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Abstract

Exponential utility indifference valuation assigns to contingent claims H due
at time T a value for an investor with exponential utility preferences. The
indifference value ht for H at time t ∈ [0, T ] makes the investor indifferent,
in terms of maximal expected utility, between not selling H and selling H
for the amount ht. This thesis studies the form of the implicitly defined ht
and properties of the process (ht)0≤t≤T in four chapters, whose keywords are
“correlation”, “semimartingales”, “BSDEs” and “convergence”.

Correlation. We consider a two-dimensional Brownian model where H
depends on a nontradable asset stochastically correlated with the traded asset
available for hedging. The use of martingale arguments yields a structurally
explicit formula for ht, even with a fairly general stochastic correlation ρ
between the two Brownian motions. After a change of measure, ht enjoys a
monotonicity property in |ρ|. This is the reason why we can generalise the
explicit formula for ht known from the literature for constant ρ.

Semimartingales. Also in a general semimartingale model, we can derive a
formula for ht, although it is much less explicit than in the Brownian model. A
second result in this general setting is a description of (ht)0≤t≤T as the unique
solution (in a suitable class of processes) of a backward stochastic differential
equation (BSDE). The key to both results is what we call the fundamental
entropy representation of H, a decomposition of H into a hedged and an
unhedged part depending on the investor’s risk aversion.

BSDEs. In a multidimensional Brownian model, we study in more detail
the type of BSDE related to (ht)0≤t≤T , with the goal of deriving bounds
for (ht). We transform such BSDEs by changing the probability measure,
shrinking the filtration, or symmetrising the underlying probability space.
These transformations yield bounds for the solutions of the original BSDEs
in terms of solutions to other BSDEs which are easier to solve.

Convergence. Revisiting the two-dimensional Brownian model with sto-
chastic correlation, we derive an explicitly computable sequence that con-
verges to ht. This result complements the structurally explicit formula for ht.
It is based on a convergence theorem for quadratic BSDEs, which we prove
in a general continuous filtration.
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Kurzfassung

Die exponentielle Nutzenindifferenzbewertung liefert für zur Zeit T fällige
bedingte Forderungen H einen Wert für einen Investor mit exponentiellen
Nutzenpräferenzen. Der Indifferenzwert ht von H zur Zeit t ∈ [0, T ] macht
den Investor in Bezug auf den maximalen erwarteten Nutzen indifferent zwi-
schen den beiden Möglichkeiten, H nicht zu verkaufen oder H für den Betrag
ht zu verkaufen. Diese Dissertation studiert die Form des implizit definierten
ht und Eigenschaften des Prozesses (ht)0≤t≤T in vier Kapiteln, deren Schlüssel-
wörter “Korrelation”, “Semimartingale”, “BSDEs” und “Konvergenz” sind.

Korrelation. Wir betrachten ein zweidimensionales Brownsches Modell,
bei dem H von einer nicht handelbaren Anlage abhängt, die mit der gehandel-
ten und zur Absicherung verfügbaren Anlage stochastisch korreliert ist. Mar-
tingalargumente führen zu einer strukturell expliziten Formel für ht, sogar
unter einer ziemlich allgemeinen stochastischen Korrelation ρ zwischen den
beiden Brownschen Bewegungen. Nach einem Masswechsel besitzt ht eine
Monotonieeigenschaft in |ρ|. Dies ist der Grund, weshalb wir die für kon-
stantes ρ aus der Literatur bekannte explizite Formel für ht verallgemeinern
können.

Semimartingale. Auch in einem allgemeinen Semimartingalmodell erhal-
ten wir eine Formel für ht, die aber viel weniger explizit ist als im Brown-
schen Modell. Ein zweites Resultat in diesem allgemeinen Rahmen ist eine
Beschreibung von (ht)0≤t≤T als eindeutige Lösung (in einer geeigneten Klasse
von Prozessen) einer stochastischen Rückwärtsdifferentialgleichung (BSDE).
Der Schlüssel zu beiden Resultaten ist die sogenannte fundamentale Entropie-
Repräsentation von H; das ist eine Zerlegung von H in einen abgesicherten
und einen nicht abgesicherten Teil, die von der Risikoaversion des Investors
abhängt.

BSDEs. In einem mehrdimensionalen Brownschen Modell studieren wir
die zu (ht)0≤t≤T zugehörige Art von BSDEs mit dem Ziel, Schranken für (ht)
herzuleiten. Wir transformieren die BSDEs durch einen Wechsel des Wahr-
scheinlichkeitsmasses, eine Verkleinerung der Filtration oder eine Symmetri-
sierung des zugrunde liegenden Wahrscheinlichkeitsraumes. Diese Transfor-
mationen ergeben Abschätzungen für die Lösungen der ursprünglichen BSDEs
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durch Lösungen zu anderen BSDEs, die einfacher zu lösen sind.
Konvergenz. Schliesslich kommen wir auf das zweidimensionale Brown-

sche Modell mit stochastischer Korrelation zurück. Dort leiten wir eine
explizit berechenbare Folge her, die gegen ht konvergiert. Dieses Resultat
ergänzt die strukturell explizite Formel für ht. Es beruht auf einem Konver-
genzresultat für quadratische BSDEs, das wir in einer allgemeinen stetigen
Filtration beweisen.
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Chapter 1

Introduction

This chapter gives a general definition of the indifference value, puts the
results of the thesis into a broader context and explains the relations between
the Chapters 2–5.

1.1 Definition of the indifference value

What is a fair value at time t ∈ [0, T ] for a contingent claim H due at time T?
This question stands at the basis of the thesis. Before studying properties of
such a fair value, we have to specify a valuation approach. In mathematical
finance, it is common to assume that the agent valuing H is an investor who
can trade in some financial assets. If the payoff H is replicable by trading
in these assets in a self-financing way, the unique fair value must be the
initial cost of a replicating strategy due to no-arbitrage considerations. But
in practice, H is often not replicable so that there exists no unique fair value,
and many different valuation approaches have been proposed.

Since the valuation may be different for another investor, it seems natu-
ral to incorporate the investor’s risk preferences by attributing her a utility
function U : R → R, which is strictly increasing and strictly concave. The
value U(x) is interpreted as the investor’s utility or happiness when she has
total wealth x ∈ R. Note that U(x) is typically not in monetary units even if
x is. We assume that a risk-free bank account yielding zero interest and risky
assets with price process S are available on the financial market. In math-
ematical terms, S is a semimartingale and H a random variable on some
filtered probability space

(
Ω,F ,F = (Fs)0≤s≤T , P

)
. If the investor starts at

time t with Ft-measurable capital xt, trades on ]t, T ] in a self-financing way
and has to pay out H at time T , then her maximal expected utility is

V H
t (xt) := ess sup

ϑ∈At
EP

[
U

(
xt +

∫ T

t

ϑs dSs −H
)∣∣∣∣Ft],

1



2 Chapter 1. Introduction

where At is the set of allowed strategies on ]t, T ].
(
If S is continuous (with

S0− := S0), one can equally well consider strategies on the closed interval
[t, T ], as we sometimes do later in this thesis.

)
In this introduction, we do

not specify At or the assumptions on S and H needed to exclude arbitrage
and to have a well-defined problem. For a general setting, this is done in
Section 3.2, while Chapters 2, 4 and 5 introduce model-specific assumptions.
The indifference (seller) value ht(xt) for H at time t is implicitly defined by

V 0
t (xt) = V H

t

(
xt + ht(xt)

)
. (1.1)

This says that the investor is indifferent between solely trading with initial
capital xt, versus trading with initial capital xt + ht(xt) but paying an addi-
tional cash-flow H at maturity T .

Remark 1.1. 1) Although the notion of utility functions has been known
for centuries, its application to value claims is not very old. Indifference
valuation of a contingent claim in the presence of a financial market was in-
troduced by Hodges and Neuberger [36] in 1989. They define the indifference
value for t = 0 and trivial F0. The dynamic formulation for any t ∈ [0, T ] was
first done in Markovian models, where V H

t (xt) and ht(xt) can be represented
as functions of the state variables; see the references in Section 2.4.2. The
explicit dynamic formulation in the above way using Ft-conditional expec-
tations can be found in Mania and Schweizer [44]. A less explicit dynamic
formulation has already been used by Becherer [4], with a different (but in
fact equivalent) definition for t ∈ (0, T ].

2) Similarly to ht, one can define the indifference buyer value hbuyer
t (xt)

for H by

V 0
t (xt) = V −Ht

(
xt − hbuyer

t (xt)
)
.

Because hbuyer
t (xt) equals minus the seller value of −H, we consider in Chap-

ters 1–3 only the seller value. In Chapters 4 and 5, however, we use the buyer
value, because this avoids additional minus signs in some calculations. ♦

In all what follows, we restrict our considerations to an exponential utility
function U(x) = − exp(−γx), x ∈ R, for a fixed γ > 0. The main reason is the
mathematical practicability, since we then have V H

t (xt) = exp(−γxt)V H
t (0)

for bounded Ft-measurable xt, and thus ht(xt) = ht does not depend on xt.
This wealth independence of ht facilitates the mathematical problem, and it
may also be desirable in applications. We can write

ht =
1

γ
log

V H
t (0)

V 0
t (0)

(1.2)
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so that the implicit equation (1.1) is reduced to the two optimisation problems
of determining V H

t (0) and V 0
t (0). In all chapters, we prove results for V H

t (0),
and then derive properties of ht via (1.2).

1.2 Three different strands in the literature

Regarding the results and model assumptions, the vast literature on expo-
nential utility indifference valuation can roughly be divided into the following
three strands:

1) Explicit formulas for ht (for all t ∈ [0, T ] or only for t = 0) in some
specific models.

2) Characterisations of the process (ht)0≤t≤T via backward stochastic dif-
ferential equations (BSDEs) in some settings, or via partial differential
equations (PDEs) in some Markovian models.

3) Dual representations of h0

(
or V H

0 (x0)
)

in general frameworks.

Focusing on the most important literature relevant for this thesis, we give a
brief description of each group. An overview of various aspects of indifference
valuation with a long literature list is provided by the recently published
book [13] edited by Carmona.

1) Explicit formulas for ht

Explicit formulas for ht have been established in only a few specific models,
mainly in discrete-time or Markovian diffusion models. Because the former
are not in the scope of this thesis, we only mention as an example the bino-
mial model in Musiela and Zariphopoulou [48]. Markovian diffusion models
are extensively studied, and Section 2.4.2 provides an overview with some ref-
erences. In the simplest case, S is a geometric Brownian motion depending
on some Brownian motion W , and the claim H is a function of ZT , where
Z is a geometric Brownian motion driven by a Brownian motion Y which
has constant instantaneous correlation ρ with W . A bit more generally, the
coefficients in the dynamics dZt

Zt
and dSt

St
are not constant but depend on time

and the current level of Z. These models are often called nontradable asset
models since H depends on a nontradable asset Z and hedging is only possible
in S, which is imperfectly correlated with Z. In such Markovian models, the
usual approach is to first write the Hamilton-Jacobi-Bellman nonlinear PDE
for the value function associated to V H . This PDE is then linearised by a
power transformation with a constant exponent called the distortion power
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so that an explicit formula for ht can be established; for more details see
Section 2.4.2. That method works only if one has a Markovian model and if
ρ is constant.

In an alternative approach, Tehranchi [56] first proves a Hölder-type in-
equality which he then applies to solve the portfolio optimisation problem.
The distortion power there arises as an exponent from the Hölder-type in-
equality. Tehranchi finds an explicit expression for ht at time t = 0 if ρ is
constant. While this method needs no Markovian assumption and can treat
claims which are general (bounded) functionals of the Brownian motion Y , it
is still restricted to situations with constant correlation. Independently from
Tehranchi and still with constant ρ, Brendle and Carmona derive the same
formula for h0 in the technical report [11], whose results are also presented in
Carmona [14] in a similar way. Their basic idea is to represent a transform
of H by the terminal value of some stochastic exponential. While a repre-
sentation of this type (but under a different measure) also appears in our
Chapter 2, our approach and presentation largely differ from Carmona [14]
and allow for a stochastic correlation ρ.

Nontradable asset models are also used in applications like the valuation
of executive stock options; see for example Cvitanić [15] or Grasselli and
Henderson [28]. Typically, a manager who receives options H on the share Z
of her company is not allowed to trade in Z. However, she might be able to
trade in a correlated stock or market index S.

2) PDEs and BSDEs for (ht)0≤t≤T

If in the above nontradable asset model the claim H also depends on the
traded asset S, it is in general no longer possible to derive an explicit formula
for ht. Under Markovian assumptions, one still has — at least formally —
the Hamilton-Jacobi-Bellman PDE, but this cannot be linearised. Therefore,
(ht)0≤t≤T can only be characterised via a nonlinear PDE which is in general
not explicitly solvable. The proofs of such PDE characterisations usually
consist of two steps. One first shows that if there exists a unique solution
of the PDE, then the solution can be identified with (ht)0≤t≤T . In the more
technical second step, one proves existence and uniqueness of solutions of
the PDE. While showing this is a notoriously difficult task, the concept of
viscosity solutions provides a possible way to circumvent this problem by
introducing a weaker notion of solution; but then the identification with (ht)
often becomes more delicate. The PDE characterisations of (ht)0≤t≤T can be
used to derive bounds for ht; see for example Proposition 3.1 and Theorem
3.2 of Sircar and Zariphopoulou [54]. Such bounds actually hold in much
greater generality; they follow as special cases from our Theorems 3.12 and
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3.16, stated in a general semimartingale model.
In situations more general than diffusion models, Becherer [5] and Mania

and Schweizer [44] prove BSDE characterisations for (ht)0≤t≤T . While [44]
assumes that F is continuous, i.e., all local martingales are continuous, the
framework in [5] has a continuous S driven by Brownian motions and F is
generated by these and a random measure allowing the modeling of nonpre-
dictable events. Analogously to the PDE results, BSDE characterisations are
commonly derived in two steps. One first shows that the candidate solution
of the BSDE can be identified with (ht)0≤t≤T by applying the martingale op-
timality principle, which is similar to the Hamilton-Jacobi-Bellman PDE, but
more general because it needs no Markovian assumptions. Using BSDE the-
ory, the second step establishes existence of solutions of the BSDE and shows
uniqueness, which is often based on comparison results for BSDEs. Apart
from Becherer [5] and Mania and Schweizer [44], we mention Hu et al. [37]
in the group of BSDE-related literature. They give a BSDE characterisa-
tion of

(
V H
t (0)

)
0≤t≤T , but not of (ht)0≤t≤T , in a multidimensional Brownian

model when the investor’s trading strategies must obey constraints described
by closed sets. This result is generalised by Morlais [46] to a setting with a
continuous filtration F.

3) Dual representation of h0

(
or V H

0 (x0)
)

A third group of papers obtains duality results in general frameworks. Rough-
ly speaking, duality results say that the optimisation problem related to
V H

0 (x0) is equivalent to minimising some functional over all equivalent sigma-
martingale measures, i.e., all probability measures which are equivalent to P
and under which S is a sigma-martingale. Such a result was first proved by
Delbaen et al. [16] for a locally bounded S, and then extended by Biagini
and Frittelli [8] to a general S (in the absence of H; but under integrability
conditions, H can be incorporated by a straightforward transformation).

Closely related to these results is the well-known result that the minimal
entropy sigma-martingale measure QE, which minimises the relative entropy
EP
[

dQ
dP

log dQ
dP

]
over all equivalent sigma-martingale measures Q, has the form

dQE

dP
= c exp

(∫ T
0
ζs dSs

)
for a positive constant c and an S-integrable process

ζ such that
∫
ζ dS is a Q-martingale for every equivalent sigma-martingale

measure Q with finite relative entropy. This result was first shown by Ka-
banov and Stricker [38] for a locally bounded S, and later extended by Biagini
and Frittelli [9] to a general S.
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1.3 Results of the thesis

The contributions of this thesis are summarised in the following three points:

• Extending the nontradable asset model to allow for stochastic correla-
tion ρ, we prove a structurally explicit formula1 for ht (Chapter 2).

• We build bridges between the three different strands of work mentioned
in the previous section. Based on the general duality results, we show
that (ht)0≤t≤T is the unique solution (in a suitable class of processes)
of a BSDE and we derive an interpolation formula for ht in a general
semimartingale framework (Chapter 3).

• Restricting to Brownian settings, we show new results for the indiffer-
ence value ht by proving BSDE results and using the BSDE character-
isation of (ht)0≤t≤T (Chapters 4 and 5).

This thesis treats various aspects of exponential utility indifference valu-
ation in four chapters, which are strongly based on the papers [21–24]. To
guarantee that the chapters can be read independently from each other, we
have deliberately allowed some duplication of terms and ideas. We have as-
signed to the four chapters the keywords “correlation”, “semimartingales”,
“BSDEs” and “convergence”, which are also reflected in the title of this the-
sis. The structure of the thesis is as follows.

Chapter 2 (essentially [23]): Correlation. We first consider an incomplete
market driven by two Brownian motions W and Y with stochastic instanta-
neous correlation ρ. The traded asset S is driven by W , while H is measurable
with respect to the σ-field generated by Y . With the goal of deriving explicit
results for ht, we provide motivation for the introduction of an auxiliary ab-
stract optimisation problem in a martingale framework. The main theoretical
result of Chapter 2 is Theorem 2.2, which gives a structurally explicit formula
for the value of this abstract problem. The application of Theorem 2.2 yields
structurally explicit formulas for ht in two application situations, where one
is typical for stochastic volatility models and the other for executive stock
option valuations. The application in the former situation extends the re-
sults of Tehranchi [56] to a fairly general stochastic correlation ρ between the
Brownian motions W and Y . The explicit form of ht is preserved at any
time t, except that a parameter of the formula called the distortion power

1 We define a structurally explicit formula as a formula which is explicit in principle, but,
unlike an explicit formula, some parameters are not directly given in terms of the input
parameters of the model. For brevity, we use in Chapter 2 the notion “explicit formula”
also for a structurally explicit formula.
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is only shown to exist but not explicitly determined. The reason why the
generalisation to stochastic ρ is possible is due to the fact that after a change
of measure, V H

t enjoys a monotonicity property in |ρ|. We conclude Chap-
ter 2 by briefly showing how the results can be generalised to a model with
multidimensional W and Y .

Chapter 3 (essentially [24]): Semimartingales. Leaving the Brownian
world, we work in a broad framework with a general semimartingale S. Based
on the representation dQE

dP
= c exp

(∫ T
0
ζs dSs

)
of the minimal entropy sigma-

martingale measure QE, we introduce a decomposition of H called the fun-
damental entropy representation of H

(
FER(H)

)
. We first show that the

existence of FER(H) is equivalent to a notion of no-arbitrage and then that
FER(H) is closely related to the indifference value process (ht)0≤t≤T . This re-
lation between FER(H) and (ht)0≤t≤T can be exploited in two ways. Firstly,
it yields in Theorem 3.12 an interpolation formula for ht, which generalises
the structurally explicit formula for ht known from Chapter 2 in a Brownian
setting. Although the formula is here much less explicit than in a Brownian
model, it has the same structure and provides deeper insights into indiffer-
ence valuation. Secondly, we show in Theorem 3.16 that (ht)0≤t≤T is the first
component of the unique solution (in a suitable class of processes) of a general
BSDE. Under additional assumptions, the other components of the solution
are BMO-martingales under QE. This generalises results by Becherer [5] and
Mania and Schweizer [44]. Compared to the article [24], Chapter 3 contains
some additional material which is presented in Appendices A and B.

Similarly to the literature on BSDE characterisations of (ht)0≤t≤T , the
thesis contains both the derivation of a BSDE for (ht)0≤t≤T and results for
BSDEs. While Chapter 3 clarifies the relation between FER(H), BSDEs and
(ht)0≤t≤T , Chapters 4 and 5 show how BSDE techniques can be used to prove
results, for which alternative proofs seem to be difficult.

Chapter 4 (essentially [22]): BSDEs. Keeping the importance of BSDEs
for indifference valuation in mind, we restrict our considerations to a multi-
dimensional Brownian model. The goal is to find new bounds for ht since
the structurally explicit results in Chapter 2 yield bounds only when the
nontradable claim H does not depend on the Brownian motion W driving
the traded asset S. Moreover, the upper and lower bounds of Chapter 2
might have a big difference for multidimensional W and Y , depending on
the structure of the instantaneous correlation matrix between W and Y . To
derive new bounds, we study in detail Brownian BSDEs with a particular
convex generator related to indifference valuation. In general, a BSDE is
based on a probability space, a filtration and a probability measure. By
changing each of these ingredients in a suitable way, we obtain Theorems
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4.5, 4.7 and 4.11, which are the main results of Chapter 4. These results
yield bounds for the solutions of BSDEs with a certain convex generator, and
the applications show how these bounds can be fruitfully used in exponential
utility indifference valuation.

Chapter 5 (essentially [21]): Convergence. We finally revisit the two-
dimensional Brownian model with stochastic correlation ρ introduced in Chap-
ter 2. As mentioned above, the distortion power, appearing in the structurally
explicit formula for ht, is not explicitly known. If ρ is time-dependent and/or
stochastic, one only knows the range of values of the distortion power. To
complement these structure results, we derive in Theorems 5.8 and 5.10 ex-
plicitly computable sequences which converge to ht almost surely. The study
is based on a convergence result for BSDEs with quadratic generators. Us-
ing BSDE techniques, we prove this result in a general continuous filtration.
Another application of this convergence theorem shows that ht enjoys a con-
tinuity property in ρ.

To facilitate reading, there is a list of notations at the end of the thesis.



Chapter 2

A Brownian model with
stochastic correlation

In this chapter, we prove a structurally explicit formula2 for the indifference
value in a two-dimensional Brownian model with stochastic correlation.

2.1 Introduction

The model we present in Section 2.2 consists of a risk-free bank account and
a stock S driven by a Brownian motion W . The contingent claim H to be
valued depends on another Brownian motion Y , which has stochastic instan-
taneous correlation ρ with W . The valuation of H is done via exponential
utility indifference valuation. In the literature, which we compare in Sec-
tion 2.4 with our results, there are two main approaches to obtain explicit
formulas for the value of the resulting optimisation problem. In a Markov-
ian setting, Henderson [31], Henderson and Hobson [33, 34] and Musiela and
Zariphopoulou [47], among others, start with the Hamilton-Jacobi-Bellman
nonlinear partial differential equation (PDE) for the value function of the
underlying stochastic control problem. This PDE is then linearised by a
power transformation with a constant exponent called distortion power. This
method works only if one has a Markovian model and if ρ is constant. In
an alternative approach, Tehranchi [56] first proves a Hölder-type inequality
which he then applies to solve the portfolio optimisation problem. The dis-
tortion power there arises as an exponent from the Hölder-type inequality.
Tehranchi finds an explicit expression for the indifference value at time 0 if
ρ is constant. While this method needs no Markovian assumption and can

2 For brevity, we use later in this chapter the notion “explicit formula” also for a structurally
explicit formula; see the footnote 1 on page 6.

9
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treat claims which are general (bounded) functionals of the process Y , it is
still restricted to situations with constant correlation.

Since (exponential) utility indifference valuation hinges on (exponential)
utility maximisation with a random endowment, we start by tackling the lat-
ter. With the goal of deriving explicit results in our Brownian setting, in
Section 2.2.2 we provide the motivation for the introduction of an auxiliary
abstract optimisation problem in a martingale framework. Our main theoret-
ical result is Theorem 2.2 in Section 2.3; it gives an explicit formula for the
value of this abstract problem. The proof uses martingale arguments to give
upper and lower bounds on that value, in terms of bounds on ρ. Crucially,
these bounds have the same structure, which enables us to derive a closed-
form expression by interpolation. In particular, this allows us to handle a
random correlation ρ.

Section 2.4 contains two applications of Theorem 2.2. In the first, case (I),
we extend the model of Tehranchi [56] to a fairly general stochastic correla-
tion; the typical example is a model with stochastic volatility which is cor-
related with the stock in a nondeterministic way. In the second, case (II),
the asset driving the claim H is traded in principle, but nontradable for our
investor. A typical example here is the valuation of (European) executive
stock options. In both cases, we obtain closed-form expressions for the expo-
nential utility indifference value of the claim H at all times t ∈ [0, T ]. The
key feature of our formulas is that the explicit form of the indifference value
is preserved at any time t, except that the distortion power, which is shown
to exist but not explicitly determined, may now be random and depend on
the contingent claim H to be valued. To the best of our knowledge, this is
the first explicit result on exponential utility indifference valuation in a set-
ting with nonconstant and nondeterministic correlation. As another novelty,
our general framework allows us to distinguish (via measurability conditions)
between the settings of case (I) and case (II); this is impossible when ρ and
the instantaneous Sharpe ratio λ of S are constant, as in most of the existing
literature. Section 2.4.2 discusses this and other issues in more detail.

