT either $f(x)>0$ for all $x \in(a, b)$ or $f(x)<0$ for all $x \in(a, b)$. Wlog consider the first case. Denote $M:=\sup _{[a, b]} f(x)>0$. By assumption there are $c<d$ such that $f(c)=f(d)=M$ and at least one of them is in (a, b) due to continuity of f (f attains maximum and minimum). There are two cases.

1. One of c, d is in (a, b). Wlog $a<c<b<d$. Let $s \in(0, M)$. Then we have $f(a)<s<f(c)$; $f(c)>s>f(b) ; f(b)<s<f(d)$. Applying IVT on $[a, c],[c, b],[b, d]$ we see there are $\xi_{1} \in(a, c)$, $\xi_{2} \in(c, b), \xi_{3} \in(b, d)$ such that $f\left(\xi_{1}\right)=f\left(\xi_{2}\right)=f\left(\xi_{3}\right)=s$. Contradiction.
2. Both $c, d \in(a, b)$. Since c, d are the only places where f equals M, we have $\forall x \in(c, d)$, $f(x)<M$. Denote $m:=\inf _{[c, d]} f(x)<M$. Then by continuity of f there is at least one point $e \in(c, d)$ such that $f(e)=m$. Now take $s \in \mathbb{R}$ such that $\max \{m, 0\}<s<M$. Application of IVT on $[a, c],[c, e],[e, d],[d, b]$ leads to four different points where f equals s. Contradiction.