In Section 2.5, we provide both intuitive and rigorous explanations for
our results. We show that the value of the abstract optimisation problem
is monotonic in |ρ|. Because this value can be computed explicitly for con-
stant ρ and is continuous in the ρ-argument, interpolation implies that the
basic structure is preserved for a random ρ. This explains why we can ob-
tain our nice and explicit results. However, the precise interpretation of the
above monotonicity is delicate, since it only holds when the (ρ-dependent)
probability measure P̂ (ρ) appearing in the abstract problem is kept fixed.
A counterexample shows that the value of the original optimisation problem
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under P may fail to be monotonic in |ρ| if we allow P̂ (ρ) to vary with ρ, and
we explain how keeping P̂ (ρ) fixed is linked to standard financial reasoning.

For concreteness and ease of exposition, all our results are given for two
correlated Brownian motions W and Y . The final Section 2.6 briefly shows
how everything can be generalised to a multidimensional Itô process setting.

2.2 Preliminaries

2.2.1 Model setup

We work on a finite time interval [0, T ] for a fixed T > 0 and a complete
filtered probability space (Ω,G,G, P ). The filtration G = (Gs)0≤s≤T satis-
fies the usual conditions, has G0 trivial, and Y = (Ys)0≤s≤T and Y ⊥ are two
independent (G, P )-Brownian motions. Unless otherwise mentioned, all pro-
cesses and filtrations are indexed by s ∈ [0, T ], and we fix t ∈ [0, T ]. For any
process X, FX =

(
FXs
)

denotes the P -augmented filtration generated by X.
For any filtration F ⊆ G, a process X is called F-predictable if it is mea-
surable with respect to the F-predictable σ-field on Ω× [0, T ], completed by
the nullsets of P⊗(Lebesgue measure). To simplify computations, we use the
notation E(N)s,y := exp

(
Ny −Ns − 1

2
(〈N〉y − 〈N〉s)

)
, 0 ≤ s ≤ y ≤ T for a

continuous G-semimartingale N . Notions such as L∞ or ‘almost surely’ (a.s.)
always refer to P (or any probability measure equivalent to P ).

The stochastic framework of our model consists of two Brownian motions
W and Y with random instantaneous correlation ρ. To construct this, let
ρ = (ρs) be a G-predictable process valued in [−1, 1] such that |ρ| is bounded
away from one (uniformly in ω and s) and define

Ws :=

∫ s

0

ρy dYy +

∫ s

0

√
1− ρ2

y dY ⊥y , 0 ≤ s ≤ T. (2.1)

In our financial market, two assets are available for investing and going
short: a risk-free bank account and a stock S. The instantaneous yield of
the bank account is described by a deterministic spot interest rate func-
tion r : [0, T ]→ [0,∞) which is bounded and Borel-measurable. For ease
of notation, we directly pass to discounted quantities which means that we
take r ≡ 0. (See Section 2.4 for more comments on this.) The (discounted)
dynamics of the stock is given by

dSs = µsSs ds+ σsSs dWs, 0 ≤ s ≤ T, S0 > 0, (2.2)

where the drift µ and the volatility σ are G-predictable processes. We assume
for simplicity that µ is bounded and σ is bounded away from zero and infinity.
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Hence the instantaneous Sharpe ratio λ := µ
σ

is also bounded. We write

dSs
Ss

= µs ds+ σs dWs = σs dŴs, 0 ≤ s ≤ T

and note that by Girsanov’s theorem, the processes

Ŵs := Ws +

∫ s

0

λy dy and Ŷs := Ys +

∫ s

0

ρyλy dy, 0 ≤ s ≤ T (2.3)

are Brownian motions under the probability P̂ ≈ P on (Ω,GT ) given by

dP̂

dP
:= E

(
−
∫
λ dW

)
0,T

. (2.4)

In the terminology of Föllmer and Schweizer [20], P̂ is the minimal martingale
measure for S.

Let H be a bounded GT -measurable random variable, interpreted as a
contingent claim or payoff due at time T . To value H, we assume that our
investor has an exponential utility function U(x) = − exp(−γx), x ∈ R, for a
fixed γ > 0. He starts at time t ∈ [0, T ] with initial capital xt and runs a
self-financing strategy π = (πs)t≤s≤T so that his wealth at time s ∈ [t, T ] is

Xxt,π
s = xt +

∫ s

t

πy
Sy

dSy = xt +

∫ s

t

πyσy dŴy,

where π represents the amount invested in S. The set At of admissible strate-
gies on [t, T ] consists of all G-predictable processes π = (πs)t≤s≤T which sat-

isfy
∫ T
t
π2
s ds <∞ a.s. and are such that(

exp

(
−γ
∫ s

t

πyσy dŴy

))
t≤s≤T

is of class (D) on (Ω,GT ,G, P ), (2.5)

abbreviated by ‘of P -class (D)’. We define V H (and analogously V 0) for
t ∈ [0, T ] and xt bounded Gt-measurable by

V H
t (xt) := ess sup

π ∈At
EP
[
U(Xxt,π

T −H)
∣∣Gt]

= −e−γxt ess inf
π ∈At

EP

[
exp

(
−γ
∫ T

t

πsσs dŴs + γH

)∣∣∣∣Gt], (2.6)

using that (bounded) Gt-measurable factors can be pulled out. Thus V H
t (xt)

is the maximal expected utility the investor can achieve by starting at time t
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with initial capital xt, using some admissible strategy π, and paying out H
at time T .

Viewed over time t, V H(0) defined (up to a minus sign) by the essen-
tial infimum in (2.6) is the dynamic value process for the stochastic control
problem associated to exponential utility maximisation. One can show by
standard arguments that V H(0) has an RCLL version and then study its dy-
namic properties as a process; see for instance [5], [44] or [46]. However, our
goal in this chapter is rather to provide explicit or structural formulas for
V H
t (0) with a fixed t.

Remark 2.1. Condition (2.5) is technically useful, but also has the fol-
lowing desirable implication. From an economic point of view, one should
only allow strategies which are close in some sense to investments with fi-
nite credit lines, as Schachermayer [51] emphasises after his Definition 1.3.
In our model, any π ∈ At can be approximated in the following way. Con-
sider a sequence (τn)n∈N of G-stopping times increasing to T stationarily and
define a self-financing strategy π(n) = π1]]t,τn]] by trading according to π un-
til τn and then putting all the capital into the bank account. This gives a
terminal portfolio value xt +

∫ τn
t
πsσs dŴs, leading to the individual utility

−exp
(
−γxt− γ

∫ τn
t
πsσs dŴs

)
, which converges in L1(P ) to the utility of the

final value Xxt,π
T of the strategy π due to (2.5). If we specifically choose

τn := inf
{
s ∈ [t, T ]

∣∣ Xxt,π
s − xt ≤ −n

}
∧ T, n ∈ N,

each of the approximating π(n) represents an investment with finite credit line.
A similar approximation is used in Proposition 2.4 to find an upper bound
for V H , and the same class of strategies has been used in Hu et al. [37]. ♦

The time t indifference (seller) value ht(xt) for H is implicitly defined by

V 0
t (xt) = V H

t

(
xt + ht(xt)

)
.

This says that the investor is indifferent between solely trading with initial
capital xt, versus trading with initial capital xt + ht(xt) but paying out H
at T . Our final goal is to find an explicit formula for ht(xt). By (2.6),

ht = ht(xt) =
1

γ
log

V H
t (0)

V 0
t (0)

(2.7)

does not depend on xt. This also shows that we are done once we have V H
t (0)

explicitly, and so our focus henceforth lies on the optimisation problem (2.6).
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2.2.2 Motivation

Our goal is to find an explicit expression for

−V H
t (0) = ess inf

π ∈At
EP

[
exp

(
−γ
∫ T

t

πsσs dŴs + γH

)∣∣∣∣Gt]. (2.8)

Section 2.3 studies and solves an abstract martingale version of this problem,
and we first explain how that formulation naturally arises out of (2.8). Since
we only want to provide motivation, we ignore here all technical issues like
integrability etc.

Suppose first that H ≡ 0 and S is a (local) P -martingale; equivalently,
µ = λ = 0 and Ŵ is a P -Brownian motion. Then the stochastic integral
in (2.8) is a P -martingale, we minimise the expectation of a convex function
of this, and so Jensen’s inequality immediately tells us that the optimiser is
π? ≡ 0 and that V H

t (0) = −1.
In the general case where S is a P -semimartingale, the idea is now to

reduce (2.8) to the martingale case by writing

−V H
t (0) = ess inf

π ∈At
EP ′

[
Z ′t
Z ′T

exp

(
−γ
∫ T

t

πsσs dŴs + γH

)∣∣∣∣Gt], (2.9)

where Z ′ is the P -density process of some fixed measure P ′ (not depend-
ing on π) under which S or Ŵ is a local martingale. To choose a good P ′,
one might be tempted by the duality results of [16] to take the minimal en-
tropy martingale measure QE, because its density ZE

T is up to a constant the
exponential of a stochastic integral of S. However, this is not true for the
density ZE

t on Gt, and it is in general also very difficult to find QE explic-
itly in any given model. Because we want explicit formulas, we need Z ′t/Z

′
T

as explicitly as possible. Now any equivalent local martingale measure P ′

has a P -density process of the form Z ′ = E
(
−
∫
λ dW

)
E(N) for some local

P -martingale N orthogonal to W , and inserting this expression for Z ′ in (2.9)
gives after a straightforward calculation

EP

[
exp

(
−γ
∫ T

t

πsσs dŴs + γH

)∣∣∣∣Gt]
= EP̂

[
exp

(
−
∫ T

t

(γπsσs − λs) dŴs + γH − 1

2

∫ T

t

λ2
s ds

)∣∣∣∣Gt]. (2.10)

The minimal martingale measure P̂ from (2.4) appears naturally in this way,
and it has the enormous benefit that its density Ẑ = E

(
−
∫
λ dW

)
is com-

pletely explicit. Combining (2.10) with (2.8) gives

−V H
t (0) = ess inf

π ∈At
EP̂

[
exp

(
−
∫ T

t

(γπsσs − λs) dŴs +H

)∣∣∣∣Gt], (2.11)
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and we can recognise this as a “martingale version” of (2.8) with an artificial
random endowment

H := γH − 1

2

∫ T

t

λ2
s ds. (2.12)

Note that in the genuine semimartingale case λ 6≡ 0, the quantity H appears
even if the claim H is zero. Hence there is no simplification from assuming
H ≡ 0, and so we do not discuss this case separately.

2.3 The main (but abstract) result

2.3.1 An explicit formula for an optimisation problem

This section contains the main mathematical contribution of this chapter.
We derive an explicit formula for the value of the optimisation problem

−V̂ Ĥ
t := ess inf

π̂ ∈ Ât
EP̂

[
exp

(
−
∫ T

t

π̂s dŴs + Ĥ

)∣∣∣∣Gt] =: ess inf
π̂ ∈ Ât

ϕ̂t(π̂), (2.13)

where Ât consists of all G-predictable π̂ = (π̂s)t≤s≤T satisfying
∫ T
t
π̂2
s ds <∞

a.s. and such that
(

exp
(
−
∫ s
t
π̂y dŴy

))
t≤s≤T

is of P̂ -class (D). Here Ĥ is a

bounded ĤT -measurable random variable, where Ĥ =
(
Ĥs

)
⊆ G is a filtra-

tion such that the P̂ -Brownian motion Ŷ from (2.3) has the representation
property in Ĥ. This means that any

(
Ĥ, P̂

)
-martingale L is of the form

L = L0 +
∫
ζ dŶ for an Ĥ-predictable ζ with

∫ T
0
ζ2
s ds <∞ a.s. The assump-

tion Ĥ ∈ L∞
(
ĤT

)
is slightly weaker than Ĥ ∈ L∞

(
F ŶT
)
, and the two different

applications in Section 2.4 will make it clear why this is useful. It is worth
pointing out that all the subsequent arguments only involve the filtration Ĥ;
this is the reason why we can formulate our model with a general filtration
G ⊇ FY,Y ⊥ such that Y and Y ⊥ are (G, P )-Brownian motions.

While the idea of considering a problem like (2.13) has been motivated in
Section 2.2.2 from (2.8), it is not clear at this stage how Ĥ and especially Ĥ
arise. This will become clearer in Section 2.4 from the applications. However,
we already point out that Ĥ and the artificial claim H = γH − 1

2

∫ T
t
λ2
s ds

from (2.12) can well be different.

Theorem 2.2. Under the above assumptions, set

δt := inf
s∈ [t,T ]

1

‖1− ρ2
s‖L∞

and δt := sup
s∈ [t,T ]

∥∥∥∥ 1

1− ρ2
s

∥∥∥∥
L∞

. (2.14)
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Then there exists a Gt-measurable random variable δĤt with values in
[
δt, δt

]
such that

−V̂ Ĥ
t (ω) =

(
EP̂

[
exp
(
Ĥ
) 1
δ

∣∣∣Ĥt

]
(ω)
)δ ∣∣∣∣

δ=δĤt (ω)

(2.15)

for almost all ω ∈ Ω.

The right-hand side of (2.15) is understood as follows: We compute for

fixed δ (a version of) the
(
Ĥt, P̂

)
-conditional expectation of exp

(
Ĥ
) 1
δ , evalu-

ate that (version) in the given ω and then insert for δ the value δĤt (ω).
Before we actually prove Theorem 2.2, we provide here an outline of the

proof. The key idea is to find a family of processes Z(π̂) with

Z
(π̂)
T = exp

(
−
∫ T

t

π̂s dŴs + Ĥ

)
(2.16)

and such that Z(π̂) is a
(
G, P̂

)
-submartingale for every π̂ ∈ Ât, and a

(
G, P̂

)
-

martingale for some π̂ = π̂? ∈ Ât. If we can do this, the same argument as
in Section 2.2.2 easily shows that the essential infimum in (2.13) is attained
for π̂?.

To find such a family Z(π̂), we need a good representation for eĤ , and
the multiplicative form of (2.16) might suggest that we write eĤ as the final
value of some stochastic exponential martingale. But unless we believe that
π̂? ≡ 0 happens to be optimal, eĤ = Z

(0)
T should be the final value of a(

G, P̂
)
-submartingale rather than a

(
G, P̂

)
-martingale. Again in view of the

multiplicative structure, the simplest way to transform a positive martingale
into a submartingale is to raise it to a power bigger than one. Fixing a
constant δ ≥ 1 to be specified later and using Ĥ ∈ L∞

(
ĤT

)
, we thus write

exp
(
Ĥ
)

= exp
(
Ĥ/δ

)δ
=
(
ctE(L)t,T

)δ
, ct := EP̂

[
exp
(
Ĥ/δ

)∣∣Ĥt

]
(2.17)

for a BMO
(
Ĥ, P̂

)
-martingale L.

(
More precisely, the positive

(
Ĥ, P̂

)
-mar-

tingale with final value exp
(
Ĥ/δ

)
is uniformly bounded away from zero and

infinity, and thus its stochastic logarithm L is in BMO.
)

By the representa-

tion property of Ŷ in Ĥ, L is of the form

L =

∫
ζ dŶ for an Ĥ-predictable ζ with EP̂

[∫ T

0

ζ2
s ds

]
<∞. (2.18)

So L is a BMO
(
G, P̂

)
-martingale, too, and combining (2.16) and (2.17) gives

Z
(π̂)
T = cδt

(
E(L)t,T

)δ
exp

(
−
∫ T

t

π̂s dŴs

)
= cδtE(δL)t,T E

(
−
∫
π̂ dŴ

)
t,T

exp

(
1

2

∫ T

t

(
(δ2 − δ)ζ2

s + π̂2
s

)
ds

)
.
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Using Yor’s formula, (2.17) and d
〈
Ŷ , Ŵ

〉
s

= ρs ds yields

E(δL) E
(
−
∫
π̂ dŴ

)
= E

(
δL−

∫
π̂ dŴ −

〈
δL,

∫
π̂ dŴ

〉)
= M (π̂) exp

(
−
∫
δζsπ̂sρs ds

)
with the local

(
G, P̂

)
-martingale

M (π̂) := E
(
δL−

∫
π̂ dŴ

)
= E

(∫
δζ dŶ −

∫
π̂ dŴ

)
, (2.19)

and putting everything together and completing squares leads us to define

Z(π̂)
s := cδtM

(π̂)
t,s exp

(
1

2

∫ s

t

(
(π̂y − δζyρy)2 + ζ2

yδ
(
δ(1− ρ2

y)− 1
))

dy

)
(2.20)

for t ≤ s ≤ T . This gives (2.16) by construction, and if ρ is constant,
choosing δ := 1

1−ρ2 ensures that the integrand in (2.20) is always nonnegative

and vanishes for π̂? = δζρ. Hence Z(π̂) is then on [t, T ] a local
(
G, P̂

)
-

submartingale for every π̂ and a local
(
G, P̂

)
-martingale for π̂?. Apart from

integrability issues, we thus have achieved our goal in that case.
In general, ρ is not constant. Then we choose one δ for the submartingale

property of Z(π̂) for all π̂, and another δ for the martingale property of Z(π̂?).
This gives an upper and a lower bound for V̂ Ĥ

t , and Theorem 2.2 is obtained
by interpolation. The detailed proof is given in the next section.

Remark 2.3. The attentive reader may have noticed that we only give results
on the value of the optimisation problem, and may argue that for hedging
or investing purposes, one would also like to know the optimal strategy ex-
plicitly. While this is a valid point, it is a well-known unfortunate fact that
this problem is notoriously difficult even in quite specific (e.g., Markovian)
settings. We hope to address this question in future, as it goes beyond the
scope of the present work. ♦

2.3.2 Proof of Theorem 2.2

The argument for Theorem 2.2 follows the outline given in Section 2.3.1. We
suppose throughout that the assumptions of Theorem 2.2 hold and first derive
an upper bound for V̂ Ĥ

t . Recall ϕ̂t(π̂) from (2.13) and δt from (2.14).

Proposition 2.4. For all π̂ ∈ Ât, we have

ϕ̂t(π̂) ≥ EP̂
[

exp
(
Ĥ
/
δt
)∣∣Ĥt

]δt
a.s.
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Proof. We use the reasonings and notations from Section 2.3.1 with δ := δt.
1) Suppose first that

∫ T
t
π̂2
s ds is uniformly bounded. Then

∫
π̂ dŴ is a

BMO
(
G, P̂

)
-martingale like L =

∫
ζ dŶ from (2.18), and hence by Theo-

rem 2.3 of Kazamaki [40], M (π̂) = E
(
δL−

∫
π̂ dŴ

)
from (2.19) is a

(
G, P̂

)
-

martingale. The choice δ = δt implies that the integrand in (2.20) is nonneg-
ative and thus Z(π̂) is a

(
G, P̂

)
-submartingale; in fact, integrability follows

via (2.16) because Z
(π̂)
T = exp

(
−
∫ T
t
π̂s dŴs + Ĥ

)
is in L1

(
P̂
)

since
∫
π̂ dŴ is

in BMO. Thus (2.13), (2.16), (2.20) and (2.17) yield

ϕ̂t(π̂) = EP̂
[
Z

(π̂)
T

∣∣Gt] ≥ Z
(π̂)
t = EP̂

[
exp
(
Ĥ
/
δt
)∣∣Ĥt

]δt
a.s.

2) In general, we define a localising sequence by

τn := inf

{
s ∈ [t, T ] such that

∫ s

t

π̂2
y dy ≥ n

}
∧ T, n ∈ N

and set π̂(n) := π̂1]]t,τn]] ∈ Ât. Applying step 1) to π̂(n) then gives

ϕ̂t
(
π̂(n)

)
≥ EP̂

[
exp
(
Ĥ
/
δt
)∣∣Ĥt

]δt
a.s. (2.21)

Because
(

exp
(
−
∫ s
t
π̂y dŴy

))
t≤s≤T

is of P̂ -class (D) and Ĥ is bounded, the

sequence
(
Z

(π̂(n))
T

)
n∈N

=
(

exp
(
−
∫ T
t
π̂

(n)
s dŴs + Ĥ

))
n∈N

is P̂ -uniformly inte-

grable and converges a.s. to Z
(π̂)
T . Hence the conditioned random variables

ϕ̂t
(
π̂(n)

)
= EP̂

[
Z

(π̂(n))
T

∣∣∣Gt], n ∈ N, converge to ϕ̂t(π̂) in L1
(
P̂
)

and therefore

also a.s. along a subsequence. This concludes the proof in view of (2.21).

The next result entails a lower bound for V̂ Ĥ
t . Recall δt from (2.14).

Proposition 2.5. Define π̂? = (π̂?s)t≤s≤T by

π̂?s :=
(
ρsδt +

√
ρ2
sδ

2
t + δt − δ2

t

)
ζs, t ≤ s ≤ T, (2.22)

where ζ is now determined as in (2.17), (2.18) with δ := δt. Then we have

ϕ̂t(π̂
?) = EP̂

[
exp
(
Ĥ
/
δt
)∣∣Ĥt

]δt a.s., and π̂? ∈ Ât. (2.23)

To be more precise, π̂?s is for any s ∈ [t, T ] defined by (2.22) on the set

Ω̃s =
{
ω ∈ Ω

∣∣∣ 1
1−ρ2s(ω)

≥ δt

}
, which has

(
P - and P̂ -

)
probability one. For

ω /∈ Ω̃s, we set π̂?s(ω) := 0. By the definition of δt, the expression under the
square root in (2.22) is nonnegative, and π̂? is G-predictable.
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Proof. We use the notations of Section 2.3.1 with δ := δt, and first show the
equality in (2.23). Because π̂? in (2.22) is chosen to make the integrand in
(2.20) vanish, we get from (2.20)

Z
(π̂?)
T = c

δt
t M

(π̂?)
t,T = EP̂

[
exp
(
Ĥ
/
δt
)∣∣Ĥt

]δtE(N (π̂?)
)
t,T

(2.24)

with N (π̂?) :=
∫
δtζ dŶ −

∫
π̂? dŴ . An easy computation using (2.22) yields

〈
N (π̂?)

〉
s
−
〈
N (π̂?)

〉
t

= δt

∫ s

t

ζ2
y dy = δt

(
〈L〉s − 〈L〉t

)
, t ≤ s ≤ T (2.25)

and so N (π̂?) is like
∫
ζ dŶ = L a BMO

(
G, P̂

)
-martingale; see below (2.18).

We conclude by Theorem 2.3 of Kazamaki [40] that M (π̂?) = E
(
N (π̂?)

)
is a(

G, P̂
)
-martingale, and so (2.13), (2.16) and (2.24) yield the equality in (2.23).

To prove π̂? ∈ Ât, we first note that EP̂

[∫ T
t
ζ2
s ds

]
< ∞ from (2.18) im-

plies EP̂

[∫ T
t
|π̂?s |2 ds

]
<∞ by (2.22). To show that

(
exp
(
−
∫ s
t
π̂?y dŴy

))
t≤s≤T

is of P̂ -class (D), we observe that (2.18) and (2.25) yield

exp

(
−
∫ s

t

π̂?y dŴy

)
= exp

(
N (π̂?)
s −N (π̂?)

t − δt
∫ s

t

ζy dŶy

)
= M

(π̂?)
t,s E(L)

−δt
t,s

for s ∈ [t, T ], and the process E(L)−δt is bounded because (2.17) gives

E(L)t,s =
EP̂
[

exp
(
Ĥ/δt

)∣∣Ĥs

]
EP̂
[

exp
(
Ĥ/δt

)∣∣Ĥt

] , t ≤ s ≤ T

and Ĥ is bounded. Moreover, M (π̂?) as a
(
G, P̂

)
-martingale is of P̂ -class (D),

and hence so is
(

exp
(
−
∫ s
t
π̂?y dŴy

))
t≤s≤T

. Thus π̂? is in Ât.

Remark 2.6. The choice of π̂? in (2.22) deserves a comment. As we have
seen in the proof of Proposition 2.5, it ensures that the integrand(

δtρsζs − π̂?s
)2

+ ζ2
s δt
(
δt(1− ρ2

s)− 1
)

(2.26)

in (2.20) (with δ = δt and π̂ = π̂?) vanishes identically. But for fixed ω ∈ Ω
and s ∈ [t, T ], (2.26) is a quadratic function in π̂?s(ω), and requiring it to be
zero for each s does not determine the process π̂? uniquely. In fact, Proposi-
tion 2.5 remains true if π̂? is replaced by π̂η with

π̂ηs :=
(
ρsδt + ηs

√
ρ2
sδ

2
t + δt − δ2

t

)
ζs, t ≤ s ≤ T
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for any G-predictable process η on [t, T ] with values in {−1, 1}.
Suppose now we replace π̂? by π̂?? with π̂??s := δtρsζs, s ∈ [t, T ], which

minimises (2.26) pointwise and makes it nonpositive. Then we get

ϕ̂t(π̂
??) = EP̂

[
Z

(π̂??)
T

∣∣∣Gt] ≤ EP̂

[
EP̂
[

exp
(
Ĥ
/
δt
)∣∣Ĥt

]δtM (π̂??)
t,T

∣∣∣Gt] = ϕ̂t(π̂
?),

using that M (π̂??) is like M (π̂?) a
(
G, P̂

)
-martingale. Similar arguments as

for π̂? also yield π̂?? ∈ Ât, and we even obtain ϕ̂t(π̂
??) < ϕ̂t(π̂

?) on a set
A ∈ Gt with P̂ [A] > 0 if

∫ T
t
ζ2
s

(
δt(1− ρ2

s)− 1
)

ds is non-zero with positive
probability. This shows that the lower bound

−ϕ̂t(π̂?) ≤ −ess inf
π̂ ∈ Ât

ϕ̂t(π̂) = V̂ Ĥ
t a.s. (2.27)

entailed by Proposition 2.5 need not be sharp. Nevertheless, we work with
π̂? and not with π̂??, because ϕ̂t(π̂

?) has the nice representation (2.23) which
allows us to obtain an explicit expression for V̂ Ĥ

t ; see the interpolation argu-
ment below. The sharper bound given via π̂?? is not explicit enough to give
this result. We remark that if ρ is constant, π̂?? and π̂? coincide and (2.27)
holds with equality; compare Propositions 2.4 and 2.5. ♦

As announced, we now prove Theorem 2.2 by an interpolation argument.

Proof of Theorem 2.2. Define f(·, ·) :
[
δt, δt

]
× Ω→ R by

f(δ, ω) :=
(
EP̂

[
exp
(
Ĥ
) 1
δ

∣∣∣Ĥt

]
(ω)
)δ
, (δ, ω) ∈

[
δt, δt

]
× Ω.

Because Ĥ is bounded, dominated convergence and Jensen’s inequality imply
that f admits a version which is continuous and nonincreasing in δ for each
fixed ω ∈ Ω. We use this version in the sequel. From Propositions 2.4 and
2.5 we already know that

f
(
δt, ω

)
≤ −V̂ Ĥ

t (ω) ≤ f
(
δt, ω

)
for a.a. ω ∈ Ω.

By the intermediate value theorem, the set

∆(ω) :=
{
δ ∈

[
δt, δt

] ∣∣∣ f(δ, ω) = −V̂ Ĥ
t (ω)

}
is thus nonempty for almost all ω ∈ Ω. Define δĤt : Ω→

[
δt, δt

]
by

δĤt (ω) := sup∆(ω), ω ∈ Ω, (2.28)
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setting δĤt (·) :=
(
δt + δt

)/
2 on the nullset {ω ∈ Ω |∆(ω) = ∅}. By the

continuity of f in its first argument, ∆(ω) is closed in R for all ω ∈ Ω, and
we obtain for almost all ω ∈ Ω that

f
(
δĤt (ω), ω

)
= −V̂ Ĥ

t (ω). (2.29)

It remains to prove that the mapping ω 7→ δĤt (ω) is Gt-measurable.
Because f is nonincreasing and due to (2.28) and (2.29), we have for any
a ∈

[
δt, δt

]
that up to a null set,{

ω ∈ Ω
∣∣ δĤt (ω) < a

}
=
{
ω ∈ Ω

∣∣∣ f(δĤt (ω), ω
)
> f(a, ω)

}
=
{
ω ∈ Ω

∣∣ − V̂ Ĥ
t (ω) > f(a, ω)

}
=
⋃
q ∈Q

{
ω
∣∣ − V̂ Ĥ

t (ω) > q
}
∩
{
ω
∣∣ q > f(a, ω)

}
.

The last set is in Gt since V̂ Ĥ
t and f(a, ·) for a fixed a ∈

[
δt, δt

]
are Gt-

measurable. Since Gt is complete, we have
{
ω ∈ Ω

∣∣ δĤt (ω) < a
}
∈ Gt for

every a ∈ R, and so δĤt (·) is Gt-measurable. This ends the proof.

2.4 Applications in two settings

2.4.1 Explicit formulas for the indifference value

Our goal in this section is to find explicit formulas for V H
t (0) in (2.6) or (2.11)

in two different settings. This will be achieved by applying Theorem 2.2 and
will also yield explicit results for the indifference value ht via (2.7). We recall
W and Ŷ from (2.1) and (2.3) and write for brevity

W = (Ws) for FW , Y = (Ys) for FY , Ŷ =
(
Ŷs
)

for FŶ .

If ρλ is Y-predictable, then Ŷ from (2.3) is Y-adapted and hence Ŷ ⊆ Y. In
general, however, none of the above three filtrations contains any other.

Theorem 2.2 gives us the freedom to specify the artificial endowment Ĥ,
but also the task of finding a filtration Ĥ such that Ĥ is ĤT -measurable
and Ŷ has the representation property in Ĥ. Comparing (2.11) with (2.13)
suggests to choose Ĥ = H = γH − 1

2

∫ T
t
λ2
s ds. In a first application, we do

this, and moreover we set Ĥ = Y and assume that H is YT -measurable and
λ is Y-predictable, to ensure that Ĥ is ĤT -measurable. We shall later see in
the proof of Theorem 2.9 that we also need to assume that ρ is Y-predictable
to guarantee that Ŷ has the representation property in Y.
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For our second application, we choose Ĥ = γH and assume that 1
2

∫ T
t
λ2
s ds

is replicable by trading in S. This is satisfied if λ is W-predictable, as we
shall see in the proof of Theorem 2.10. In this case, we moreover set Ĥ = Ŷ
and assume that H is ŶT -measurable.

Cases. In more detail, we consider one of the following two situations:

(I) H ∈ L∞(YT ), λ is Y-predictable, and ρ is Y-predictable;

(II) H ∈ L∞
(
ŶT
)
, λ is FS,Ŷ -predictable, and λ is W-predictable.

The assumption in case (II) that λ is FS,Ŷ -predictable is quite natural
since S and Ŷ are the quantities observable for our investor. Moreover, it
guarantees by Lemma 2.8 below that FY,Y ⊥ ⊆ FS,Ŷ , i.e., the two basic driving
Brownian motions Y and Y ⊥ are observable from S and Ŷ . In particular, if
we take G = FY,Y ⊥ , the a priori condition that λ is FS,Ŷ -predictable turns out
to be innocent a posteriori.

To motivate our model choice, we discuss for each case a typical example.
Case (I): Here one should think of a stochastic volatility model, where µ

and σ are Y-predictable and the contingent claim H depends only on σ (e.g.,
a variance swap). The stock S is driven by the Brownian motion W , whereas
its drift and volatility depend on a second factor Y . Our approach allows
us to consider the situation where the correlation between W and Y is not
constant, but more realistically a functional of Y .

In this setting, H is naturally YT -measurable and λ = µ
σ

is Y-predictable
like µ and σ. The only genuine condition is that ρ should be Y-predictable,
which we technically need to guarantee that Ŷ has the representation property
not only in Ŷ, but also in Y.

Case (II): A good application here comes from executive stock options.
Consider a manager who receives call options on the stock

(
driven by Ŷ

)
of

her company as part of her performance-related compensation. The manager
must not trade the company stock and all its derivatives because of legal
restrictions. However, she might be able to trade other, correlated stocks. So
S is here a market index, a representative portfolio of other companies in the
same line of business, or the stock of a leading company in the same line of
business, which serves as a benchmark. We assume that the only source of
incompleteness is the fact that the manager is not allowed to directly trade
the stock of her company. In particular, we suppose that the market formed
by the bank account and S is complete by assuming that µ and σ are both W-
and FS-predictable. Then W = FS, i.e., the uncertainty (W) about S equals
the information

(
FS
)

available from S. This follows from (2.2) because σ
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is bounded away from zero. We then provide a fair value for the executive
options in such a situation.

In this setting, λ = µ
σ

is W- and FS-predictable like µ and σ. The only

genuine condition here is that H is ŶT -measurable, and the next remark
explains why this is natural. Equivalently, that remark clarifies why we view
the nontradable asset here as driven by Ŷ and not by Y .

In both cases, the measurability assumptions make precise the underlying
idea: The payoff H is driven by Y

(
or Ŷ

)
, whereas hedging can only be

done in S which is imperfectly correlated with Y
(
or Ŷ

)
. The examples also

illustrate two reasons why direct hedging in the stochastic process underlying
H may be impossible; either its driver is not traded at all (e.g., a volatility
or a consumer price index), or it is traded in principle but not tradable by
our investor, due to legal, liquidity, practicability, cost or other reasons.

Remark 2.7. To see why ŶT -measurability of H is reasonable in case (II), re-
call that H is a claim on some asset Z, and write dY = ρ dW +

√
1− ρ2 dW⊥

for a (G, P )-Brownian motion W⊥ P -independent of W . The asset change dZ
is driven by two factors: the market development dS

S
of the benchmark S, and

company specific risks dW⊥. To determine the genuine driver of Z, we weight
the two factors by the correlation process ρ, but first make them comparable
by “normalising” dS

S
, which means that we use 1

σ
dS
S

= dŴ instead of dS
S

.
Thus Z is driven by

ρ dŴ +
√

1− ρ2 dW⊥ = ρλ ds+ ρ dW +
√

1− ρ2 dW⊥ = ρλ ds+ dY = dŶ ,

using (2.3). Hence assuming the Z-dependent claim H to be ŶT -measurable
is more natural than having it YT -measurable. Note that the filtrations Ŷ
and Y differ in general, but coincide if ρ and λ are deterministic. ♦

Let us now briefly look at the information available to our investor. We
always assume that the tradable stock S is observable. In addition, we assume
in both cases (I) and (II) that the driver for the uncertainty behind H

(
i.e.,

Y or Ŷ , respectively
)

is also observable. The following result shows that

the observable filtration then contains the filtration FY,Y ⊥ of the underlying
Brownian motions, and this justifies why we always use G ⊇ FY,Y ⊥ to describe
the information on which our strategies π ∈ At must be based.

Lemma 2.8. In case (I), FY,Y ⊥ ⊆ FS,Y , and in case (II), FY,Y ⊥ ⊆ FS,Ŷ .

Proof. Note that the argument in each case uses only the middle condition
on λ. For brevity, we write Z ∈ FX to mean that Z is FX-predictable.
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Case (I): By (2.2), 〈S〉 =
∫
σ2S2 ds and 〈S〉 ∈ FS since it is a continuous

pathwise quadratic variation; so σS = +
√
σ2S2 ∈ FS and hence also σ ∈ FS.

Next, λ ∈ Y by assumption, and so µ = σλ ∈ FS,Y . Because σ is bounded
away from 0, we obtain W =

∫
1
σS

dS −
∫

µ
σ

ds ∈ FS,Y . As a consequence,
ρ ∈ FS,Y since it is the density of 〈W,Y 〉 with respect to Lebesgue measure and
〈W,Y 〉 ∈ FS,Y , being a continuous pathwise quadratic covariation. Finally, |ρ|
is bounded away from 1; so solving (2.1) for Y ⊥ implies that Y ⊥ ∈ FS,Y and
therefore FY,Y ⊥ ⊆ FS,Y .

Case (II): Again, σ ∈ FS. Moreover, (2.2), (2.1) and the definition (2.3) of
Ŷ give

〈
S, Ŷ

〉
=
∫
σSρ ds so that ρ ∈ FS,Ŷ . Because λ ∈ FS,Ŷ by assumption,

we get µ = σλ ∈ FS,Ŷ , and now we can argue like in case (I) to deduce that
Y ⊥ ∈ FS,Ŷ . Moreover, Y = Ŷ −

∫
ρλ ds ∈ FS,Ŷ and hence FY,Y ⊥ ⊆ FS,Ŷ .

The two following theorems give explicit formulas for the value V H and
the indifference value h in cases (I) and (II). To facilitate comparisons with the
literature, we state them for a spot interest rate on the bank account given by
a bounded deterministic Borel-measurable function r : [0, T ] → [0,∞). Our
results and arguments given for r ≡ 0 easily extend to this case; allowing r
to be stochastic, however, would be a different issue.

Theorem 2.9. Consider the setting and the assumptions from Section 2.2.1
and recall δt, δt from (2.14). In case (I), define Ĥ := γH − 1

2

∫ T
t

(µs−r(s))2
σ2
s

ds

and 0̂ := −1
2

∫ T
t

(µs−r(s))2
σ2
s

ds. Then there exist Gt-measurable random variables

δĤt , δ0̂
t with values in

[
δt, δt

]
such that

V H
t (xt)(ω) = − exp

(
−γxt(ω)e

R T
t r(s) ds

)(
EP̂

[
exp
(
Ĥ
) 1
δ

∣∣∣Yt](ω)
)δ ∣∣∣∣

δ=δĤt (ω)

(2.30)

and

ht(ω) =
e−

R T
t r(s) ds

γ
log

(
EP̂
[
exp(Ĥ)1/δ

∣∣Yt](ω)
)δ(

EP̂
[
exp(0̂)1/δ′

∣∣Yt](ω)
)δ′
∣∣∣∣∣
δ′=δ0̂t (ω), δ=δĤt (ω)

(2.31)

for almost all ω ∈ Ω and every bounded Gt-measurable random variable xt.

Theorem 2.10. Consider the setting and the assumptions from Section 2.2.1
and recall δt, δt from (2.14). In case (II), there exists a Gt-measurable random
variable δγHt with values in

[
δt, δt

]
such that

V H
t (xt)(ω) = − exp

(
−γxt(ω)e

R T
t r(s) ds − 1

2
EP̂

[∫ T

t

(µs − r(s))2

σ2
s

ds

∣∣∣∣Wt

])
×
(
EP̂

[
exp(γH)

1
δ

∣∣∣Ŷt](ω)
)δ ∣∣∣∣

δ=δγHt (ω)
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and

ht(ω) =
e−

R T
t r(s) ds

γ
log
(
EP̂

[
exp(γH)

1
δ

∣∣∣Ŷt](ω)
)δ ∣∣∣∣

δ=δγHt (ω)

for almost all ω ∈ Ω and every bounded Gt-measurable random variable xt.

To the best of our knowledge, results like Theorems 2.9 or 2.10 have
not been available in the literature so far; all previous approaches leading
to explicit formulas have only considered situations where the correlation ρ
is deterministic and constant in time. One nice feature of all formulas in
Theorems 2.9 and 2.10 is that the only unknowns are the distortion powers
δĤ, δ0̂ or δγH, and we have precise bounds for these in terms of bounds on the
correlation ρ. In general, each such power is random (in a G-adapted way)
and depends on H via Ĥ. Since we have assumed that G0 is trivial, δĤ0 is
deterministic, but may still depend on Ĥ. However, if the correlation ρ is
deterministic and constant in time, the functions δ and δ in (2.14) coincide
and equal 1

1−ρ2 , and then δĤ = 1
1−ρ2 becomes constant and independent of H

or Ĥ. This explains why the constant correlation case is easier to handle and
understand.

We defer the proofs of Theorems 2.9 and 2.10 to Section 2.4.3, and first
compare our results with the existing literature.

2.4.2 Comparison with the literature

Exponential utility indifference valuation in Brownian settings has been ex-
tensively studied, particularly in Markovian models. An overview with a long
literature list is provided by Henderson and Hobson [35]. We present here
some references and comment first on the different model assumptions and
then on the methods and results.

Recall the model in (2.1) and (2.2). Henderson [31, 32], Henderson and
Hobson [33,34], and Musiela and Zariphopoulou [47] all work in a Markovian
framework where µ, σ, r and ρ are all constant. [31–34] have a nontraded
asset Z satisfying, for some constants a > 0 and b ∈ R,

dZs
Zs

= b ds+ a dYs, 0 6 s 6 T, Z0 > 0, (2.32)

and the contingent claim H = H(ZT ) is a function of the terminal value ZT
alone. Like in (2.1), Y is a Brownian motion having correlation ρ with W .
[47] contains a slightly more general diffusion setting where as = a(Zs, s) and
bs = b(Zs, s) may depend on the current level of Z and on time. Monoyios [45]
studies a similar model where σ and λ = µ

σ
are not constant, but σ equals Z
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and λs = λ(Zs) is a function of the current level of Z. Grasselli and Hurd [29]
and Stoikov and Zariphopoulou [55] consider claims which depend not only
on ZT , but also in a certain way on the trajectory of Z. In contrast to all the
above Markovian models, Tehranchi [56] analyses a more general situation
very similar to case (I); but his approach is still restricted to a constant
correlation ρ.

To the best of our knowledge, the only article where ρ is not constant
is by Benth and Karlsen [7] who study a Markovian setting with ρ = ρ(Zs)
depending on the present level of the nontraded asset Z. They show that
the minimal entropy martingale measure can be expressed in terms of the
solution of a semilinear PDE for which they prove existence and uniqueness
of a classical solution. However, they have no claim H and they also do not
derive any general explicit formulas.

Remark 2.11. All Markovian models above with constant µ, σ, r, ρ, a, b
satisfy the measurability conditions for both cases (I) and (II). It is therefore
somewhat arbitrary whether one views them as stochastic volatility or rather
as executive stock option models. (Indeed, only our general model makes this
precise distinction really possible.) The subsequent generalisations in [56],
[45], [29] and [55] all head towards our case (I), whereas models from case (II)
have not yet been studied for nondeterministic λ or ρ. In that sense, it seems
fair to say that our formulation with a clear distinction between cases (I) and
(II) represents a significant generalisation of previously considered models. ♦

We now recall and comment on how explicit formulas for the indifference
value h are derived in the literature. As in Section 2.2.1, one usually first
derives an expression for the value V H and then obtains a formula for h
via (2.7). In a Markovian model, the usual approach is to condition on the
current state of the nontraded asset Z in (2.32), i.e., to write

V H
t (xt) = v(xt, zt, t) := ess sup

π ∈At
E
[
U
(
Xxt,π
T −H(ZT )

)∣∣Xxt,π
t = xt, Zt = zt

]
.

Henderson [31], Henderson and Hobson [33,34], and later Musiela and Zaripho-
poulou [47] first write the Hamilton-Jacobi-Bellman nonlinear PDE for the
value function v. Exploiting the scaling properties of the exponential utility
function U , they try an ansatz of the form

v(x, z, t) = U(x)F (z, t),

which results in a nonlinear PDE for F . A clever power transformation,

F (z, t) = f(z, t)
1

1−ρ2 , (2.33)
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reduces this to a linear and solvable PDE for f . This yields an explicit
formula for v and thus also for h via (2.7).

The idea to convert a nonlinear to a linear PDE by a power transforma-
tion was introduced by Zariphopoulou [57] for optimal portfolio management
problems with nontraded assets when the utility is of the separable CRRA
type: the payoff H(ZT ) of the claim is multiplied by a power of the in-
vestor’s final portfolio value Xxt,π

T , i.e., Ũ
(
Xxt,π
T , H(ZT )

)
= H(ZT )|Xxt,π

T |γ
/
γ

with 0 6= γ < 1. The application of the power transformation (2.33) to ex-
ponential utility indifference valuation appeared first in Henderson [31], Hen-
derson and Hobson [33,34], and later in Musiela and Zariphopoulou [47]. The
exponent δ := 1

1−ρ2 from (2.33) is called distortion power, a terminology due
to Zariphopoulou [57], and the approach is also known as distortion method.
Henderson [31] and Henderson and Hobson [33, 34] also derive an approxi-
mation (for a small number of claims) of the power utility indifference value,
which they compare with the exponential indifference value. Henderson [32]
examines the latter criterion and incentives for executive stock options in the
Markovian model of [31,33,34]. Monoyios [45] derives a representation of the
optimal measure for the dual problem by combining the distortion method
with general duality results. He further considers the optimisation problem
under power utility, but without random endowment. Grasselli and Hurd [29]
and Stoikov and Zariphopoulou [55] present explicit formulas for the expo-
nential utility indifference value of a path-dependent claim on the volatility.
But as already mentioned, all these approaches work only in a Markovian
model and if the instantaneous correlation ρ between W and Y is constant.

In an alternative approach, Tehranchi [56] obtains an explicit expression
for V H

t (xt) in (2.6) with t = 0. He first proves a Hölder-type inequality
which he then applies to determine V H

0 (x0), and this also yields an explicit
formula for the indifference value at time 0. His method has the advan-
tage that it needs no Markovian assumption and can treat general (bounded)
YT -measurable claims; but it is still restricted to situations with constant
correlation. The distortion power δ = 1

1−ρ2 from (2.33) arises there as an
exponent in the Hölder-type inequality.

In all the above approaches, δ plays an important role, and it is crucial
that it is deterministic and constant in time. We also use in (2.17) a power
transformation with a power δ which must be constant, whereas δ = 1

1−ρ2
in the above methods depends on ρ. This explains why we use two different
powers in our proof of Theorem 2.2: δt gives in Proposition 2.4 an upper
bound for V̂ Ĥ

t , and δt a lower bound in Proposition 2.5. The deeper reason
why we can deal with a random correlation ρ is then a monotonicity property,
as will be explained in Section 2.5.
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Remark 2.12. 1) We can in Theorem 2.9 replace P̂ by the restriction Q of
P̂ to YT , since Ĥ and 0̂ are YT -measurable; so for almost all ω ∈ Ω, we have

ht(ω) =
e−

R T
t r(s) ds

γ
log

(
EQ
[
exp(Ĥ)1/δ

∣∣Yt](ω)
)δ(

EQ
[
exp(0̂)1/δ′

∣∣Yt](ω)
)δ′
∣∣∣∣∣
δ′=δ0̂t (ω), δ=δĤt (ω)

.

Since ρ and λ are Y-predictable in case (I), (2.4) and (2.1) yield explicitly

dQ

dP
:= EP

[
dP̂

dP

∣∣∣∣YT] = E
(
−
∫
ρλ dY

)
0,T

. (2.34)

This formula is used by Tehranchi [56] to define Q in his setting with con-
stant ρ. Similarly, we could in Theorem 2.10 replace P̂ by the restriction Q̂
of P̂ to ŶT . However, this is less useful because Q̂, unlike Q, has in general
no explicit form.

2) Apart from exponential utility, Tehranchi [56] also explicitly deter-
mines V H

0 for constant ρ when the investor’s utility is of the same sepa-
rable form as in Zariphopoulou [57], i.e., Ũ

(
Xxt,π
T , H

)
= H|Xxt,π

T |γ
/
γ with

0 6= γ < 1, or Ũ
(
Xxt,π
T , H

)
= H logXxt,π

T . Those results could be extended
with our techniques as for exponential utility to all times t and to random ρ.
But we give no details since this provides no essential new insights and, above
all, does not help for finding an indifference value, because the above utilities
are not of the form U

(
Xxt,π
T +H

)
required for a natural formulation.

3) The original motivation for this chapter was that we were intrigued
by the elegantly simple and yet general approach of Tehranchi [56]. Along
the way, we then discovered that not all arguments in [56] seem completely
rigorous; the proof there of Lemma 4.2 is not quite clear (measurability of in-
tegrands?), and we see no argument why the portfolios constructed in Propo-
sitions 3.3–3.5 satisfy the integrability requirements to lie in the respective
classes A of admissible strategies. Moreover, the proofs of these propositions
also contain an incorrect statement; in general, a Brownian motion W and a
process of the form W +

∫
λ ds do not generate the same filtration or σ-field,

even if λ is predictable with respect to the filtration generated by W . A
counterexample is given by Dubins et al. [18]. Despite all this, the final re-
sults in [56] are essentially correct; one way to circumvent the last problem
is contained in the proof of our Theorem 2.9. ♦

2.4.3 Proofs of Theorems 2.9 and 2.10

We first need the following general result which says that the class (D) prop-
erty behaves under a change to an equivalent probability measure in the same
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way as martingales. This is very intuitive and probably folklore, but we have
not found it anywhere.

Lemma 2.13. Denote by Z ′ the P -density process of a probability measure
P ′ equivalent to P , i.e., Z ′s := EP

[
dP ′

dP

∣∣Gs], s ∈ [0, T ]. A G-adapted RCLL
process Λ is of P ′-class (D) if and only if ΛZ ′ is of P -class (D).

Proof. By symmetry and Bayes’ formula it is enough to prove the “only if”
part. Take a G-adapted RCLL process Λ of P ′-class (D) and fix ε > 0.
We want to find K > 0 with supτ EP

[
|Λτ |Z ′τ1{|Λτ |Z′τ>K}

]
≤ ε, where the

supremum is taken over all G-stopping times τ . Using that dP ′ = Z ′τ dP on
Gτ gives

EP
[
|Λτ |Z ′τ1{|Λτ |Z′τ>K}

]
= EP ′

[
|Λτ |1{|Λτ |Z′τ>K}

]
.

Since Λ is of P ′-class (D), m := 1 ∨ supτ EP ′
[
|Λτ |

]
is finite and there exists

d1 > 0, which does not depend on τ , such that

A ∈ GT with P ′[A] ≤ d1 and τ a G-stopping time =⇒ EP ′
[
|Λτ |1A

]
≤ ε.
(2.35)

Because P ′ � P by assumption, there exists d2 > 0 such that

A ∈ GT with P [A] ≤ d2 =⇒ P ′[A] ≤ d1. (2.36)

Set K := m/d2 and use Markov’s inequality to obtain

P
[
|Λτ |Z ′τ > K

]
≤ 1

K
EP
[
|Λτ |Z ′τ

]
=

1

K
EP ′
[
|Λτ |

]
≤ m

K
= d2

for any G-stopping time τ . By (2.35) and (2.36), EP ′
[
|Λτ |1{|Λτ |Z′τ>K}

]
≤ ε

uniformly over τ , which ends the proof.

Now we can prove Theorems 2.9 and 2.10 by applying Theorem 2.2.

Proof of Theorem 2.9. (2.31) follows directly from (2.7) and (2.30). To prove
(2.30), we apply Theorem 2.2 with Ĥ := H = γH − 1

2

∫ T
t
λ2
s ds and Ĥ := Y.

Comparing (2.13) with (2.11) shows that it only remains to argue that
i) Ŷ has the representation property in Y, and
ii) π ∈ At ⇐⇒ γπσ − λ ∈ Ât.

The latter follows from Lemma 2.8 which yields that exp
(
−
∫
γπσ dŴ

)
is of

P -class (D) if and only if exp
(
−
∫

(γπσ − λ) dŴ
)

is of P̂ -class (D), because∫
λ2 ds is bounded. Property i) is deduced from Itô’s representation theorem

in the form of Lemma 1.6.7 of Karatzas and Shreve [39]. In more detail,
consider the restriction Q of P̂ to YT , given as in (2.34) by

dQ

dP
= EP

[
dP̂

dP

∣∣∣∣YT] = E
(
−
∫
ρλ dY

)
0,T



30 Chapter 2. A Brownian model with stochastic correlation

because λ and ρ are Y-predictable. Note that this uses the assumptions of
case (I). Here Ŷ is also a (Y, Q)-Brownian motion, and Lemma 1.6.7 in [39]
now yields that any (Y, Q)-martingale L is of the form L = L0 +

∫
ζ dŶ for

a Y-predictable ζ with
∫ T

0
ζ2
s ds < ∞ a.s. This crucially needs that ρλ is

Y-predictable, to ensure that Ŷ = Y +
∫
ρλ ds from (2.3) is Y-adapted.

Proof of Theorem 2.10. As in the proof of Theorem 2.9, we apply Theorem
2.2, but now with Ĥ := γH and Ĥ := Ŷ. Of course, the

(
Ĥ, P̂

)
-Brownian

motion Ŷ then has the representation property in Ĥ. To get rid of the term
1
2

∫ T
t
λ2
s ds in H in (2.11), we use again Itô’s representation theorem as in

Lemma 1.6.7 of [39] and obtain a W-predictable process η = (ηs)t≤s≤T with

1

2

∫ T

t

λ2
s ds =

1

2
EP̂

[∫ T

t

λ2
s ds

∣∣∣∣Wt

]
+

∫ T

t

ηs dŴs and EP̂

[∫ T

t

η2
s ds

]
<∞.

Here we use that λ is W-predictable in case (II), where we recall that W = FW .
Finally, comparison of (2.11) and (2.13) with Ĥ = γH shows that it remains
to prove that π ∈ At if and only if γπσ − λ + η ∈ Ât. But this follows as in
the proof of Theorem 2.9 from Lemma 2.8, using that

∫
η dŴ is like

∫
λ2 ds

uniformly bounded.

2.5 On the monotonicity in the correlation

In this section, we explain both intuitively and mathematically why we can
obtain results even for a random correlation ρ.

For a constant correlation ρ, the abstract optimisation problem (2.13) has
by Theorem 2.2

(
or from Tehranchi [56] for t = 0

)
an explicit value, namely

(2.15) with δ = 1
1−ρ2 . This expression is continuous in ρ and increasing in |ρ|,

for fixed P̂ , and the intuition is as follows. The endowment Ĥ is driven by
Ŷ , whereas hedging can only be done in Ŵ which is imperfectly correlated
with Ŷ . If the correlation between Ŵ and Ŷ is increased, better hedging is
possible; so the value of the optimisation problem (2.13) decreases.

(
Note

that (2.13) gives us minus the maximal expected utility.
)

If we can extend the above monotonicity to a general correlation, it is clear
why we can get the explicit structure in Theorem 2.2. Indeed, if ρ is random
but lies between two bounds, the corresponding optimisation problem must
by monotonicity have an explicit expression with the same basic structure —
and of course the interpolating distortion power may now be random and
depend on Ĥ.
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Let us now introduce more precise notations by writing (2.13) as

V̂ Ĥ
t

(
ρ′, P̂

)
:= − ess inf

π̂ ∈ Ât(ρ′)
EP̂

[
exp

(
−
∫ T

t

π̂s dŴs(ρ
′) + Ĥ

)∣∣∣∣Gt]
for a G-predictable process ρ′ denoting the instantaneous correlation between
the

(
G, P̂

)
-Brownian motions Ŵ (ρ′) and Ŷ ; the set Ât(ρ′) depends on ρ′

through the P̂ -class (D) condition on
(
exp
(
−
∫ s
t
π̂y dŴy(ρ

′)
))
t≤s≤T . Note

that if we change ρ′, only Ŵ (ρ′) and all expressions depending on it will
change. This is reasonable; clearly Ĥ and Ĥ should not be affected.

The above intuitive argument now says that if we keep P̂ fixed and vary ρ′,
we get a monotonicity, which is made precise in the following result.

Proposition 2.14. Let P̂ be fixed and suppose that ρ′ and ρ′′ are G-predictable
processes such that |ρ′| ≤ c1 ≤ |ρ′′| ≤ c2 < 1 on Ω× [t, T ] for some constants
c1 and c2. Then V̂ Ĥ

t

(
ρ′, P̂

)
≤ V̂ Ĥ

t

(
ρ′′, P̂

)
a.s.

Proof. This follows from applying twice Theorem 2.2, once for V̂ Ĥ
t

(
ρ′, P̂

)
and

once for V̂ Ĥ
t

(
ρ′′, P̂

)
, and then using Jensen’s inequality.

Remark 2.15. Proposition 2.14 says that ρ′ 7→ V̂ Ĥ
t

(
ρ′, P̂

)
is monotonic for

correlation processes ρ′, ρ′′ that can be separated by a constant, uniformly in
ω and s. Below Proposition 3 of the paper [23], we remarked that we did not
know if the weaker assumption |ρ′| ≤ |ρ′′| on Ω × [t, T ] is also sufficient to
prove the same conclusion. This question is later answered in an affirmative
way in Proposition 5.6 by using different methods. ♦

The above intuition and Proposition 2.14 make it tempting to think
that also the value V H

t (0) in (2.9) is monotonic in |ρ|. However, this is
not true in general; we give a counterexample in the next paragraph. The
crucial point is that P̂ itself depends on ρ because W does; this can be
seen from (2.1) and (2.4). So the abstract optimisation problem (2.13) has
the structure −V̂ Ĥ

t

(
ρ′, P̂ (ρ)

)∣∣
ρ′=ρ

, and proving as in Proposition 2.14 that

ρ′ 7→ V̂ Ĥ
t

(
ρ′, P̂ (ρ)

)
is monotonic for fixed ρ need not imply the monotonicity

of ρ 7→ V̂ Ĥ
t

(
ρ, P̂ (ρ)

)
.

We now show by a counterexample that ρ 7→ V̂ Ĥ
t

(
ρ, P̂ (ρ)

)
and thus

ρ 7→ V H
t (0; ρ) := V H

t (0) from (2.9) are indeed not monotonic in general. In
view of Proposition 2.14, this can only fail in the non-martingale case λ 6= 0,
since otherwise P̂ (ρ) = P does not depend on ρ. We take ρ and λ both
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constant, t = 0, and set Ĥ = Y as in case (I). Then Theorem 2.2 implies

V̂ Ĥ
0

(
ρ, P̂ (ρ)

)
= −

(
EP̂ (ρ)

[
exp
(
Ĥ
)1−ρ2

]) 1
1−ρ2

= −
(
EP

[
exp

(
Ĥ(1− ρ2)− λρYT −

Tλ2ρ2

2

)]) 1
1−ρ2

,

where we have conditioned on YT under P and used that Ĥ is YT -measurable.
For Ĥ = −Y n :=

(
(−YT ) ∧ n

)
∨ (−n), n ∈ N, dominated convergence and an

easy calculation yield

lim
n→∞

V̂ −Y
n

0

(
ρ, P̂ (ρ)

)
= −

(
EP

[
exp

(
−YT (1− ρ2)− λρYT −

Tλ2ρ2

2

)]) 1
1−ρ2

= − exp

(
(−ρ2 + 2λρ+ 1)

T

2

)
=: g(ρ). (2.37)

The mapping ρ 7→ g(ρ) is clearly not monotonic in |ρ| except in the martingale
case λ = 0. Because of (2.37), the mapping ρ 7→ V̂ −Y

n

0

(
ρ, P̂ (ρ)

)
for n big

enough is not monotonic in |ρ| either. If we now consider case (I) with γ = 1
and H = −Y n, the proof of Theorem 2.9 implies that

V −Y
n

0 (0; ρ) := V −Y
n

0 (0) = e−λ
2T/2 V̂ −Y

n

0

(
ρ, P̂ (ρ)

)
so that ρ 7→ V −Y

n

0 (0; ρ) for n big enough is not monotonic in |ρ| either. This
completes our counterexample.

Remark 2.16. One can directly show that V̂ −YT0

(
ρ, P̂ (ρ)

)
= g(ρ) if one

adapts the definition of Ât(ρ). For such an unbounded Ĥ, one stipulates
that

(
exp
(
−
∫ s
t
π̂y dŴy(ρ) + Ĥ

))
t≤s≤T instead of

(
exp
(
−
∫ s
t
π̂y dŴy(ρ)

))
t≤s≤T

is of P̂ -class (D). The point is then that one can for this example explic-
itly determine L = (ρ2 − 1)(Y + λρs) defined in (2.17), and L is obviously a
BMO

(
G, P̂ (ρ)

)
-martingale. ♦

The above counterexample shows that V H is in general not monotonic
in |ρ|. We now explain the intuition for this. In the martingale case λ = 0,
the value V −YT0 (0; ρ) = V̂ −YT0

(
ρ, P̂ (ρ)

)
= − exp

(
(1− ρ2)T/2

)
is clearly mono-

tonic in |ρ|, and we have already seen why: Higher correlation permits better
hedging, and so the investor runs less risk and has a higher expected utility.
For the semimartingale case λ 6= 0, this effect is still there, but now also in-
teracts with the correlation. Consider for instance the case where λ > 0 and
ρ > 0. The optimal strategy π̂? for V̂ 0

0

(
ρ, P̂ (ρ)

)
is zero and hence the optimal

strategy for V 0
0 (0; ρ) is π? = λ

γσ
; compare the proof of Theorem 2.9. This



2.6. The multidimensional case 33

strategy π? makes a positive investment in the stock S. Adding −H = YT
leads to a total position with a higher risk, since the correlation ρ between
Y and S is positive. To counteract this exposure, the investor will reduce his
position in S and smooth out his terminal wealth. Hence he accepts in aver-
age a lower return on his portfolio in S to reduce the risk of his total position.
So an increase in correlation yields a higher risk exposure for a fixed strategy;
this is compensated by more conservative (smaller) investment in S, leading
to a lower return and hence a decrease of the value V −YT0 (0; ρ). In total,
ρ 7→ V −YT0 (0; ρ) can therefore become decreasing in |ρ|— despite the better
hedging possibility. The above argument explains why this can happen, and
(2.37) shows that it does happen for 0 < ρ < λ.

Remark 2.17. In a Markovian framework with constant ρ and λ, the re-
sult of Proposition 2.14 has already been established by Henderson [32] who
shows that the indifference value h

(
or, equivalently in that setting, V H

)
is

increasing in |ρ|. Henderson’s analysis at first sight seems to contradict our
nonmonotonic counterexample, and closer inspection reveals that it crucially
depends on fixing some parameter called δ in [32] while varying ρ. But this
exactly corresponds to our fixing P̂ in Proposition 2.14 while varying ρ, and it
has in both cases a very natural financial interpretation. In fact, the standard
viewpoint in financial theory is that the instantaneous Sharpe ratio a

b
of the

nontraded asset Z in (2.32) is not fixed exogenously, but related to λ via the
correlation ρ. This tacit assumption is usually not spelt out explicitly in the
finance literature, and the point of our counterexample is to illustrate that
monotonicity may fail in its absence. ♦

2.6 The multidimensional case

In this section, we extend our main results to the case of more than two
Brownian motions. Since most arguments are straightforward generalisations,
we only sketch the main differences.

The probabilistic framework consists of an n-dimensional (G, P )-Brown-
ian motion Y and an m-dimensional (G, P )-Brownian motion W , each having
P -independent components. Instantaneous correlations are now given by a
matrix R = (ρij)i=1,...,n,

j=1,...,m
with ρijs := d〈Y i,W j〉s

ds
, and we choose R to be G-

predictable. It can be shown that the symmetric positive semidefinite matrix
RR′ has nonnegative eigenvalues which are all at most 1. We assume that all
eigenvalues are bounded away from one uniformly on Ω× [t, T ], i.e.,

there exists c < 1 such that max spec(RR′) ≤ c a.e. on Ω× [t, T ],
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where spec(RR′) denotes the spectrum (the set of eigenvalues) of RR′. Recall
that t ∈ [0, T ] is fixed. There are m traded risky assets S = (Sjs)j=1,...,m with
dynamics

dSjs = Sjsµ
j
s ds+

m∑
k=1

Sjsσ
jk
s dW k

s , 0 ≤ s ≤ T, Sj0 > 0, j = 1, . . . ,m;

the drift vector µ = (µjs)j=1,...,m and the volatility matrix σ = (σjks )j,k=1,...,m

are G-predictable. We assume that σ is invertible, λ := σ−1µ is bounded
uniformly (in ω and s) and that there exists a constant C such that

Cβ′β ≥ β′σσ′β ≥ 1

C
β′β on Ω× [0, T ] for all β ∈ Rm.

(In other words, σ is uniformly both bounded and elliptic.) The processes

Ŵ := W +

∫
λ ds and Ŷ := Y +

∫
Rλ ds

are Brownian motions under the minimal martingale measure P̂ given by
dP̂
dP

:= E
(
−
∫
λ dW

)
0,T

. All other definitions and model assumptions of Sec-
tions 2.2.1 and 2.3.1 can be easily translated to this setting and we do not
detail this. The multidimensional version of Theorem 2.2 reads as follows.

Theorem 2.18. Under the above assumptions, recall that spec(RsR
′
s) denotes

the spectrum (the set of eigenvalues) of RsR
′
s, and define δt and δt by

δt := inf
s∈ [t,T ]

1

‖1−min spec(RsR′s)‖L∞
, δt := sup

s∈ [t,T ]

∥∥∥∥ 1

1−max spec(RsR′s)

∥∥∥∥
L∞

.

(2.38)
Then there exists a Gt-measurable random variable δĤt with values in

[
δt, δt

]
such that

−V̂ Ĥ
t (ω) =

(
EP̂

[
exp
(
Ĥ
) 1
δ

∣∣∣Ĥt

]
(ω)
)δ ∣∣∣∣

δ=δĤt (ω)

(2.39)

for almost all ω ∈ Ω.

Outline of the proof. This goes similarly to Theorem 2.2 via analogues of
Propositions 2.4 and 2.5, and we only point out where significant changes
occur. The analogue to (2.20) is, for t ≤ s ≤ T ,

Z(π̂)
s := cδtM

(π̂)
t,s exp

(
1

2

∫ s

t

(
|π̂y−δR′yζy |2+δζ ′y

(
δ(I−RyR

′
y)−I

)
ζy

)
dy

)
(2.40)

with M (π̂) := E
(∫

δζ dŶ −
∫
π̂ dŴ

)
like in (2.19) and ct := EP̂

[
exp
(
Ĥ/δ

)∣∣Ĥt

]
like in (2.17). In (2.40), I denotes the (n × n)-identity matrix. As in the
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proof of Proposition 2.4, the key point is that the integrand in (2.40) with
δ := δt is nonnegative for every π̂ ∈ Ât. To see this, one must prove that
δt(I −RyR

′
y)− I is positive semidefinite or, equivalently, that all its eigen-

values are nonnegative. But if α is such an eigenvalue, then 1− (α+ 1)
/
δt is

an eigenvalue of RyR
′
y; this implies 1− (α + 1)

/
δt ≤ 1− 1

/
δt by (2.38), and

hence α ≥ 0.
For the analogue of Proposition 2.5, one defines, for t ≤ s ≤ T ,

π̂?s := δtR
′
sζs +

√
δtζ
′
s

(
I − δt(I −RsR

′
s)
)
ζs (1, 0, . . . , 0)′, (2.41)

where ζ is determined as in (2.17), (2.18) with δ := δt and (1, 0, . . . , 0) ∈ Rm.
Using (2.38) and a similar reasoning as above, one sees that the expres-
sion under the square root in (2.41) is nonnegative, and (2.40) simplifies

to Z
(π̂?)
s = c

δt
t M

(π̂?)
t,s , t ≤ s ≤ T , for π̂ = π̂? and δ = δt like (2.24). As in the

proof of Proposition 2.5, one can show that M (π̂?) is a
(
G, P̂

)
-martingale and

that π̂? ∈ Ât.
Finally, (2.39) is proved from the analogues of Propositions 2.4 and 2.5

similarly as in the two-dimensional case. This concludes the proof outline.

Using Theorem 2.18, one can of course obtain results like Theorems 2.9
and 2.10 also in the multidimensional case. We refrain from giving details
because the procedure goes essentially along the same lines as in Section 2.4.
However, we emphasise that it is important to assume that the rank of the
volatility matrix σ equals the dimension m of W . (In particular, we typically
want at least m risky assets.) This condition, implied by the assumption
that σ is invertible, is required to show that the sets Ât and At fit together;
compare ii) in the proofs of Theorems 2.9 and 2.10.
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Chapter 3

A general semimartingale
model

This chapter gives an interpolation formula and a BSDE description for the
indifference value process in a general semimartingale model.

3.1 Introduction

Even in a concrete model, it is difficult to obtain a closed-form formula for the
exponential utility indifference value of a contingent claim H. The majority
of existing explicit results are for Brownian settings; see Chapter 2 and the
references in Section 2.4.2. In more general situations, Becherer [5] and Mania
and Schweizer [44] derive a backward stochastic differential equation (BSDE)
for the indifference value process. While [44] assumes a continuous filtration,
the framework in [5] has a continuous price process driven by Brownian mo-
tions and a filtration generated by these and a random measure allowing the
modeling of nonpredictable events.

The main contribution of this chapter is to extend the above results to a
setting where asset prices are given by a general semimartingale. We show
that the exponential utility indifference value can still be written in a closed-
form expression similar to that known for Brownian models, although the
structure of this formula is here much less explicit. Independently from that,
we establish a BSDE formulation for the dynamic indifference value process.
Both of these results are based on a representation of the claim H and on
the relationship between a notion of no-arbitrage, the form of the so-called
minimal entropy martingale measure, and the indifference value.

As our starting point, we take the work of Biagini and Frittelli [8, 9].
Their results yield a representation of the minimal entropy martingale mea-

37
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sure which we can use to derive a decomposition of a fixed payoff H in a
similar way as in Becherer [4]. We call this decomposition, which is closely
related to the minimal entropy martingale measure, the fundamental entropy
representation of H

(
FER(H)

)
. It is central to all our results here, be-

cause we can express the indifference value for H as a difference of terms
from FER(H) and FER(0). We derive from this a fairly explicit formula for
the indifference value by an interpolation argument, and we also establish a
BSDE representation for the indifference value process. Its proof is based on
the idea that the two representations FER(H) and FER(0) can be merged
to yield a single BSDE. This direct procedure allows us to work with a general
semimartingale, whereas Becherer [5] as well as Mania and Schweizer [44] use
more specific models because they first prove some results for more general
classes of BSDEs and then apply these to derive the particular BSDE for
the indifference value. The price to pay for working in our general setting is
that we must restrict the class of solutions of the BSDE to get uniqueness.
Under additional assumptions, the components of the solution to the BSDE
for the indifference value are again BMO-martingales for the minimal en-
tropy martingale measure; this applies in particular to the value process of
the indifference hedging strategy.

This chapter is organised as follows. Section 3.2 lays out the model, mo-
tivates, and introduces the important notion of FER(H). In Section 3.3, we
prove that the existence of FER(H) is essentially equivalent to an absence-of-
arbitrage condition. Moreover, we develop a uniqueness result for FER(H)
and its relationship to the minimal entropy martingale measure. Section 3.4
establishes the link between the exponential indifference value of H and the
two decompositions FER(H) and FER(0). By an interpolation argument,
we derive a fairly explicit formula for the indifference value. In Section 3.5,
we extend to a general filtration the BSDE representation of the indifference
value by Becherer [5] and Mania and Schweizer [44]. We further provide con-
ditions under which the components of the solution to the BSDE are BMO-
martingales for the minimal entropy martingale measure. Section 3.6 gives
an application to a Brownian model, and Appendices A and B contain addi-
tional results on the indifference value in specific settings. These appendices
are not part of the article [24].

3.2 Motivation and definition of FER(H)

We start with a probability space (Ω,F , P ), a finite time interval [0, T ] for a
fixed T > 0 and a filtration F = (Ft)0≤t≤T satisfying the usual conditions of
right-continuity and completeness. For simplicity, we assume that F0 is trivial
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and FT = F . For a positive process Z, we use the abbreviation Zt,s := Zs/Zt,
0 ≤ t ≤ s ≤ T .

In our financial market, there are d risky assets whose price process
S = (St)0≤t≤T is an Rd-valued semimartingale. In addition, there is a riskless
asset, chosen as numeraire, whose price is constant at 1. Our investor’s risk
preferences are given by an exponential utility function U(x) = − exp(−γx),
x ∈ R, for a fixed γ > 0. We always consider a fixed contingent claim H which
is a real-valued F -measurable random variable satisfying EP

[
exp(γH)

]
<∞.

Expressions depending on H are introduced with an index H so we can later
use them also in the absence of the claim by setting H = 0. However, the
dependence on γ is not explicitly mentioned. We define a probability measure
PH on (Ω,F) equivalent to P by dPH

dP
:= exp(γH)

/
EP
[
exp(γH)

]
. Note that

P0 = P . We denote by L(S) the set of all Rd-valued predictable S-integrable
processes, so that

∫
ϑ dS is a well-defined semimartingale for each ϑ in L(S).

We always impose without further mention the following standing as-
sumption, introduced by Biagini and Frittelli [8, 9] for H = 0. We assume
that

WH 6= ∅ and W0 6= ∅, (3.1)

where WH is the set of loss variables w which satisfy the following two con-
ditions:

1) w ≥ 1 P -a.s., and for every i = 1, . . . , d, there exists some βi ∈ L(Si)
such that P

[
∃ t ∈ [0, T ] s.t. βit = 0

]
= 0 and

∣∣ ∫ t
0
βis dSis

∣∣ ≤ w for all
t ∈ [0, T ];

2) EPH
[
exp(cw)

]
<∞ for all c > 0.

Clearly, WH = W0 if H is bounded. Lemma 3.4 at the beginning of Sec-
tion 3.3 gives a less restrictive condition on H for WH = W0. The standing
assumption (3.1) is automatically fulfilled if S is locally bounded since then
1 ∈ WH ∩W0 by Proposition 1 of Biagini and Frittelli [8], using PH ≈ P . But
(3.1) is for example also satisfied if H is bounded and S = S1 is a scalar com-
pound Poisson process with Gaussian jumps. This follows from Section 3.2
in Biagini and Frittelli [8]. So the model with condition (3.1) is a genuine
generalisation of the case of a locally bounded S.

To assign to H at time t ∈ [0, T ] a value based on our exponential utility
function, we first fix an Ft-measurable random variable xt, interpreted as the
investor’s starting capital at time t. Then we define

V H
t (xt) := ess sup

ϑ∈AHt
EP

[
− exp

(
−γxt − γ

∫ T

t

ϑs dSs + γH

)∣∣∣∣Ft], (3.2)
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where the set AHt of H-admissible strategies on ]t, T ] consists of all processes
ϑ1]]t,T ]] with ϑ ∈ L(S) and such that

∫
ϑ dS is a Q-supermartingale for every

Q ∈ P e,f
H ; the set P e,f

H is defined in the paragraph after the next. We recall

that xt +
∫ T
t
ϑs dSs is the investor’s final wealth when starting with xt and

investing according to the self-financing strategy ϑ over ]t, T ]. Therefore,
V H
t (xt) is the maximal conditional expected utility the investor can achieve

from the time t initial capital xt by trading during ]t, T ] and paying out H
(or receiving −H) at the maturity T .

The time t indifference (seller) value ht(xt) for H is implicitly defined by

V 0
t (xt) = V H

t

(
xt + ht(xt)

)
. (3.3)

This says that the investor is indifferent between solely trading with initial
capital xt, versus trading with initial capital xt + ht(xt) but paying an addi-
tional cash-flow H at maturity T .

To define our strategies, we need the sets

PfH :=
{
Q� PH

∣∣ I(Q|PH) <∞ and S is a Q-sigma-martingale
}
,

P e,f
H :=

{
Q ≈ PH

∣∣ I(Q|PH) <∞ and S is a Q-sigma-martingale
}
,

where

I(Q|PH) :=

{
EQ

[
log dQ

dPH

]
if Q� PH

+∞ otherwise

denotes the relative entropy of Q with respect to PH . Since PH is equiv-
alent to P , the sets PfH and P e,f

H depend on H only through the condition
I(Q|PH) <∞. By Proposition 3 and Remark 3 of Biagini and Frittelli [8],
applied to PH instead of P , there exists a unique QE

H ∈ PfH that minimises
I(Q|PH) over all Q ∈ PfH , provided of course that PfH 6= ∅. We call QE

H the
minimal H-entropy measure, or H-MEM for short. If P e,f

H 6= ∅, then QE
H is

even equivalent to PH , i.e., QE
H ∈ P e,f

H ; see Remark 2 of Biagini and Frit-
telli [8]. Note that the proper terminology would be “minimal H-entropy
sigma-martingale measure” or H-MEσMM, but this is too long.

We briefly recall the relation between QE
H , QE

0 and the indifference value
h0(x0) at time 0 to motivate the definition of FER(H), which we introduce
later in this section. Assume P e,f

H 6= ∅ and P e,f
0 6= ∅. The PH-density of QE

H

and the P -density of QE
0 have the form

dQE
H

dPH
= cH exp

(∫ T

0

ζHs dSs

)
and

dQE
0

dP0

= c0 exp

(∫ T

0

ζ0
s dSs

)
(3.4)

for some positive constants cH , c0 and processes ζH , ζ0 in L(S) such that∫
ζH dS is a Q-martingale for every Q ∈ PfH and

∫
ζ0 dS is a Q-martingale
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for every Q ∈ Pf0 , whence ζH ∈ AH0 and ζ0 ∈ A0
0. This was first shown by

Kabanov and Stricker [38] in their Theorem 2.1 for a locally bounded S (and
H = 0), and extended by Biagini and Frittelli [9] in their Theorem 1.4 to a
general S for H = 0 (under the assumptionW0 6= ∅). By using this result also
under PH instead of P , we immediately obtain (3.4). It is now straightforward
to calculate (and also well known — at least for locally bounded S) that for
x0 ∈ R, we can write

V H
0 (x0) = sup

ϑ∈AH0

EP

[
− exp

(
−γx0 − γ

∫ T

0

ϑs dSs + γH

)]
= −e−γx0EP [exp(γH)] inf

ϑ∈AH0
EPH

[
exp

(
−γ
∫ T

0

ϑs dSs

)]
= −e−γx0EP [exp(γH)] inf

ϑ∈AH0
EQEH

[
1

cH
exp

(∫ T

0

(
−γϑs − ζHs

)
dSs

)]
= −e−γx0EP [exp(γH)]

cH
(3.5)

and therefore

h0(x0) = h0 =
1

γ
log

c0EP [exp(γH)]

cH
. (3.6)

In Section 3.4, we study the relation between QE
H , QE

0 and V H
t (xt), ht for

arbitrary t ∈ [0, T ]. From this we can derive, on the one hand, an interpo-
lation formula for each ht in Section 3.4 and, on the other hand, a BSDE
characterisation of the process h in Section 3.5. To generalise the static re-
lations (3.5), (3.6) to dynamic ones, we introduce a certain representation of
H that we call fundamental entropy representation of H

(
FER(H)

)
. Its link

to the minimal H-entropy measure is elaborated in the next section. We give
two different versions of this representation. The idea is that the first defini-
tion only requires some minimal conditions, whereas the second strengthens
the conditions to guarantee uniqueness of the representation and ensure the
identification of the H-MEM; see Proposition 3.6.

Definition 3.1. We say that FER(H) exists if there is a decomposition

H =
1

γ
log E

(
NH
)
T

+

∫ T

0

ηHs dSs + kH0 , (3.7)

where

(i) NH is a local P -martingale null at 0 such that E
(
NH
)

is a positive
P -martingale and S is a P

(
NH
)
-sigma-martingale, where P

(
NH
)

is

defined by dP (NH)
dP

:= E
(
NH
)
T

;
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(ii) ηH is in L(S) and such that
∫ T

0
ηHs dSs ∈ L1

(
P
(
NH
))

;

(iii) kH0 ∈ R is constant.

In this case, we say that
(
NH , ηH , kH0

)
is an FER(H). If moreover∫ T

0

ηHs dSs ∈ L1(Q) and EQ

[∫ T

0

ηHs dSs

]
≤ 0 for all Q ∈ PfH

and

∫
ηH dS is a P

(
NH
)
-martingale,

(3.8)

we say that
(
NH , ηH , kH0

)
is an FER?(H). For any FER(H)

(
NH , ηH , kH0

)
,

we set

kHt := kH0 +
1

γ
log E

(
NH
)
t
+

∫ t

0

ηHs dSs for t ∈ [0, T ] (3.9)

and call P
(
NH
)

the probability measure associated with
(
NH , ηH , kH0

)
.

Because E
(
NH
)

is by (i) a positive P -martingale, the local P -martingale
NH has no negative jumps whose absolute value is 1 or more, and P

(
NH
)

is a
probability measure equivalent to P . We consider two FER(H)

(
NH , ηH , kH0

)
and

(
ÑH , η̃H , k̃H0

)
as equal if ÑH and NH are versions of each other (hence

indistinguishable, since both are RCLL),
∫
η̃H dS is a version of

∫
ηH dS, and

k̃H0 = kH0 . For future use, we note that (3.7) and (3.9) combine to give

H = kHt +
1

γ
log E

(
NH
)
t,T

+

∫ T

t

ηHs dSs for t ∈ [0, T ]. (3.10)

The next result shows that for continuous asset prices, we can write
FER(H) in a different (and perhaps more familiar) form. For its formu-
lation, we need the following definition. We say that S satisfies the structure
condition (SC) if

Si = Si0 +M i +
d∑
j=1

∫
λj d〈M i,M j〉, i = 1, . . . , d,

where M is a locally square-integrable local P -martingale null at 0 and λ is a
predictable process such that the (final value of the) mean-variance tradeoff,
KT =

∑d
i,j=1

∫ T
0
λisλ

j
s d〈M i,M j〉s = 〈

∫
λ dM〉T , is almost surely finite.

Proposition 3.2. Assume that S is continuous. Then a triple
(
NH , ηH , kH0

)
is an FER(H) if and only if S satisfies (SC) and ÑH = NH +

∫
λ dM ,

η̃H = ηH − 1
γ
λ, k̃H0 = kH0 satisfy

H =
1

γ
log E

(
ÑH
)
T

+

∫ T

0

η̃Hs dSs +
1

2γ

〈∫
λ dM

〉
T

+ k̃H0 (3.11)

and
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(i′) ÑH is a local P -martingale null at 0 and strongly P -orthogonal to each
component of M , and E

(
ÑH
)
E
(
−
∫
λ dM

)
is a positive P -martingale;

(ii′) η̃H is in L(S) and such that
∫ T

0

(
η̃Hs + 1

γ
λs
)

dSs is P
(
NH
)
-integrable,

where dP (NH)
dP

:= E
(
ÑH
)
T
E
(
−
∫
λ dM

)
T

;

(iii′) k̃H0 ∈ R is constant.

Proof. Let first
(
NH , ηH , kH0

)
be an FER(H). Its associated measure P

(
NH
)

is equivalent to P and S is a local P
(
NH
)
-martingale since S is continu-

ous. By Theorem 1 of Schweizer [52], S satisfies (SC) and we can write
NH = ÑH −

∫
λ dM , where ÑH is a local P -martingale null at 0 and strongly

P -orthogonal to each component of M , and E
(
NH
)

= E
(
ÑH
)
E
(
−
∫
λ dM

)
.

The last equality uses that
[
ÑH ,

∫
λ dM

]
= 0 due to the continuity of M .

Hence conditions (i)–(iii) of FER(H) imply (i′)–(iii′), and (3.7) is equivalent
to (3.11) by (SC) and the continuity of S.

Conversely, let
(
ÑH , η̃H , k̃H0

)
be as in the proposition. We claim that the

triple
(
ÑH −

∫
λ dM, η̃H + 1

γ
λ, k̃H0

)
is an FER(H). Because M is a local

P -martingale and E
(
NH
)

= E
(
ÑH
)
E
(
−
∫
λ dM

)
is the P -density process of

P
(
NH
)
, the process L defined by

Lt := Mt −
〈
NH ,M

〉
t
, t ∈ [0, T ]

is a local P
(
NH
)
-martingale by Girsanov’s theorem; see for instance Theorem

III.40 of Protter [49] and observe that
〈
E
(
NH
)
,M
〉

=
∫
E
(
NH
)
−d
〈
NH ,M

〉
exists since M is continuous like S. Because ÑH is strongly P -orthogonal to
each component of M and M is continuous, we have

〈
NH ,M i

〉
=

〈
ÑH −

∫
λ dM,M i

〉
= −

d∑
j=1

∫
λj d〈M j,M i〉, i = 1, . . . , d,

and so (SC) shows that S = L + S0 is also a local P
(
NH
)
-martingale. The

other conditions of FER(H) are easy to check.

Remark 3.3. 1) Suppose that S is continuous and satisfies (SC). If the
stochastic exponential E

(
−
∫
λ dM

)
is a P -martingale, conditions (i′) and (ii′)

in Proposition 3.2 can be written under the probability measure P̂ defined by
dP̂
dP

:= E
(
−
∫
λ dM

)
T

, which is called the minimal local martingale measure
in the terminology of Föllmer and Schweizer [20]. This means that condition
(i′) in Proposition 3.2 is equivalent to
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(i′′) ÑH is a local P̂ -martingale null at 0 and strongly P̂ -orthogonal to each
component of S, and E

(
ÑH
)

is a positive P̂ -martingale,

and P
(
NH
)

can be defined by dP (NH)

dP̂
:= E

(
ÑH
)
T
. To prove the equivalence

of (i′) and (i′′), first assume that ÑH is a local P -martingale null at 0 and
strongly P -orthogonal to each M i. Then[

ÑH ,

∫
λ dM

]
=

〈
ÑH ,

∫
λ dM

〉
= 0

by the continuity of M , and hence ÑH is also a local P̂ -martingale by Gir-
sanov’s theorem; see, for instance, Theorem III.40 of Protter [49]. The conti-
nuity of S, (SC) and the strong P -orthogonality of ÑH to M entail[

ÑH , Si
]

=
〈
ÑH ,M i

〉
= 0, i = 1, . . . , d,

implying that ÑH is strongly P̂ -orthogonal to each component of S. The
proof of “(i′′) =⇒ (i′)” goes analogously.

2) Assume that S is not necessarily continuous but locally bounded and
satisfies (SC) with λi ∈ L2

loc

(
M i
)
, i = 1, . . . , d, and let

(
NH , ηH , kH0

)
be

an FER(H). Then we can still write NH = ÑH −
∫
λ dM for a local P -

martingale ÑH null at 0 and strongly P -orthogonal to each component of M ,
by using Girsanov’s theorem, (SC) and the fact that E

(
NH
)

defines an equiva-

lent local martingale measure. However, we cannot separate E
(
ÑH−

∫
λ dM

)
into two factors. ♦

3.3 No-arbitrage and existence of FER(H)

Theorem 3.5 below says that a certain notion of no-arbitrage is equivalent to
the existence of FER(H). It can be considered as an exponential analogue to
the L2-result of Theorem 3 in Bobrovnytska and Schweizer [10]. For a locally
bounded S, the implication “=⇒” roughly corresponds to Proposition 2.2 of
Becherer [4], who makes use of the idea to consider known results under PH
instead of P . This technique, which already appears in Delbaen et al. [16],
will also be central for the proofs of our Theorem 3.5 and Proposition 3.6.

We start with a result that gives sufficient conditions for WH ⊆ W0 and
P e,f

0 ⊆ P e,f
H as well as for W0 = WH and P e,f

0 = P e,f
H . The relation between

P e,f
0 and P e,f

H will be used later, while W0 =WH is helpful in applications to
verify the condition (3.1).
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Lemma 3.4. If H satisfies

EP
[
exp(−εH)

]
<∞ for some ε > 0, (3.12)

then WH ⊆ W0, Pf0 ⊆ PfH and P e,f
0 ⊆ P e,f

H . If H satisfies

EP
[
exp
(
(γ + ε)H

)]
<∞ and EP

[
exp(−εH)

]
<∞ for some ε > 0,

(3.13)
then W0 =WH , Pf0 = PfH and P e,f

0 = P e,f
H .

Proof. We first show WH ⊆ W0 under (3.12). For c > 0, Hölder’s inequality
yields

EP
[
exp(cw)

]
= EP

[
exp

(
cw +

εγ

ε+ γ
H

)
exp

(
− εγ

ε+ γ
H

)]
≤
(
EP

[
exp

(
ε+ γ

ε
cw + γH

)]) ε
ε+γ(

EP
[
exp(−εH)

]) γ
ε+γ

=

(
EPH

[
exp

(
ε+ γ

ε
cw

)]
EP
[
exp(γH)

]) ε
ε+γ(

EP
[
exp(−εH)

]) γ
ε+γ
. (3.14)

Because of EP
[
exp(γH)

]
<∞ and (3.12), this is finite if w ∈ WH , and then

w ∈ W0.
To prove W0 = WH under (3.13), we only need to show W0 ⊆ WH . For

c > 0 and w ∈ W0, we obtain similarly to (3.14) that

EPH
[
exp(cw)

]
≤
(
EP
[
exp
(
(ε+ γ)H

)]) γ
ε+γ

EP [exp(γH)]

(
EP

[
exp

(
ε+ γ

ε
cw

)]) ε
ε+γ

<∞

by (3.13), and hence w ∈ WH .
The remainder of the second part follows from Lemma A.1 in Becherer [4].

The proof of the rest of the first part is very similar. Indeed, (3.12) and the
standing assumption that EP

[
exp(γH)

]
<∞ imply EP

[
exp
(
ε̃|H|

)]
< ∞,

where ε̃ := min(ε, γ). Lemma 3.5 of Delbaen et al. [16] yields

EQ
[
ε̃|H|

]
≤ I(Q|P ) +

1

e
EP
[
exp
(
ε̃|H|

)]
for Q� P. (3.15)

If Q ∈ Pf0 , the right-hand side is finite, thus EQ
[
|H|
]
<∞, and we have

I(Q|PH) = EQ

[
log

dQ

dP
− log

dPH
dP

]
= I(Q|P ) + logEP

[
exp(γH)

]
− γEQ[H],

which is finite. This shows Q ∈ PfH , and P e,f
0 ⊆ P e,f

H follows analogously.
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Theorem 3.5. We have that

P e,f
H 6= ∅ ⇐⇒ FER?(H) exists ⇐⇒ FER(H) exists.

In particular, if P e,f
0 6= ∅ and H satisfies (3.12), then FER?(H) exists.

Proof. We first show that P e,f
H 6= ∅ yields the existence of FER?(H). As

already mentioned, P e,f
H 6= ∅ (and the standing assumption WH 6= ∅) imply

by Proposition 3 and Remarks 2, 3 of Biagini and Frittelli [8], applied to PH
instead of P , existence and uniqueness of the H-MEM QE

H ∈ P e,f
H . Using

QE
H ≈ PH ≈ P , we can write

dQE
H

dP
= E

(
NH
)
T

(3.16)

for some local P -martingale NH null at 0 such that E
(
NH
)

is a positive
P -martingale and S is a QE

H-sigma-martingale. Moreover, by Theorem 1.4 of
Biagini and Frittelli [9], applied to PH instead of P , we have as in (3.4)

dQE
H

dPH
= cH exp

(∫ T

0

ζHs dSs

)
(3.17)

for a constant cH > 0 and some ζH in L(S) such that
∫
ζH dS is a Q-martin-

gale for every Q ∈ P f
H . Since dPH

dP
= exp(γH)

/
EP
[
exp(γH)

]
, comparing

(3.17) with (3.16) gives

E
(
NH
)
T

= cH1 exp

(∫ T

0

ζHs dSs + γH

)
,

where cH1 := cH
/
EP
[
exp(γH)

]
is a positive constant. We thus obtain

H =
1

γ
log E

(
NH
)
T
− 1

γ

∫ T

0

ζHs dSs + cH2 with cH2 := −1

γ
log cH1 ,

and hence
(
NH ,− 1

γ
ζH, cH2

)
is an FER?(H). Note that

∫
ζH dS is a P

(
NH
)
-

martingale because the H-MEM QE
H equals the probability measure P

(
NH
)

associated with
(
NH ,− 1

γ
ζH , cH2

)
by construction; compare (3.16).

To establish the equivalences of Theorem 3.5, it remains to show that
the existence of FER(H) implies P e,f

H 6= ∅, because every FER?(H) is ob-
viously an FER(H). So let

(
NH , ηH , kH0

)
be an FER(H) and recall that

its associated measure P
(
NH
)

is defined by dP (NH)
dP

:= E
(
NH
)
T

. We prove

that P
(
NH
)
∈ P e,f

H . By condition (i) on FER(H), P
(
NH
)

is a probability
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measure equivalent to P and S is a P
(
NH
)
-sigma-martingale. To show that

P
(
NH
)

has finite relative entropy with respect to PH , we write

dP (NH)

dPH
=

dP (NH)

dP

dP

dPH
= E

(
NH
)
T

exp(−γH)EP
[
exp(γH)

]
= exp

(
−γkH0

)
EP
[
exp(γH)

]
exp

(
−γ
∫ T

0

ηHs dSs

)
, (3.18)

where the last equality is due to the decomposition (3.7) in FER(H). This
yields by (ii) of FER(H) that

I
(
P
(
NH
)∣∣∣PH) = EP (NH)

[
log

dP (NH)

dPH

]
= −γkH0 + logEP

[
exp(γH)

]
− γEP (NH)

[∫ T

0

ηHs dSs

]
<∞.

Finally, the last assertion follows directly from the first part of Lemma 3.4.

While the existence of FER(H) and of FER?(H) is equivalent by Theo-
rem 3.5, the two representations are obviously different since FER?(H) im-
poses more stringent conditions. The next result serves to clarify this differ-
ence.

Proposition 3.6. Assume P e,f
H 6= ∅ and let

(
NH , ηH , kH0

)
be an FER(H)

with associated measure P
(
NH
)
. Then the following are equivalent:

(a)
(
NH , ηH , kH0

)
is an FER?(H), i.e.,

(
NH , ηH , kH0

)
satisfies (3.8);

(b) P
(
NH
)

equals the H-MEM QE
H , and

∫
ηH dS is a P

(
NH
)
-martingale;

(c)
∫
ηH dS is a QE

H-martingale and EP (NH)

[∫ T
0
ηHs dSs

]
= 0;

(d)
∫
ηH dS is a Q-martingale for every Q ∈ PfH .

Moreover, the class of FER?(H) consists of a singleton.

Proof. Clearly, (d) implies (a), and also (c) since QE
H exists by Proposition 3 of

Biagini and Frittelli [8], using P e,f
H 6= ∅ and the standing assumptionWH 6= ∅.

We prove “(a) =⇒ (b)”, “(c) =⇒ (b)” and finally “(b) =⇒ (d)”. The first
implication goes as in the proof of Theorem 2.3 of Frittelli [25], because we
have by (3.18) that

dP (NH)

dPH
= cH3 exp

(
−γ
∫ T

0

ηHs dSs

)
with cH3 := exp

(
−γkH0

)
EP
[
exp(γH)

]
.

(3.19)
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The implication “(c) =⇒ (b)” follows from the first part of the proof of
Proposition 3.2 of Grandits and Rheinländer [27], which does not use the
assumption that S is locally bounded. To show “(b) =⇒ (d)”, note that (b),
(3.17) and (3.19) yield

cH3 exp

(
−γ
∫ T

0

ηHs dSs

)
= cH exp

(∫ T

0

ζHs dSs

)
P -a.s., (3.20)

where ζH in L(S) is such that
∫
ζH dS is a Q-martingale for every Q ∈ P f

H .
Taking logarithms and P

(
NH
)
-expectations in (3.20), we get cH3 = cH since

P
(
NH
)
∈ Pe,fH by the proof of Theorem 3.5. Thus

∫ T
0
ηHs dSs = − 1

γ

∫ T
0
ζHs dSs

P -a.s. and hence
∫
ηH dS = − 1

γ

∫
ζH dS since both

∫
ηH dS and

∫
ζH dS are

P
(
NH
)
-martingales. Therefore,

∫
ηH dS = − 1

γ

∫
ζH dS is a Q-martingale for

every Q ∈ P f
H .

Theorem 3.5 implies the existence of FER?(H) because P e,f
H 6= ∅. To show

uniqueness, let
(
NH , ηH , kH0

)
and

(
ÑH , η̃H , k̃H0

)
be two FER?(H). Since

the minimal H-entropy measure is unique by Proposition 3 of Biagini and
Frittelli [8], we have from “(a) =⇒ (b)” that

E
(
NH
)
T

=
dQE

H

dP
= E

(
ÑH
)
T
.

So E
(
ÑH
)

is a version of E
(
NH
)

since both are P -martingales, and taking

stochastic logarithms implies that ÑH is a version of NH . Similarly, (3.19)
and (c) yield

−γkH0 +log
(
EP
[
exp(γH)

])
= EQEH

[
log

dQE
H

dPH

]
= −γk̃H0 +log

(
EP
[
exp(γH)

])
,

thus k̃H0 = kH0 , and therefore again from (3.19) that∫ T

0

ηHs dSs = −1

γ
log

(
1

cH3

dQE
H

dPH

)
=

∫ T

0

η̃Hs dSs.

But both
∫
ηH dS and

∫
η̃H dS are QE

H-martingales due to (d), and so
∫
η̃H dS

is a version of
∫
ηH dS.

Remark 3.7. Exploiting Proposition 3.4 of Grandits and Rheinländer [27],
applied to PH instead of P , gives a sufficient condition for FER?(H) by using
our Proposition 3.6. Indeed, assume that S is locally bounded and P e,f

H 6= ∅.
If for an FER(H)

(
NH , ηH , kH0

)
,
∫
ηH dS is a BMO

(
P
(
NH
))

-martingale and

EPH

[∣∣∣dP (NH)
dPH

∣∣∣−ε] <∞ for some ε > 0, then
(
NH , ηH , kH0

)
is the FER?(H).
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Another sufficient criterion is obtained from Proposition 3.2 of Rhein-
länder [50] in view of our Proposition 3.6. Namely, if S is a locally bounded
semimartingale and for an FER(H)

(
NH , ηH , kH0

)
there exists ε > 0 such

that EPH

[
exp
(
ε
[∫
ηH dS

]
T

)]
<∞, then

(
NH , ηH , kH0

)
is the FER?(H). ♦

While there is always at most one FER?(H) by Proposition 3.6, the next
example shows that there may be several FER(H). This also illustrates that
the uniqueness for FER?(H) is closely related to integrability properties.

Example 3.8. Take two independent P -Brownian motions W and W⊥, de-
note by F their P -augmented filtration and choose d = 1, S = W and H ≡ 0.
The MEM QE

0 then equals P since S is a P -martingale, and (0, 0, 0) is the
unique FER?(0).

To construct another FER(0), set N0 := W⊥. Then E
(
N0
)

= E
(
W⊥) is

clearly a positive P -martingale strongly P -orthogonal to S = W so that con-
dition (i) in FER(0) holds. Define P

(
N0
)

by dP (N0)
dP

:= E
(
N0
)
T

= E
(
W⊥)

T

as usual. By Girsanov’s theorem, W and W̃⊥
t := W⊥

t − t, 0 ≤ t ≤ T , are then
P
(
N0
)
-Brownian motions and we can explicitly compute

EP

[
log E

(
N0
)
T

]
= EP

[
W⊥
T − T/2

]
= −T/2,

I
(
P
(
N0
)∣∣∣P) = EP (N0)

[
log E

(
N0
)
T

]
= EP (N0)

[
W̃⊥
T + T/2

]
= T/2. (3.21)

This shows that P
(
N0
)
∈ Pe,f0 . Since S = W is a P -Brownian motion,

Proposition 1 of Emery et al. [19] now yields for every c ∈ R a process η0(c)
in L(S) such that

−1

γ
log E

(
W⊥)

T
− c =

∫ T

0

η0
s(c) dSs P -a.s. (3.22)

Because I
(
P
(
N0
)∣∣P) < ∞, using the inequality x| log x| ≤ x log x + 2e−1

shows that
∫ T

0
η0
s(c) dSs is in L1

(
P
(
N0
))

so that (ii) of FER(0) is also satis-
fied. Hence

(
N0, η0(c), c

)
is an FER(0), but does not coincide with (0, 0, 0)

which is the FER?(0). To check that property (3.8) indeed fails, we can easily
see from (3.21) and (3.22) that

∫
η0(c) dS cannot be a P

(
N0
)
-martingale if

c 6= − 1
2γ
T . If c = − 1

2γ
T , we can simply compute, for P ∈ Pf0 , that

EP

[∫ T

0

η0
s(c) dSs

]
= −1

γ
EP

[
log E

(
N0
)
T

]
+

1

2γ
T =

1

γ
T > 0.

We have just constructed an FER(0) different from FER?(0). Yet an-
other FER(0) can be obtained by choosing for k ∈ R\{0} a process β0(k) in
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L(S) such that∫ T/2

0

β0
s (k) dSs = k and

∫ T

T/2

β0
s (k) dSs = −k P -a.s.,

which is possible by Proposition 1 of Emery et al. [19]. Clearly, we have∫ T
0
β0
s (k) dSs = 0 P -a.s. and

(
0, β0(k), 0

)
is an FER(0) (with associated mea-

sure P ), which even satisfies EQ
[∫ T

0
β0
s (k) dSs

]
= 0 for all Q ∈ Pf0 ; but∫

β0(k) dS is not a P -martingale. This ends the example. ♦

Example 3.8 shows that we should focus on FER?(H) if we want to obtain
good results. If S is continuous and we impose additional assumptions, the
next result gives BMO-properties for the components of FER?(H). This will
be used later when we give a BSDE description for the exponential utility
indifference value process. We first recall some definitions.

Let Q be a probability measure on (Ω,F) equivalent to P and p > 1.
An adapted positive RCLL stochastic process Z is said to satisfy the reverse
Hölder inequality Rp(Q) if there exists a positive constant C such that

ess sup
τ stopping

time

EQ

[(
ZT
Zτ

)p∣∣∣∣∣Fτ
]

= ess sup
τ stopping

time

EQ
[
(Zτ,T )p

∣∣Fτ] ≤ C.

Recall that Zτ,T = ZT/Zτ for a positive process Z. We say that Z satisfies
the reverse Hölder inequality RL logL(Q) if there exists a positive constant C
such that

ess sup
τ stopping

time

EQ[Zτ,T log+ Zτ,T |Fτ ] ≤ C.

Z satisfies condition (J) if there exists a positive constant C such that

1

C
Z− ≤ Z ≤ CZ−.

Theorem 3.9. Assume that S is continuous, H is bounded and there exists
Q ∈ P e,f

0 whose P -density process satisfies RL logL(P ). Let
(
NH , ηH , kH0

)
be

an FER(H). Then the following are equivalent:

(a)
(
NH , ηH , kH0

)
is the FER?(H);

(b) NH is a BMO(P )-martingale, E
(
NH
)

satisfies condition (J),
∫
ηH dS

is a P
(
NH
)
-martingale;

(c) NH is a BMO(P )-martingale, E
(
NH
)

satisfies condition (J),
∫
ηH dS

is a BMO
(
P
(
NH
))

-martingale;
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(d)
∫
ηH dM is a BMO(P )-martingale, where M is the P -local martingale

part of S;

(e) there exists ε > 0 such that EP

[
exp
(
ε
[∫
ηH dS

]
T

)]
<∞.

The hypotheses of Theorem 3.9 are for instance fulfilled if H is bounded,
S is continuous and satisfies (SC), and

∫
λ dM is a BMO(P )-martingale. To

see this, note that E
(
−
∫
λ dM

)
then satisfies the reverse Hölder inequality

Rp(P ) for some p > 1 by Theorem 3.4 of Kazamaki [40]. The fact that there
exists k < ∞ such that x log x ≤ k + xp for all x > 0 now implies that
E
(
−
∫
λ dM

)
also satisfies RL logL(P ). Hence the minimal local martingale

measure P̂ given by dP̂
dP

:= E
(
−
∫
λ dM

)
T

is in P e,f
0 and its P -density process

satisfies RL logL(P ).

Proof of Theorem 3.9. By Lemma 3.4, P e,f
H = P e,f

0 6= ∅ so that there exists
an FER(H)

(
NH , ηH , kH0

)
by Theorem 3.5. Before we show that (a)–(e)

are equivalent, we need some preparation. Let Q̃ be a probability measure
equivalent to P . Denoting by Z the P -density process of Q̃ and by Y the
PH-density process of Q̃, we prove that

Z satisfies RL logL(P ) if and only if Y satisfies RL logL(PH), (3.23)

Z satisfies condition (J) if and only if Y satisfies condition (J). (3.24)

To that end, observe first that because H is bounded, there exists a positive
constant k with 1

k
≤ dPH

dP
≤ k, which yields

1

k
Z ≤ Y ≤ kZ. (3.25)

For any stopping time τ , (3.25) implies

EPH [Yτ,T log+ Yτ,T |Fτ ] ≤ EP

[
Zτ,T log+

(
Zτ,Tk

2
)∣∣∣Fτ],

and so the inequality log+(ab) ≤ log+a+ log b for a > 0 and b ≥ 1 yields

EP

[
Zτ,T log+

(
Zτ,Tk

2
)∣∣∣Fτ] ≤ EP [Zτ,T log+ Zτ,T |Fτ ] + 2 log k,

which is bounded independently of τ if Z satisfies RL logL(P ). If Z satisfies
condition (J) with constant C, then (3.25) gives

Y ≤ kZ ≤ kCZ− ≤ k2CY− and Y ≥ 1

k
Z ≥ 1

kC
Z− ≥

1

k2C
Y−.
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So the “only if” part of both (3.23) and (3.24) is clear, and the “if” part is
proved symmetrically.

By assumption, there exists Q ∈ P e,f
0 whose P -density process satisfies

RL logL(P ), and so the PH-density process of Q satisfies RL logL(PH) by (3.23).
Because P e,f

H = P e,f
0 is nonempty, the unique minimal H-entropy measure

QE
H exists, and its PH-density process also satisfies RL logL(PH) by Lemma

3.1 of Delbaen et al. [16], used for PH instead of P . Since S is continuous,
the PH-density process of QE

H also satisfies condition (J) by Lemma 4.6 of
Grandits and Rheinländer [27]. It follows from (3.23), (3.24) and Lemma 2.2
of Grandits and Rheinländer [27] that

the P -density process ZQEH ,P of QE
H satisfies RL logL(P ), condition (J),

and the stochastic logarithm of ZQEH ,P is a BMO(P )-martingale.
(3.26)

“(a) =⇒ (b)”. Since
(
NH , ηH , kH0

)
is the FER?(H), Proposition 3.6 im-

plies that the P -density process ZQEH ,P of QE
H is given by E

(
NH
)

and that∫
ηH dS is a P

(
NH
)
-martingale. We deduce (b) from (3.26).

“(b) =⇒ (c)”. We have to show that
∫
ηH dS is in BMO

(
P
(
NH
))

. By
conditioning (3.7) under P

(
NH
)

on Fτ for a stopping time τ , we obtain by (b)∫ τ

0

ηHs dSs = −1

γ
EP (NH)

[
log E

(
NH
)
T

∣∣∣Fτ]+ EP (NH)[H|Fτ ]− kH0 ,

and hence∫ T

τ

ηHs dSs =− 1

γ
log E

(
NH
)
T

+
1

γ
EP (NH)

[
log E

(
NH
)
T

∣∣∣Fτ]
+H − EP (NH)[H|Fτ ].

By Proposition 6 of Doléans-Dade and Meyer [17], there is a BMO
(
P
(
NH
))

-

martingale N̂H with E
(
NH
)−1

= E
(
N̂H
)
. This uses that ZQEH ,P = E

(
NH
)

satisfies condition (J) and NH is a BMO(P )-martingale by (3.26). Since H
is bounded, we get

EP (NH)

[∣∣∣∣ ∫ T

τ

ηHs dSs

∣∣∣∣
∣∣∣∣∣Fτ
]

≤ 2‖H‖L∞(P ) +
1

γ
EP (NH)

[∣∣∣∣ log E
(
NH
)
T
− EP (NH)

[
log E

(
NH
)
T

∣∣∣Fτ]∣∣∣∣
∣∣∣∣∣Fτ
]

= 2‖H‖L∞(P ) +
1

γ
EP (NH)

[∣∣∣∣ log E
(
N̂H
)
T
− EP (NH)

[
log E

(
N̂H
)
T

∣∣∣Fτ]∣∣∣∣
∣∣∣∣∣Fτ
]
,

(3.27)
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and now we proceed like on page 1031 in Grandits and Rheinländer [27] to
show that (3.27) is bounded uniformly in τ . This proves the assertion since
S is continuous.

“(c) =⇒ (d)”. Due to (3.26), Proposition 7 of Doléans-Dade and Meyer
[17] implies that

∫
ηH dS +

[∫
ηH dS,NH

]
is a BMO(P )-martingale. By

Proposition 3.2, S satisfies (SC) and NH = ÑH −
∫
λ dM for a local P -

martingale ÑH null at 0 and strongly P -orthogonal to each component of M .
Since S is continuous and satisfies (SC),[∫

ηH dS,NH

]
=

[∫
ηH dM,NH

]
= −

[∫
ηH dM,

∫
λ dM

]
= −

d∑
i,j=1

∫ (
ηH
)i
λj d〈M i,M j〉.

Hence
∫
ηH dS +

[∫
ηH dS,NH

]
=
∫
ηH dM is a BMO(P )-martingale.

“(d) =⇒ (e)”. We set

ε :=
1

2‖
∫
ηH dM‖2

BMO2(P )

and L :=
√
ε

∫
ηH dM.

Clearly, L is like
∫
ηH dM a continuous BMO(P )-martingale and we have

that ‖L‖BMO2(P ) = 1
/√

2 < 1. Since S is continuous, the John-Nirenberg
inequality

(
see Theorem 2.2 of Kazamaki [40]

)
yields

EP

[
exp

(
ε

[∫
ηH dS

]
T

)]
= EP

[
exp
(
[L]T

)]
≤ 1

1− ‖L‖2
BMO2(P )

<∞.

“(e) =⇒ (a)”. This is based on the same idea as the proof of Proposition 3.2
of Rheinländer [50]. Lemma 3.5 of Delbaen et al. [16] yields

EQ

[
ε

[∫
ηH dS

]
T

]
≤ I(Q|PH) +

1

e
EPH

[
exp

(
ε

[∫
ηH dS

]
T

)]
<∞

for any Q ∈ PfH because H is bounded and (e) holds. So
[∫
ηH dS

]
T

is
Q-integrable and thus the local Q-martingale

∫
ηH dS is a square-integrable

Q-martingale for any Q ∈ PfH . This concludes the proof in view of Proposi-
tion 3.6.

3.4 Relating FER?(H) and FER?(0) to the in-

difference value

In this section, we establish the connection between FER?(H), FER?(0) and
the indifference value process h. We then derive and study an interpolation
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formula for h. Throughout this section, we assume that

P e,f
H 6= ∅ and P e,f

0 6= ∅,

and we denote by
(
NH , ηH , kH0

)
and

(
N0, η0, k0

0

)
the unique FER?(H) and

FER?(0) with associated measures P
(
NH
)

= QE
H and P

(
N0
)

= QE
0 , respec-

tively.
Our first result expresses the maximal expected utility and the indifference

value in terms of the given FER?(H) and FER?(0). For a locally bounded
S, this is very similar to Becherer [4]; see in particular there Propositions
2.2 and 3.5 and the discussion on page 12 at the end of Section 3. Indeed,
the main differences are that the representation in [4] is given in terms of
certainty equivalents instead of maximal conditional expected utilities and S
is locally bounded; but the results are the same.

Theorem 3.10. V H , V 0 and h are well defined and, for any t ∈ [0, T ] and
any Ft-measurable random variable xt, we have

V H
t (xt) = − exp

(
−γxt + γkHt

)
(3.28)

and
ht(xt) = ht = kHt − k0

t , (3.29)

where kHt (and k0
t , with the obvious adaptations) are defined in (3.9).

Proof. Let us first write (3.2) as

V H
t (xt) = − exp(−γxt) ess inf

ϑ∈AHt
ϕHt (ϑ) (3.30)

with the abbreviation

ϕHt (ϑ) := EP

[
exp

(
−γ
∫ T

t

ϑs dSs + γH

)∣∣∣∣Ft].
Because

(
NH , ηH , kH0

)
is the FER?(H), ϕHt (ϑ) can be written by (3.10) as

ϕHt (ϑ) = exp
(
γkHt

)
EP

[
E
(
NH
)
t,T

exp

(
γ

∫ T

t

(
ηHs − ϑs

)
dSs

)∣∣∣∣Ft]
= exp

(
γkHt

)
EP (NH)

[
exp

(
γ

∫ T

t

(
ηHs − ϑs

)
dSs

)∣∣∣∣Ft], (3.31)

using Bayes’ formula. Since P
(
NH
)

= QE
H ∈ P e,f

H and
∫
ϑ dS is a Q-super-

martingale and
∫
ηH dS is a Q-martingale for every Q ∈ P e,f

H , we have

EP (NH)

[∫ T

t

(
ηHs − ϑs

)
dSs

∣∣∣∣Ft] ≥ 0
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which implies ϕHt (ϑ) ≥ exp
(
γkHt

)
by Jensen’s inequality and (3.31). On the

other hand, the choice

ϑ?s := ηHs , s ∈ ]t, T ], (3.32)

gives ϕHt (ϑ?) = exp
(
γkHt

)
by (3.31). Because

∫
ϑ? dS =

∫
ηH dS is a Q-mar-

tingale for every Q ∈ P e,f
H , ϑ? is in AHt , and (3.28) now follows from (3.30).

By the same reasoning as for (3.28), we obtain

V 0
t (xt) = − exp

(
−γxt + γk0

t

)
.

Solving the implicit equation (3.3) for ht(xt) then directly leads to (3.29).

The proof of Theorem 3.10, especially (3.32), gives an interpretation for
the FER?(H). An investor who must pay out the claim H at time T uses,
under exponential utility preferences, the decomposition (3.7). The portion of
H that he hedges by trading in S is

∫ T
0
ηHs dSs, whereas 1

γ
log E

(
NH
)
T

remains
unhedged. Moreover, the proof of Theorem 3.10 shows that for t ∈ [0, T ] and
an Ft-measurable xt, the value of V H

t (xt) is not affected if we restrict the set
AHt to those ϑ ∈ AHt such that

∫
ϑ dS is not only a Q-supermartingale, but

a Q-martingale for every Q ∈ P e,f
H .

Proposition 3.11. Assume that H satisfies (3.12). Then for any Q ∈ Pf0
and t ∈ [0, T ],

ht = EQ[H|Ft]−
1

γ
EQ

[
log
E
(
NH
)
t,T

E
(
N0
)
t,T

∣∣∣∣∣Ft
]
. (3.33)

In particular,

h0 = EQ[H] +
1

γ

(
I
(
Q
∣∣QE

H

)
− I
(
Q
∣∣QE

0

))
. (3.34)

The decomposition (3.34) of the indifference value h0 can be described
as follows. The first term, EQ[H], is the expected payoff under a measure
Q ∈ Pf0 . This is linear in the number of claims. The second term is a nonlinear
correction term or safety loading. It can be interpreted as the difference of
the distances from QE

H and QE
0 to Q

(
although I(·|·) is not a metric

)
. This

correction term is not based on all of H, but only on the processes NH and
N0 from the FER?(H) and FER?(0), i.e., on the unhedged parts of H and
0, respectively. A similar decomposition also appears for indifference pricing
under quadratic preferences; see Schweizer [53].

If H satisfies (3.12), then the indifference value process h is a QE
0 -super-

martingale. In fact, Jensen’s inequality and (3.33) with Q = QE
0 yield
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ht ≥ EQE0 [H|Ft] P -a.s. for t ∈ [0, T ] and so h−t ∈ L1
(
QE

0

)
since H is QE

0 -

integrable due to (3.12); compare (3.15). Moreover, Z := E
(
NH
)/
E
(
N0
)

is a QE
0 -martingale as it is the QE

0 -density process of QE
H . Thus logZ has

the QE
0 -supermartingale property by Jensen’s inequality, and so has h since

ht = EQE0 [H|Ft] − 1
γ
EQE0 [logZT |Ft] + 1

γ
logZt for t ∈ [0, T ] by (3.33). Now

EQE0 [ht] ≤ h0 <∞ shows that ht is QE
0 -integrable for every t ∈ [0, T ].

Proof of Proposition 3.11. Since Q ∈ Pf0 ⊆ PfH by Lemma 3.4,
∫
ηH dS is a

Q-martingale by Proposition 3.6. Moreover, H is Q-integrable due to (3.12);
compare (3.15). From (3.10), we thus obtain for t ∈ [0, T ] that

kHt = EQ

[
H − 1

γ
log E

(
NH
)
t,T

∣∣∣∣Ft]. (3.35)

Plugging (3.35) and the analogous expression for k0
t into (3.29) leads to (3.33).

To prove (3.34), we first show that I
(
Q
∣∣QE

0

)
is finite. We can write

I
(
Q
∣∣QE

0

)
= EQ

[
log

dQ

dP
+log

dP

dQE
0

]
= I(Q|P )−EQ

[
log E

(
N0
)
T

]
<∞ (3.36)

because Q ∈ Pf0 and −EQ
[
log E

(
N0
)
T

]
= γk0

0 by (3.35) for H = 0 and t = 0.

Moreover, Q� P ≈ QE
H gives dQ

dP
> 0 Q-a.s. and thus from

dQ

dQE
H

=
dQ

dP

dP

dQE
H

=
dQ

dP

1

E(NH)T
Q-a.s.

that

− log E
(
NH
)
T

= log
dQ

dQE
H

− log
dQ

dP
Q-a.s.,

and analogously for 0 instead of H. Hence

EQ

[
− log

E
(
NH
)
T

E
(
N0
)
T

]
= EQ

[
log

dQ

dQE
H

− log
dQ

dQE
0

]
= I
(
Q
∣∣QE

H

)
− I
(
Q
∣∣QE

0

)
,

where we have used (3.36) for the last equality. Now (3.33) implies (3.34).

We next come to the announced interpolation formula for the indifference
value.

Theorem 3.12. Let Q ∈ P e,f
H and ϕ in L(S) be such that

∫
ϕ dS is a Q- and

QE
H-martingale. Fix t ∈ [0, T ], denote by Z the P -density process of Q, set

ΨH
t :=

exp
(
γH +

∫ T
t
ϕs dSs

)
Zt,T

(3.37)
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and assume that ΨH
t and log ΨH

t are Q-integrable. Then there exists an Ft-
measurable random variable δHt : Ω→ [1,∞] such that for almost all ω ∈ Ω,

kHt (ω) =
1

γ
log
(
EQ

[∣∣ΨH
t

∣∣1/δ∣∣∣Ft](ω)
)δ ∣∣∣∣

δ=δHt (ω)

, (3.38)

where

log
(
EQ

[∣∣ΨH
t

∣∣1/δ∣∣∣Ft](ω)
)δ ∣∣∣∣

δ=∞
:= lim

δ→∞
log
(
EQ

[∣∣ΨH
t

∣∣1/δ∣∣∣Ft](ω)
)δ

(3.39)

= EQ
[
log ΨH

t

∣∣Ft](ω)

for almost all ω ∈ Ω.

In view of ht = kHt − k0
t by Theorem 3.10, (3.38) gives us a quasi-explicit

formula for the exponential utility indifference value if H is bounded and
if we can find a measure Q ∈ P e,f

0 such that the corresponding Ψ0
t given in

(3.37) and log Ψ0
t are Q-integrable for some predictable ϕ such that

∫
ϕ dS is

a Q-, QE
0 - and QE

H-martingale. For t = 0, one possible choice is the minimal
0-entropy measure QE

0 which is by (3.19) and Proposition 3.6 of the form
dQE0
dP

= c0
3 exp

(∫ T
0
ζ0
s dSs

)
for a constant c0

3 and a predictable process ζ0 such

that
∫
ζ0 dS is a Q-martingale for every Q ∈ Pf0 . One disadvantage of this

choice is that QE
0 is in general unknown; a second is that we still need to find

some ϕ, and we know almost nothing about the potential candidate ζ0. In
Corollary 3.13, we give conditions under which the explicitly known minimal
local martingale measure P̂ satisfies the assumptions of Theorem 3.12.

Proof of Theorem 3.12. From (3.10) and (3.37), we obtain via
dQEH
dP

= E
(
NH
)
T

and Bayes’ formula that

exp
(
−γkHt

)
EQ
[
ΨH
t

∣∣Ft] = EQ

[
E
(
NH
)
t,T

Zt,T
exp

(∫ T

t

(
ϕs + γηHs

)
dSs

)∣∣∣∣∣Ft
]

= EQEH

[
exp

(∫ T

t

(
ϕs + γηHs

)
dSs

)∣∣∣∣Ft]
≥ exp

(
EQEH

[∫ T

t

(
ϕs + γηHs

)
dSs

∣∣∣∣Ft]) (3.40)

= 1

by Jensen’s inequality and because
∫
ϕ dS and

∫
ηH dS are QE

H-martingales.
Hence

kHt ≤
1

γ
logEQ

[
ΨH
t

∣∣Ft]. (3.41)
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On the other hand, (3.35), (3.37) and Jensen’s inequality yield

γkHt = EQ

[
γH − log E

(
NH
)
t,T

∣∣∣Ft]
= EQ

[
log ΨH

t − log
E
(
NH
)
t,T

Zt,T

∣∣∣∣∣Ft
]

≥ EQ
[
log ΨH

t

∣∣Ft]. (3.42)

Consider the stochastic process f(·, ·) : [1,∞)× Ω→ R defined by

f(δ, ω) := log
(
EQ

[∣∣ΨH
t

∣∣ 1δ ∣∣∣Ft](ω)
)δ
, (δ, ω) ∈ [1,∞)× Ω.

Because |ΨH
t |1/δ ≤ 1 + ΨH

t ∈ L1(Q) for all δ ∈ [1,∞), Lebesgue’s dominated
convergence theorem and Jensen’s inequality for conditional expectations al-
low us to choose a version of f which is continuous and nonincreasing in δ for
all fixed ω ∈ Ω, so that by monotonicity, the limit f(∞, ω) := limδ→∞ f(δ, ω)
exists for all ω ∈ Ω. We next show that

f(∞, ω) = EQ
[
log ΨH

t

∣∣Ft](ω) for almost all ω ∈ Ω. (3.43)

To ease the notation, we define g(·, ·) : [1,∞)× Ω→ R by

g(δ, ω) :=
(

exp
(
f(δ, ω)

)) 1
δ

= EQ

[∣∣ΨH
t

∣∣ 1δ ∣∣∣Ft](ω), (δ, ω) ∈ [1,∞)× Ω

so that f(δ, ω) = δ log g(δ, ω). Again since |ΨH
t |1/δ ≤ 1 + ΨH

t ∈ L1(Q) for all
δ ∈ [1,∞), dominated convergence gives

lim
n→∞

g(n, ω) = 1 for almost all ω ∈ Ω. (3.44)

For x > 1/2 we have x− 1 ≥ log x ≥ x− 1− |x− 1|2, from which we obtain
by (3.44) that for almost all ω ∈ Ω, there exists n0(ω) ∈ N such that

n
(
g(n, ω)− 1

)
≥ f(n, ω) ≥ n

(
g(n, ω)− 1

)
− n

∣∣g(n, ω)− 1
∣∣2, n ≥ n0(ω).

(3.45)
In view of (3.44) and (3.45), we get (3.43) if we show that

lim
n→∞

n
(
g(n, ω)− 1

)
= EQ

[
log ΨH

t

∣∣Ft](ω) for almost all ω ∈ Ω. (3.46)

But (3.46) follows from Lebesgue’s convergence theorem and

lim
n→∞

n
(∣∣ΨH

t

∣∣ 1
n − 1

)
= lim

n→∞
n

(
exp

(
1

n
log ΨH

t

)
− 1

)
= log ΨH

t P -a.s.
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if we show that n
∣∣∣∣∣ΨH

t

∣∣1/n−1
∣∣∣, n ∈ N, is dominated by a Q-integrable random

variable. Due to ex − 1 ≥ x for x ∈ R and

d

dx
x
(
a

1
x − 1

)
= a

1
x

(
1− 1

x
log a

)
− 1 ≤ a

1
x exp

(
−1

x
log a

)
− 1 = 0

for a > 0 and x > 0, it follows for a = ΨH
t that

log ΨH
t ≤ n

(
exp

(
1

n
log ΨH

t

)
− 1

)
≤ ΨH

t − 1, n ∈ N.

This gives n
∣∣∣∣∣ΨH

t

∣∣1/n−1
∣∣∣ ≤ ∣∣ log ΨH

t

∣∣+ΨH
t ∈ L1(Q), n ∈ N, and proves (3.43).

Combining (3.41), (3.42) and (3.43) yields f(∞, ω) ≤ γkHt (ω) ≤ f(1, ω)
for almost all ω ∈ Ω. By the intermediate value theorem, the set

∆(ω) :=
{
δ ∈ [1,∞]

∣∣ f(δ, ω) = γkHt (ω)
}

is thus nonempty for almost all ω ∈ Ω. Define δHt : Ω→ [1,∞] by

δHt (ω) := sup∆(ω), ω ∈ Ω, (3.47)

setting δHt := 1 on the P -null set {ω ∈ Ω |∆(ω) = ∅}. By continuity of f in
δ, ∆(ω) is closed in R∪{+∞} for all ω ∈ Ω, and we get for almost all ω ∈ Ω,

f
(
δHt (ω), ω

)
= γkHt (ω). (3.48)

It remains to prove that the mapping ω 7→ δHt (ω) is Ft-measurable. Because f
is nonincreasing and due to (3.47) and (3.48), we have for any a ∈ [1,∞] that{
ω ∈ Ω

∣∣ δHt (ω) < a
}

=
{
ω ∈ Ω

∣∣ f(δHt (ω), ω
)
> f(a, ω)

}
=
{
ω ∈ Ω

∣∣ γkHt (ω) > f(a, ω)
}

=
⋃
q ∈Q

({
ω ∈ Ω

∣∣ γkHt (ω) > q
}
∩
{
ω ∈ Ω

∣∣ q > f(a, ω)
})

up to a P -null set. The last set is in Ft because kHt and f(a, ·) for fixed
a ∈ [1,∞] are Ft-measurable random variables. Since Ft is complete, the
set

{
ω ∈ Ω

∣∣ δHt (ω) < a
}

is in Ft for every a ∈ R ∪ {+∞}, and so δHt is Ft-
measurable.

The next result provides a simplified version of Theorem 3.12 based on
the use of the minimal local martingale measure P̂ .
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Corollary 3.13. Fix t ∈ [0, T ] and assume that H is bounded and S satisfies

(SC). Suppose further that P̂ given by dP̂
dP

:= E
(
−
∫
λ dM

)
T

is in P e,f
0 , that∫

λ dS is a P̂ -, QE
0 - and QE

H-martingale, and that the random variable

exp

(
−
〈∫

λ dM

〉
+

1

2

[∫
λ dM

]c)
t,T

∏
t<s≤T

e−λ
′
s∆Ms

1− λ′s∆Ms

and its logarithm are P̂ -integrable. Then there exist Ft-measurable random
variables δ0

t , δHt : Ω→ [1,∞] such that for almost all ω ∈ Ω,

ht(ω) =
1

γ
log
(
EP̂

[∣∣ΨH
t

∣∣1/δ∣∣∣Ft](ω)
)δ∣∣∣∣

δ= δHt (ω)

− 1

γ
log
(
EP̂

[∣∣Ψ0
t

∣∣1/δ′∣∣∣Ft](ω)
)δ′∣∣∣∣

δ′= δ0t (ω)

,

where we use the convention (3.39) and the definition

ΨH
t :=

exp
(
γH −

∫ T
t
λs dSs

)
E
(
−
∫
λ dM

)
t,T

=
eγH exp(−

∫
λ dS)t,T

E
(
−
∫
λ dM

)
t,T

. (3.49)

Proof. We only need to check that Ψ0
t , ΨH

t given by (3.49) and log Ψ0
t , log ΨH

t

are P̂ -integrable as the result then follows from Theorems 3.10 and 3.12 with
the choice Q := P̂ and ϕ := −λ. Using the formula for the stochastic
exponential and (SC), we get

Ψ0
t = exp

(
−
〈∫

λ dM

〉
+

1

2

[∫
λ dM

]c)
t,T

∏
t<s≤T

e−λ
′
s∆Ms

1− λ′s∆Ms

,

and thus Ψ0
t , log Ψ0

t ∈ L1
(
P̂
)

by assumption. The same is true for ΨH
t because

H is bounded by assumption.

To the best of our knowledge, results like Theorem 3.12 and Corollary
3.13 have not been available in the literature so far. A closed-form expression
for the exponential utility indifference value has been known only in specific
cases when the asset prices are modeled by continuous semimartingales; see
for example Theorems 2.9 and 2.10 for explicit expressions of the indifference
value in two Brownian settings. There the adapted process δH , called the
distortion power, is closely related to the instantaneous correlation between
the driving Brownian motions. The model of Chapter 2 consists of a risk-
free bank account and a stock S = S1 driven by a Brownian motion W . The
claim H depends on another Brownian motion Y which has a time-dependent
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and fairly general instantaneous stochastic correlation ρ with W , with |ρ| uni-
formly bounded away from 1. Theorem 2.9 proves that the indifference value
is of the form of Corollary 3.13 above, with δHt and δ0

t taking values between

δt := inf
s∈ [t,T ]

1

‖1− |ρs|2‖L∞(P )

and δt := sup
s∈ [t,T ]

∥∥∥∥ 1

1− |ρs|2

∥∥∥∥
L∞(P )

.

(
The random variables δĤt , δ0̂

t in Theorem 2.9 correspond to δHt , δ0
t in Corol-

lary 3.13.
)

For small |ρ| (uniformly in s, in the L∞-norm), the claim H is
almost unhedgeable and 1/δH is nearly 1, whereas for |ρ| close to 1, the claim
H is well hedgeable and 1/δH is nearly 0. So in that Brownian model, 1/δH is
closely related to some kind of distance of H from being attainable or hedge-
able. In the subsequent discussion, we extend this idea to a more general
setting, while we come back to the Brownian model in Section 3.6. Proposi-
tion 3.28 in Appendix A makes more precise the range of δHt in a continuous
filtration, where all local P -martingales are continuous.

Consider the setting of Corollary 3.13 where S is (in addition) continuous
and satisfies (SC), and H is bounded. Then the P -martingale part M of S is
continuous and the mean-variance tradeoff process K = 〈

∫
λ dM〉 = 〈

∫
λ dS〉

is P -a.s. finite by (SC). The quantity ΨH
t from (3.49) then reduces to

ΨH
t = exp

(
γH − 1

2
(KT −Kt)

)
,

and the assumptions of Corollary 3.13 are satisfied if KT is bounded, because∫
λ dM is then a BMO(P )-martingale. If we now even suppose that KT is

deterministic, the indifference value at time 0 simplifies to

h0 =
1

γ
log
(
EP̂

[
exp
(
γH/δ

)])δ ∣∣∣∣
δ=δH0

(3.50)

by Corollary 3.13. If δH0 <∞, we can write

h0 = −Ũ−1
H

(
EP̂
[
ŨH(−H)

])
, where ŨH(x) := − exp

(
−γx/δH0

)
, x ∈ R,

which means that −h0 is a certainty equivalent of −H. Note, however, that
this is done under P̂ , not P , and with respect to the utility function ŨH ,
not U , where ŨH depends itself on the claim H. If δH0 = 1, then ŨH and U

coincide and H is valued by the U -certainty equivalent under P̂ . Moreover,
(3.38) shows that we then must have equality in (3.40) for t = 0, which
implies that

∫ T
0

(
γηHs − λs

)
dSs is deterministic, hence

∫ (
γηH − λ

)
dS = 0.
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In other words, the equivalent formulation (3.11) of FER(H) in Proposition
3.2 simplifies in this case to

H =
1

γ
log E

(
ÑH
)
T

+
1

2γ
KT + kH0 ,

which means that H consists only of a constant plus an unhedged term. This
may be interpreted as saying that H has maximal distance to attainability.
On the opposite extreme, the case δH0 = ∞ leads by (3.50) and (3.39) (and
still under the same assumptions) to h0 = EP̂ [H]. Hence for δH0 =∞, we get
a familiar no-arbitrage value for H. In this case, (3.38) and (3.39) show that
we must have equality in (3.42) for t = 0; hence E

(
NH
)

= E
(
−
∫
λ dM

)
and

thus (3.11) simplifies to

H =

∫ T

0

η̃Hs dS +
1

2γ
KT + kH0 ,

showing that H is attainable. Summing up, we can interpret 1/δH as the
distance of H from being attainable; for 1/δH = 0 (convention: 1/∞ = 0),
the distance is minimal, whereas for 1/δH = 1, it is maximal. The following
remark shows how this idea can be made mathematically more precise.

Remark 3.14. Assume that S is continuous and satisfies (SC) and that
KT =

〈 ∫
λ dM

〉
T

is bounded, but not necessarily deterministic. By Theo-
rem 3.12 and Corollary 3.13, we can attribute to any H ∈ L∞(P ) a number
δ(H) := δH0 in [1,∞] uniquely defined via (3.47) with Q = P̂ and ϕ = −λ.
Defining for G,H ∈ L∞(P )

G ∼ H :⇐⇒ δ

(
G+

1

2γ
KT

)
= δ

(
H +

1

2γ
KT

)
gives an equivalence relation on L∞(P ). We denote by D := L∞(P )

/
∼ the

set of its equivalence classes and associate to each equivalence class a repre-
sentative. We further define the mapping d : D ×D → [0, 1] for G,H ∈ D by

d(G,H) :=

∣∣∣∣∣ 1

δ
(
G+ 1

2γ
KT

) − 1

δ
(
H + 1

2γ
KT

)∣∣∣∣∣.
Clearly, d is a metric on D. A claim G ∈ L∞(P ) is called

(
P̂ -
)
attainable if it

can be written as G = EP̂ [G] +
∫ T

0
βs dSs for a predictable process β such that∫

β dS is a P̂ -martingale, which is then even a BMO
(
P̂
)
-martingale. If G is

attainable, the FER? of G+ 1
2γ
KT equals

(
−
∫
λ dM,β+ 1

γ
λ,EP̂ [G]

)
, and so
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the term log E(NH)T
E(−

R
λ dM)T

vanishes identically. This implies δ
(
G+ 1

2γ
KT

)
=∞

by the proof of Theorem 3.12, hence G ∼ 0. Therefore,

d(0, H) =
1

δ
(
H + 1

2γ
KT

)
is a distance of H ∈ L∞(P ) from attainability.

The maximal value of d(0, ·) depends on the diversity of the filtration F.
If S has the predictable representation property in F in the sense that any
H ∈ L∞(P ) is attainable (as above), then ∼ has only one equivalence class
and d ≡ 0. On the other hand, suppose that there exists a nondeterministic
local P̂ -martingale N null at 0 and strongly P̂ -orthogonal to each component
of S such that E(N) is a P̂ -martingale bounded away from zero and infinity.
The maximal distance to attainability is then attained by 1

γ
log E(N)T since

d
(
0, 1

γ
log E(N)T

)
= 1. ♦

3.5 A BSDE characterisation of the indiffer-

ence value process

In this section, we prove that the indifference value process h is (the first com-
ponent of) the unique solution, in a suitable class of processes, of a backward
stochastic differential equation (BSDE). This result is similar to Becherer [5]
and Mania and Schweizer [44], but obtained here in a general (not even locally
bounded) semimartingale model.

We assume throughout this section that

P e,f
0 6= ∅

and denote by QE
0 the minimal 0-entropy measure. Let us consider the BSDE

Γt = Γ0 +
1

γ
log E(L)t +

∫ t

0

ψs dSs, t ∈ [0, T ] (3.51)

with the boundary condition

ΓT = H. (3.52)

We introduce three different notions of solutions to (3.51), (3.52).

Definition 3.15. We say that the triple (Γ, ψ, L) is a solution of (3.51),
(3.52) if

Si) Γ is a real-valued semimartingale;
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Sii) ψ is in L(S);

Siii) L is a local QE
0 -martingale null at 0 such that E(L) is a positive QE

0 -
martingale and S is a Q(L)-sigma-martingale, where Q(L) is defined by
dQ(L)

dQE0
:= E(L)T .

We call (Γ, ψ, L) a special solution of (3.51), (3.52) if furthermore

Siv)
∫
ψ dS is a Q-martingale for every Q ∈ P e,f

0 ;

Sv) EP

[
E(L)T

dQE0
dP

log
(
E(L)T

dQE0
dP

)]
<∞, i.e., the probability measureQ(L)

defined by dQ(L)

dQE0
:= E(L)T has finite relative entropy with respect to P .

If S is locally bounded, we say that (Γ, ψ, L) is an orthogonal solution of
(3.51), (3.52) if it satisfies (3.51), (3.52), Si), Sii) and

Siii′) L is a local QE
0 -martingale null at 0 and strongly QE

0 -orthogonal to
every component of S and such that E(L) is positive.

Under the assumption that S is locally bounded,

a triple (Γ, ψ, L) is a solution of (3.51), (3.52) if and only if

it is an orthogonal solution and E(L) is a QE
0 -martingale.

(3.53)

To see this, note first that a locally bounded S is a Q(L)-sigma-martingale
if and only if E(L)S is a local QE

0 -martingale, under the assumption that
Q(L) is a probability measure. If (Γ, ψ, L) is a solution, then Siii) holds and
all of E(L)S, E(L) and S are local QE

0 -martingales. Hence E(L) is strongly
QE

0 -orthogonal to every component of S, and therefore so is L. Conversely, if
Siii′) holds, then E(L) is like L strongly QE

0 -orthogonal to every component of
the local QE

0 -martingale S. Hence E(L)S is a local QE
0 -martingale and thus

S is a Q(L)-sigma-martingale if E(L) is a QE
0 -martingale.

Our main result in this section is then

Theorem 3.16. Assume that H satisfies (3.13). Then the indifference value
process h is the first component of the unique special solution of the BSDE
(3.51), (3.52).

Theorem 3.16 looks at first glance like Theorem 13 of Mania and Schwei-
zer [44]. The important difference, however, is that we do not suppose that
the filtration F is continuous, i.e., that all local P -martingales are continuous.
If F is continuous, then 1

γ
log E(L) = L/γ − γ

2
〈L/γ〉 and Theorem 3.16 corre-

sponds to Theorem 13 of Mania and Schweizer [44]. (Since H is allowed to be
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unbounded in Theorem 3.16, there are some differences in the integrability
properties.) However, recovering the latter result in precise form and almost
full strength from Theorem 3.16 requires some additional work which we dis-
cuss at the end of this section. The derivation in [44] uses the martingale
optimality principle, the existence of an optimal strategy for the indifference
value process, and a comparison theorem for BSDEs. Our proof is completely
different; it is based on our results for the FER?(H) and its relation to the
indifference value.

Theorem 4.4 of Becherer [5] is another similar result. Instead of a contin-
uous filtration, the framework in [5] has a continuous price process driven by
Brownian motions, and a filtration generated by these and a random mea-
sure allowing the modeling of nonpredictable events. Again, to regain from
Theorem 3.16 the same statement as in Theorem 4.4 of Becherer [5], some
additional work is necessary, which is carried out in Appendix B.

In Corollary 3.6 of the earlier paper [4], Becherer gives a characterisation

of
dQEH
dQE0

in a locally bounded semimartingale model. Theorem 3.16 can be

viewed as a dynamic extension of that result to a general semimartingale
model.

Proof of Theorem 3.16. By Lemma 3.4, (3.13) implies that P e,f
H = P e,f

0 6= ∅,
and so Theorem 3.10 and (3.9) yield

ht = kHt − k0
t = h0 +

1

γ
log
E
(
NH
)
t

E
(
N0
)
t

+

∫ t

0

(
ηHs − η0

s

)
dSs, 0 ≤ t ≤ T,

where
(
NH , ηH , kH0

)
and

(
N0, η0, k0

0

)
are the FER?(H) and FER?(0); see

Proposition 3.6 for their properties. Then ψ := ηH − η0 is in L(S) and∫
ψ dS is a Q-martingale for every Q ∈ P e,f

0 = P e,f
H . By Bayes’ formula,

E
(
NH
)/
E
(
N0
)

is the QE
0 -density process of QE

H , and so it is a positive QE
0 -

martingale and its stochastic logarithm L, defined by E(L) = E
(
NH
)/
E
(
N0
)
,

is a local QE
0 -martingale null at 0. Moreover, dQ(L)

dP
= E(L)T

dQE0
dP

=
dQEH
dP

shows
Q(L) = QE

H . Hence S is a Q(L)-sigma-martingale and Sv) is satisfied because
QE
H has finite relative entropy with respect to P . Since hT = H by definition,

we see that h is the first component of a special solution of the BSDE (3.51),
(3.52).

To prove uniqueness, let (Γ, ψ, L) be any special solution of (3.51), (3.52).
Denote by

(
N0, η0, k0

0

)
the unique FER?(0), and define

N := N0 + L+
[
N0, L

]
, η := η0 + ψ and k0 := k0

0 + Γ0. (3.54)

We claim that
(N, η, k0) is the unique FER?(H). (3.55)
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For the proof, we first note that E
(
N0
)
E(L) = E

(
N0 +L+

[
N0, L

])
= E(N)

by Yor’s formula. Using (3.51), (3.52) and (3.7) for H = 0 thus yields

H =
1

γ
log
(
E
(
N0
)
T
E(L)T

)
+

∫ T

0

(
η0
s + ψs

)
dSs + k0

0 + Γ0

=
1

γ
log E(N)T +

∫ T

0

ηs dSs + k0.

Therefore (N, η, k0) satisfies (3.7) for H, and it is enough to show that the
assumptions on N and η for FER?(H) are fulfilled. By Bayes’ formula,
E(N) = E

(
N0
)
E(L) is a positive P -martingale, because E

(
L
)

is a positive
QE

0 -martingale by Siii) and E
(
N0
)

is the P -density process of QE
0 . Writing

next
dP (N)

dQE
0

=
dP (N)

dP

dP

dQE
0

= E(N)T
/
E
(
N0
)
T

= E(L)T ,

we see that P (N) = Q(L) which implies that

I
(
P (N)

∣∣P) = EP

[
E(L)T

dQE
0

dP
log

(
E(L)T

dQE
0

dP

)]
<∞

by Sv) and that S is a P (N)-sigma-martingale by Siii). Because
(
N0, η0, k0

0

)
is the FER?(0),

∫
η dS =

∫
η0 dS +

∫
ψ dS is by Proposition 3.6 and Siv) a

Q-martingale for every Q ∈ P e,f
0 = P e,f

H , hence also for P (N) and QE
H , and

so (N, η, k0) is an FER(H) satisfying (c) from Proposition 3.6. This implies
(3.55). Uniqueness of the FER?(H) and (3.54) now imply that Γ0, ψ are
unique; so is L due to E(L) = E(N)

/
E
(
N0
)
, and finally also Γ by (3.51).

This ends the proof.

The above argument shows in particular a close link between the FER?(H)
and the BSDE (3.51), (3.52). Provided we have the FER?(0), we can con-
struct FER?(H) from the special solution of (3.51), (3.52), and vice versa.
This is familiar from exponential utility indifference valuation; indeed, know-
ing FER?(0) corresponds to knowing the minimal 0-entropy measure QE

0 .

Remark 3.17. If S is locally bounded and H is bounded, there is another
way to prove uniqueness of the first component of a special solution of the
BSDE (3.51), (3.52), which we briefly sketch here. If (Γ, ψ, L) is a special
solution of (3.51), (3.52), the idea is to show that Γ equals the indiffer-
ence value process h, which then yields the desired uniqueness result. Let
t ∈ [0, T ] and replace in the definition of AHt the condition that

∫
ϑ dS is a

Q-supermartingale for every Q ∈ P e,f
H by assuming that it is a Q-martingale

for every Q ∈ P e,f
H . We do the analogous change for A0

t and note that this
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does not affect the values of V H
t and V 0

t , as mentioned after the proof of
Theorem 3.10. We now apply Proposition 3 of Mania and Schweizer [44]
to obtain

ht =
1

γ
log ess inf

ϑ∈AHt
EQE0

[
exp

(
γH − γ

∫ T

t

ϑs dSs

)∣∣∣∣Ft]. (3.56)

Using (3.51), (3.52) gives

γH = γΓ0 + log E(L)T + γ

∫ T

0

ψs dSs = γΓt + log
E(L)T
E(L)t

+ γ

∫ T

t

ψs dSs,

which we plug into (3.56) to obtain

ht = Γt +
1

γ
log ess inf

ϑ∈AHt
EQ(L)

[
exp

(
γ

∫ T

t

(ψs − ϑs) dSs

)∣∣∣∣Ft] =: Γt +
1

γ
log Λ,

where the probability measure Q(L) is defined by dQ(L)

dQE0
:= E(L)T . To show

that Λ = 1, we first note that Q(L) ∈ P e,f
0 by Sv), P e,f

H = P e,f
0 by Lemma 3.4,

and
∫
ψ dS as well as

∫
ϑ dS are Q-martingales for every Q ∈ P e,f

H = P e,f
0

by Siv) and because ϑ ∈ AHt . Jensen’s inequality then yields Λ ≥ 1, and we
obtain Λ ≤ 1 by the choice ϑ? := ψ ∈ AHt . Note that also for this uniqueness
proof, we have used the assumption that (Γ, ψ, L) is a special solution of the
BSDE (3.51), (3.52), i.e., that it also satisfies Siv), Sv). ♦

We have seen in Section 3.3 that the difference between FER(H) and
the (unique) FER?(H) is an issue of integrability. The same thing happens
here: The next example shows that the BSDE (3.51), (3.52) may have many
solutions if we omit the requirement Siv)

(
which corresponds to (d) in Propo-

sition 3.6
)
.

Example 3.18. As in Example 3.8, take independent P -Brownian motions
W and W⊥, their P -augmented filtration F and d = 1, S = W , H ≡ 0. Then
QE

0 = P and (0, 0, 0) is the unique special solution of (3.51), (3.52).
As in Example 3.8, take N0 = W⊥ and use Proposition 1 of Emery et

al. [19] to find for any c ∈ R a process ψ(c) in L(S) such that

−1

γ
log E

(
N0
)
T
− c =

∫ T

0

ψs(c) dSs P -a.s.

If we then set Γt(c) := c+ 1
γ

log E
(
N0
)
t
+
∫ t

0
ψs(c) dSs for t ∈ [0, T ], we easily

see as in Example 3.8 that
(
Γ(c), ψ(c), N0

)
is a solution to (3.51), (3.52) and

satisfies Sv), but not Siv). So we clearly have multiple solutions. ♦



68 Chapter 3. A general semimartingale model

Theorem 3.16 allows us to obtain a result similar to Proposition 3.11.

Corollary 3.19. Assume that H satisfies (3.13). Then we have for any
probability measure Q ∈ P e,f

0 = P e,f
H and t ∈ [0, T ] that

ht = EQ[H|Ft]−
1

γ
EQ
[
log E(L)t,T

∣∣Ft], (3.57)

where L is the third component of the unique special solution of the BSDE
(3.51), (3.52). In particular,

h0 = EQE0 [H] +
1

γ
I
(
QE

0

∣∣Q(L)
)
, (3.58)

where dQ(L)

dQE0
:= E(L)T .

Proof. Theorem 3.16 implies (3.57) by taking conditional Q-expectations be-
tween t and T in (3.51), using (3.52) and Siv). (3.58) follows for Q = QE

0 .

Remark 3.20. Corollary 3.19 raises the question if one can find a probability
measure Q ∈ P e,f

0 such that the indifference value is the Q-conditional expec-
tation of H. From (3.57) we see that log E(L) must then be a Q-martingale,
and if we write the QE

0 -density process of Q as E(R) for some local QE
0 -

martingale R, Bayes’ formula tells us that we want E(R) log E(L) to be a
QE

0 -martingale. Itô’s formula gives

d
(
E(R) log E(L)

)
t

= log E(L)t− dE(R)t +
E(R)t−
E(L)t−

dE(L)t

+ E(R)t− d

[
Lc, Rc − 1

2
Lc
]
t

+ E(R)t−
(
(∆Rt + 1) log(1 + ∆Lt)−∆Lt

)
,

where Lc and Rc denote the continuous local QE
0 -martingale parts of L and R.

For E(R) log E(L) to be a local QE
0 -martingale, we must have that Rc = 1

2
Lc

on {Lc 6= 0} and ∆Rt = ∆Lt−log(1+∆Lt)
log(1+∆Lt)

on {∆Lt 6= 0}. Therefore, we define

R = Rc +Rd by

Rc
t :=

1

2
Lct and Rd

t :=
∑

0<s≤t

∆Ls − log(1 + ∆Ls)

log(1 + ∆Ls)
1∆Ls 6=0 − At, (3.59)

where A is the dual predictable projection under QE
0 of the sum in (3.59).

Note that Rd is well defined, since ∆Ls > −1, ∆Ls 6= 0 implies that∣∣∣∣∆Ls − log(1 + ∆Ls)

log(1 + ∆Ls)

∣∣∣∣ ≤ |∆Ls|;
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in fact, log(1 + x) ≥ x
1+x

for x > −1 implies that
∣∣∣x−log(1+x)

log(1+x)

∣∣∣ ≤ |x| for

x > −1, x 6= 0. By this construction, E(R) and E(R) log E(L) are local QE
0 -

martingales, but it is not clear whether they are true QE
0 -martingales. If

they are and if Q defined by dQ
dQE0

:= E(R)T is in P e,f
0 , then we obtain indeed

ht = EQ[H|Ft] for all t ∈ [0, T ]. In general, this representation is not linear
in H since the probability measure Q may (via L) depend on H. Mania and
Schweizer [44] showed in their Proposition 11 that a representation of this
type exists if the filtration is continuous and H is bounded, in which case
R = 1

2
L. ♦

Becherer [5] and Mania and Schweizer [44] show BMO-estimates for all
components of the solution to the BSDE for the indifference value process h.
It seems doubtful if one can obtain such results in our general framework
here, but under a mild additional assumption, we can still characterise Siv)
via BMO-properties without being more specific about the filtration F; see
Theorem 3.21 below.

The indifference hedging strategy β is defined as the difference of the
strategies which attain V H

0 (h0) and V 0
0 (0), i.e., as that extra trading we do

in the optimisation which can be attributed to the presence of a claim. If H
satisfies (3.13), we have β = ηH − η0 = ψ by (3.32) and the proof of Theorem
3.16, where ψ is the second component of the unique special solution of the
BSDE (3.51), (3.52). Hence it is of particular interest to know when

∫
ψ dS

is a BMO
(
QE

0

)
-martingale.

Theorem 3.21. Assume that S is continuous, H is bounded and there exists
Q ∈ P e,f

0 whose P -density process satisfies RL logL(P ). Let (Γ, ψ, L) be a
solution of the BSDE (3.51), (3.52) which satisfies Sv). Then the following
are equivalent:

(a) (Γ, ψ, L) is the special solution of (3.51), (3.52), i.e., it also satisfies
Siv);

(b) L is a BMO
(
QE

0

)
-martingale, E(L) satisfies condition (J), and

∫
ψ dS

is a QE
0 -martingale;

(c)
∫
ψ dS is a BMO

(
QE

0

)
-martingale;

(d)
∫
ψ dM is a BMO(P )-martingale, where M is the P -local martingale

part of S;

(e) there exists ε > 0 such that EP

[
exp
(
ε
[∫
ψ dS

]
T

)]
<∞.



70 Chapter 3. A general semimartingale model

Proof. “(a) =⇒ (b)”. Denote by
(
NH , ηH , kH0

)
and

(
N0, η0, k0

0

)
the unique

FER?(H) and FER?(0). Theorem 3.9 implies that NH , N0 are BMO(P )-
martingales and E

(
NH
)
, E
(
N0
)

satisfy condition (J), say with constants CH

and C0. By the proof of Theorem 3.16, we have E(L) = E
(
NH
)/
E
(
N0
)

and
thus E(L) satisfies condition (J) with constant CHC0. Since 1

/
E
(
N0
)

is

the QE
0 -density process of P , E

(
N0
)−1

= E
(
N̂0
)

for a local QE
0 -martingale

N̂0, and so E(L) = E
(
NH + N̂0 +

[
NH , N̂0

])
by Yor’s formula. Due to the

properties of N0 and NH , both N̂0 and NH +
[
NH , N̂0

]
are BMO

(
QE

0

)
-

martingales by Propositions 6 and 7 of Doléans-Dade and Meyer [17], and
hence so is L = N̂0 + NH +

[
NH , N̂0

]
. Finally,

∫
ψ dS is a QE

0 -martingale
by Siv).

“(b) =⇒ (c)”, “(c) =⇒ (d)” and “(d) =⇒ (e)”. These go along the same
lines as the proofs of the corresponding implications in Theorem 3.9. Instead
of (3.7) we take (3.51), (3.52), and we replace P

(
NH
)

by QE
0 .

“(e) =⇒ (a)”. Like for the corresponding implication in Theorem 3.9, we
obtain that

∫
ψ dS is a square-integrableQ-martingale for anyQ ∈ Pe,f0 = Pe,fH ,

which implies Siv).

Remark 3.22. Example 3.18 also shows that even if the assumptions of
Theorem 3.21 are satisfied, none of the equivalent statements (a)–(e) need
hold. This is another way of saying that there exist solutions of (3.51), (3.52)
which are not special solutions. ♦

Corollary 3.23. Suppose the assumptions of Theorem 3.21 hold. Let (Γ, ψ, L)
be an orthogonal solution of the BSDE (3.51), (3.52). Then (Γ, ψ, L) is
the special solution of (3.51), (3.52) if and only if both L and

∫
ψ dS are

BMO
(
QE

0

)
-martingales and E(L) is a QE

0 -martingale which satisfies condi-
tion (J).

Proof. The “only if” part follows immediately from Theorem 3.21. For the
“if” part, note first that (Γ, ψ, L) is a solution of (3.51), (3.52) by (3.53). So
we need only show that (Γ, ψ, L) satisfies Sv) in view of Theorem 3.21. We
first prove that

∫
ψ dS is a BMO

(
Q(L)

)
-martingale, where dQ(L)

dQE0
= E(L)T .

Because 1
/
E(L) is the Q(L)-density process of QE

0 , it can be written as

E(L)−1 = E
(
L̂
)

for a local Q(L)-martingale L̂ satisfying L+ L̂+
[
L, L̂

]
= 0

by Yor’s formula. The continuity of S and the strong QE
0 -orthogonality of L

to S entail [∫
ψ dS, L̂

]
= −

[∫
ψ dS, L

]
= 0.

This yields by Proposition 7 of Doléans-Dade and Meyer [17] that
∫
ψ dS is

a BMO
(
Q(L)

)
-martingale. For the second component η0 of the FER?(0),
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we similarly have that
∫
η0 dS is a BMO

(
Q(L)

)
-martingale since

∫
η0 dS is

a BMO
(
QE

0

)
-martingale by Theorem 3.9. Because (Γ, ψ, L) is a solution of

(3.51), (3.52), we can write

log E(L)T = −γ
∫ T

0

ψs dSs + γH − γΓ0,

and similarly, we have for the FER?(0)
(
N0, η0, k0

0

)
that

log
dQE

0

dP
= log E

(
N0
)
T

= −γ
∫ T

0

η0
s dSs − γk0

0.

Because
∫ (
η0 + ψ

)
dS is a BMO

(
Q(L)

)
-martingale, we thus obtain

EQ(L)

[
log

(
E(L)T

dQE
0

dP

)]
= −γΓ0 − γk0

0 + γEQ(L)

[
H −

∫ T

0

(
η0
s + ψs

)
dSs

]
= −γΓ0 − γk0

0 + γEQ(L)[H] <∞

since H is bounded. Hence (Γ, ψ, L) satisfies Sv) and we are done.

Corollary 3.23 allows us to recover Theorem 13 of Mania and Schweizer [44]
from our Theorem 3.16. However, this still requires some work which is done
in the next two results. A similar approach presented in Appendix B can
be used to recover Theorem 4.4 of Becherer [5] from our Theorem 3.16. Al-
though the following lemma is a special case of Proposition 7 of Mania and
Schweizer [44], we give the proof here as well, both for completeness and
because it is quite simple in this case.

Lemma 3.24. Assume that the filtration F is continuous, H is bounded and
let (Γ, ψ, L) be an orthogonal solution of the BSDE (3.51), (3.52) with bounded
first component Γ. Then L and

∫
ψ dS are BMO

(
QE

0

)
-martingales.

Proof. If L and
∫
ψ dS are true QE

0 -martingales, (3.51) yields by continuity
of L that

EQE0
[
〈L〉T−〈L〉τ

∣∣Fτ]= 2γEQE0 [Γτ−ΓT |Fτ ] for any stopping time τ. (3.60)

Because Γ is bounded, the right-hand side of (3.60) is bounded independently
of τ , and thus L is aBMO

(
QE

0

)
-martingale. Therefore,

(
EQE0

[
〈L〉T

∣∣Fs])0≤s≤T
is also a continuous BMO

(
QE

0

)
-martingale, because

EQE0

[∣∣∣〈L〉T − EQE0 [〈L〉T ∣∣Fτ]∣∣∣
∣∣∣∣Fτ]≤ 2EQE0

[
〈L〉T − 〈L〉τ

∣∣Fτ]≤ 2‖L‖2
BMO2(QE0 )
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for any stopping time τ . Taking conditional QE
0 -expectations in (3.51) with

t = T gives∫ s

0

ψy dSy = EQE0 [ΓT − Γ0|Fs]−
1

γ
Ls +

1

2γ
EQE0

[
〈L〉T

∣∣Fs], 0 ≤ s ≤ T,

and so
∫
ψ dS is a BMO

(
QE

0

)
-martingale as well. Note that we obtain bounds

for the BMO2

(
QE

0

)
-norms of L and

∫
ψ dS that depend on Γ (and γ) alone.

For general L and
∫
ψ dS, we stop at τn and apply the above argument

with T replaced by τn. Letting n→∞ then completes the proof.

A closer look at the proof of Lemma 3.24 shows that we did not use
the property that L is strongly QE

0 -orthogonal to S. However, this is of
course necessary if we want to prove a uniqueness result. By combining
Lemma 3.24 and Corollary 3.23, we obtain the following sufficient conditions
for the uniqueness of an orthogonal solution of (3.51), (3.52) with bounded
first component.

Proposition 3.25. Assume that F is continuous, H is bounded, and there
exists Q ∈ P e,f

0 whose P -density process satisfies RL logL(P ). Then the indif-
ference value process h is the first component of the unique orthogonal solution
of (3.51), (3.52) with bounded first component. Moreover, L and

∫
ψ dS are

BMO
(
QE

0

)
-martingales.

Proof. By Theorem 3.16 and (3.53), h is the first component of an orthogonal
solution of (3.51), (3.52). Using V H

t (ht) = exp(−γht)V H
t (0) and the definition

(3.3) of h easily implies that the indifference value process h is bounded by
‖H‖L∞(P ). If (Γ, ψ, L) is any orthogonal solution of the BSDE (3.51), (3.52)
with bounded Γ, then L and

∫
ψ dS are BMO

(
QE

0

)
-martingales by Lemma

3.24. By Corollary 3.23, (Γ, ψ, L) is then a special solution, which is unique
by Theorem 3.16.

Proposition 3.25 is almost identical to Theorem 13 in Mania and Schwei-
zer [44]; the only difference is that we have here the additional assumption
that there exists Q ∈ P e,f

0 whose P -density process satisfies RL logL(P ). The
explanation for this is that we actually prove more than we really need for
Proposition 3.25. Mania and Schweizer [44] use a comparison result for
BSDEs (their Theorem 8) to deduce directly that one has uniqueness of or-
thogonal solutions to the BSDE within the class of those with bounded first
component. In contrast, the proof of Proposition 3.25 actually shows that
under the RL logL-condition, any solution with bounded first component is
even a special solution — and then one appeals to Theorem 3.16 which as-
serts uniqueness within that class.
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3.6 Application to a Brownian setting

In this section, we consider as a special case a model with one risky asset
driven by a Brownian motion and a claim coming from a second, correlated
Brownian motion. All processes are indexed by 0 ≤ s ≤ T . Let W and Y be
two Brownian motions with constant instantaneous correlation ρ satisfying
|ρ| < 1. Choose as F the P -augmentation of the filtration generated by
the pair (W,Y ), and denote by Y = (Ys)0≤s≤T the P -augmentation of the
filtration generated by Y alone.

As usual, the risk-free bank account has zero interest rate. The single
tradable stock has a price process given by

dSs = µsSs ds+ σsSs dWs, 0 ≤ s ≤ T, S0 > 0, (3.61)

where drift µ and volatility σ are F-predictable processes. We assume for
simplicity that µ is bounded and σ is bounded away from zero and infinity.
We further assume that

the instantaneous Sharpe ratio µ
σ

of the tradable stock is Y-predictable.

In the notation of Section 3.2, S = S0 +M+
∫
λ d〈M〉, where M :=

∫
σS dW

is a local (F, P )-martingale and λ := µ
σ

1
σS

is F-predictable. Since µ is bounded
and σ is bounded away from zero, the Sharpe ratio µ

σ
is also bounded, and

thus
∫
λ dM =

∫
µ
σ

dW is a BMO(F, P )-martingale and E
(
−
∫
λ dM

)
is an

(F, P )-martingale. We suppose that the contingent claim H is a bounded
YT -measurable random variable. Together with the structure of S in (3.61),
this assumption on H formalises the idea that the payoff H is driven by Y ,
whereas hedging can only be done in S which is imperfectly correlated with
the factor Y .

In the literature, there are three main approaches to obtain explicit for-
mulas for the resulting optimisation problem (3.2). In a Markovian set-
ting, Henderson [31], Henderson and Hobson [33, 34], and Musiela and Za-
riphopoulou [47], among others, first derive the Hamilton-Jacobi-Bellman
nonlinear partial differential equation (PDE) for the value function of the un-
derlying stochastic control problem. This PDE is then linearised by a power
transformation with a constant exponent, called the distortion power, which
corresponds to δH0 from Theorem 3.12 and Corollary 3.13. This method works
only if one has a Markovian model. Using general techniques, Tehranchi [56]
first proves a Hölder-type inequality, which he then applies to the portfolio
optimisation problem. The distortion power there arises as an exponent in
the Hölder-type inequality. A third approach based on martingale arguments
has allowed us in Chapter 2 to consider a more general framework with a
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fairly general stochastic correlation ρ. Theorems 2.9 and 2.10 prove that the
explicit form of the indifference value from Musiela and Zariphopoulou [47]
or Tehranchi [56] is preserved, except that the distortion power, which is
shown to exist but not explicitly determined, may be random and depend
on H like in our general semimartingale model; compare Theorem 3.12 and
Corollary 3.13.

We give here another proof based on the results of the previous sec-
tions. While there are no new results, the arguments in comparison to Chap-
ter 2 are easier and shorter, give new insights, and show the advantage of
FER?(H) compared to the BSDE formulation (3.51), (3.52) in Section 3.5.
Indeed, FER?(H) is a representation under the original probability measure
P , whereas in the BSDE formulation (3.51), (3.52), one must first determine
the minimal 0-entropy measure.

Proposition 3.26. For t ∈ [0, T ] and any Ft-measurable random variable xt,

V H
t (xt) = − exp(−γxt)EP̂

[∣∣ΨH
t

∣∣1−|ρ|2∣∣∣Yt] 1
1−|ρ|2

,

where ΨH
t = exp

(
γH − 1

2

∫ T
t

∣∣µs
σs

∣∣2 ds
)

and the minimal martingale measure

P̂ is given by

dP̂

dP
= E

(
−
∫
µ

σ
dW

)
T

. (3.62)

The exponential utility indifference value ht of H at time t equals

ht =
1

γ(1− |ρ|2)
log

EP̂

[∣∣ΨH
t

∣∣1−|ρ|2∣∣∣Yt]
EP̂

[∣∣Ψ0
t

∣∣1−|ρ|2∣∣∣Yt] .
In Corollary 3.13, we have shown that

ht(ω) =
1

γ
log
(
EP̂

[∣∣ΨH
t

∣∣1/δ∣∣∣Ft](ω)
)δ∣∣∣∣

δ= δHt (ω)

− 1

γ
log
(
EP̂

[∣∣Ψ0
t

∣∣1/δ′∣∣∣Ft](ω)
)δ′∣∣∣∣

δ′= δ0t (ω)

,

and have related 1/δH to a kind of distance of H from attainability. Here
we have 1/δH = 1− |ρ|2, which confirms our interpretation: The closer 1/δH

is to one, the greater is the distance of H from being attainable, because a
smaller correlation ρ between W and Y makes hedging more difficult.
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Proof of Proposition 3.26. The idea is to explicitly derive the FER?(H) and
FER?(0), from which the result follows by Theorem 3.10. In view of Propo-
sition 3.2 and (3.10), we thus look for suitable real-valued processes ÑH and
η̃H and an Ft-measurable random variable kHt such that

H =
1

γ
log E

(
ÑH
)
t,T

+

∫ T

t

η̃Hs σsSs dŴs +
1

2γ

∫ T

t

∣∣∣∣µsσs
∣∣∣∣2 ds+ kHt , (3.63)

where Ŵ := W +
∫

µ
σ

ds is by Girsanov’s theorem a Brownian motion under

the minimal martingale measure P̂ given by (3.62). Using Itô’s representa-

tion theorem as in Lemma 1.6.7 of Karatzas and Shreve [39] for
∣∣ΨH

t

∣∣1−|ρ|2
under Y and P̂ restricted to YT , we can find a Y-predictable process ζ with
EP̂
[∫ T

0
|ζs|2 ds

]
<∞ such that

∣∣ΨH
t

∣∣1−|ρ|2 = EP̂

[∣∣ΨH
t

∣∣1−|ρ|2∣∣∣Yt]E(∫ ζ dŶ

)
t,T

, (3.64)

where the
(
Y, P̂

)
-Brownian motion Ŷ is defined by

Ŷs := Ys +

∫ s

0

ρ
µy
σy

dy for s ∈ [0, T ].

For this, we have used that ΨH
t is YT -measurable since µ

σ
is Y-predictable and

H is YT -measurable by assumption. We can write Ŷ = ρŴ +
√

1− |ρ|2Ŵ⊥

for an
(
F, P̂

)
-Brownian motion Ŵ⊥ independent of Ŵ . Taking the logarithm

in (3.64) results in

H =
1

γ

∫ T

t

ζs
1− |ρ|2

dŶs −
1

2γ

∫ T

t

|ζs|2

1− |ρ|2
ds+

1

2γ

∫ T

t

∣∣∣∣µsσs
∣∣∣∣2 ds+ kHt ,

where

kHt :=
1

γ(1− |ρ|2)
logEP̂

[∣∣ΨH
t

∣∣1−|ρ|2∣∣∣Yt].
But this is (3.63) with

ÑH :=

∫
ζ√

1− |ρ|2
dŴ⊥ and η̃H :=

ρ ζ

γ(1− |ρ|2)

1

σS
.

Clearly, ÑH is a local P̂ -martingale strongly P̂ -orthogonal to S, hence also
a local P -martingale strongly P -orthogonal to M . Moreover, ΨH

t is bounded
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away from zero and infinity, which implies by (3.64) that E
(∫

ζ dŶ
)

is uni-
formly bounded away from zero and infinity. By Theorem 3.4 of Kaza-
maki [40],

∫
ζ dŶ is then a BMO

(
F, P̂

)
-martingale and thus so is ÑH because

〈
ÑH
〉

=
1

1− |ρ|2

∫
|ζ|2 ds =

1

1− |ρ|2

〈∫
ζ dŶ

〉
.

This implies that E
(
ÑH
)

is an
(
F, P̂

)
-martingale so that E

(
ÑH
)
E
(
−
∫
λ dM

)
is an (F, P )-martingale, and then that also∫ (

γη̃H+λ
)

dS =

∫
γη̃HσS dŴ+

∫
µ

σ
dŴ =

1

1− |ρ|2

∫
ζ dŶ−ÑH+

∫
µ

σ
dŴ

is a BMO
(
F, P̂

)
-martingale. So if we set dP (NH)

dP̂
= E

(
ÑH
)
T

, then the process∫ (
η̃H + 1

γ
λ
)

dS is also a BMO
(
F, P

(
NH
))

-martingale by Theorem 3.6 of

Kazamaki [40]. By Proposition 3.2,
(
ÑH−

∫
µ
σ

dW, η̃H + µ
γσ

1
σS
, kHt

)
is thus an

FER(H) on [t, T ], and because the P -density process of P̂ satisfies RL logL(P )
since µ

σ
is bounded, this FER(H) is even the unique FER?(H) on [t, T ]

by Theorem 3.9. The unique FER?(0)
(
N0, η0, k0

t

)
on [t, T ] is constructed

analogously, with ΨH
t replaced by Ψ0

t . This concludes the proof in view of
Theorem 3.10.

Remark 3.27. Proposition 3.26 can be extended to the more general frame-
work of case (I) in Section 2.4.1 where the correlation ρ is no longer constant,
but Y-predictable with absolute value uniformly bounded away from one.
The explicit form of the indifference value is then essentially preserved; see
Theorem 2.9 for the precise formulation. This can also be proved with our
methods here, but we only sketch the main steps for t = 0 since the full details
are a bit technical. First, one calls a triple

(
NH , ηH , kH0

)
an upper (or lower)

FER?(H) if it has the properties of an FER?(H), except that the equality
sign in (3.7) is replaced by “≥” (or “≤”). One then shows that for an upper
(lower) FER?(H), (3.28) is satisfied with “≤” (“≥”) instead of equality. In
a third step, one defines constants

δ := sup
s∈ [0,T ]

∥∥∥∥ 1

1− |ρs|2

∥∥∥∥
L∞(P )

and δ := inf
s∈ [0,T ]

1

‖1− |ρs|2‖L∞(P )

and finds, in the spirit of (3.64), Y-predictable processes ζ and ζ such that

∣∣ΨH
0

∣∣1/δ = EP̂

[∣∣ΨH
0

∣∣1/δ]E(∫ ζ dŶ

)
T

and EP̂

[∫ T

0

∣∣ζs∣∣2 ds

]
<∞,
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with an analogous construction for ζ. For this one uses that Ŷ is Y-adapted
because ρ is Y-predictable. Similarly to the proof of Proposition 3.26, one

shows that
(
N
H
, ηH , k

H

0

)
is an upper FER?(H), where

N
H

=

∫
δ ζ
√

1− |ρ|2 dŴ⊥ −
∫
µ

σ
dW, ηH =

δρ ζ

γ

1

σS
+

µ

γσ

1

σS

and k
H

0 = δ
γ

logEP̂

[∣∣ΨH
0

∣∣1/δ]. A completely analogous result holds for δ.

Therefore, one obtains

− exp
(
−γx0 + γkH0

)
≤ V H

0 (x0) ≤ − exp
(
−γx0 + γk

H

0

)
by the above versions of (3.28). Because δ 7→ δ logEP̂

[∣∣ΨH
0

∣∣1/δ] is continuous

on
[
δ, δ
]
, interpolation then yields the existence of δH0 ∈

[
δ, δ
]

such that

V H
0 (x0) = − exp(−γx0)EP̂

[∣∣ΨH
0

∣∣1/δH0 ]δH0
Solving the implicit equation (3.3) with respect to h0 finally gives an explicit
expression for h0. ♦

3.7 Appendix A: The distortion power δHt in

a continuous filtration

In this appendix, we come back to the distortion power δHt used in Theorem
3.12 and Corollary 3.13 in Section 3.4. If the filtration F is continuous, that
is, all local P -martingales are continuous, then we can make more precise the
range of δHt . In the next proposition and its proof, we use the abbreviation
〈N〉t,T := 〈N〉T − 〈N〉t for a continuous P -semimartingale N , differing from
the notation Zt,s := Zs/Zt, 0 ≤ t ≤ s ≤ T .

Proposition 3.28. Assume that F is continuous, S satisfies (SC) and that〈 ∫
λ dM

〉
T

and H are bounded. Let
(
NH , ηH , kH0

)
be the FER?(H), set

ÑH := NH +
∫
λ dM and η̃H := ηH − 1

γ
λ and fix t ∈ [0, T ]. Then δHt defined

via (3.47) with the choice Q := P̂ and ϕ := −λ is valued almost surely in[
δHt , δ

H

t

]
, where

δ
H

t :=

∥∥∥∥〈ÑH〉t,T + 〈
∫
γη̃H dS〉t,T

〈ÑH〉t,T

∥∥∥∥
L∞

,
1

δHt
:=

∥∥∥∥ 〈ÑH〉t,T
〈ÑH〉t,T + 〈

∫
γη̃H dS〉t,T

∥∥∥∥
L∞

;

(3.65)
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if P
[
〈ÑH〉t,T + 〈

∫
γη̃H dS〉t,T = 0

]
> 0, we set δHt = 1 and δ

H

t =∞ by con-
vention.

Proof. If δHt =∞ with positive P -probability, then

EP̂

[
log E

(
ÑH
)
t,T

∣∣∣Ft] = EP̂

[
log

E
(
NH
)
t,T

E(−
∫
λ dM)t,T

∣∣∣∣Ft] = 0 on a set A ∈ Ft
(3.66)

with P [A] > 0 by (3.42) and (3.43) with Q = P̂ , and because ÑH is strongly
P -orthogonal to

∫
λ dM by Proposition 3.2. Since

〈 ∫
λ dM

〉
T

is bounded,

the P -density process of P̂ satisfies RL logL(P ), and Theorem 3.9 yields that

NH is a BMO(P )-martingale. Therefore, ÑH = NH +
∫
λ dM is both a

BMO(P )- and a BMO
(
P̂
)
-martingale by Theorem 3.6 of Kazamaki [40].

Jensen’s inequality and Theorem 2.3 of Kazamaki [40] yield

EP̂

[
1A log E

(
ÑH
)
t,T

]
= EP̂

[
log
(
E
(
ÑH
)
t,T
1A + 1Ac

)]
≤ log

(
EP̂

[
1AEP̂

[
E
(
ÑH
)
t,T

∣∣Ft]]+ P̂ [Ac]
)

= 0. (3.67)

Now (3.66) shows that we have equality in (3.67). Hence E
(
ÑH
)
t,T
1A + 1Ac

is deterministic, so E
(
ÑH
)
t,T

= 1 on A and thus
〈
ÑH
〉
t,T

= 0 on A, which

implies δ
H

t = ∞. Consequently, we may assume without loss of generality
that δHt <∞ a.s.

In view of the proof of Theorem 3.12 and using (3.39), we have to show(
EP̂

[∣∣ΨH
t

∣∣ 1

δ
H
t

∣∣∣∣Ft])δ
H
t

≤ exp
(
γkHt

)
≤
(
EP̂

[∣∣ΨH
t

∣∣ 1

δHt

∣∣∣∣Ft])δHt , (3.68)

where ΨH
t = exp

(
γH− 1

2
〈
∫
λ dM〉t,T

)
is given in (3.49). To establish the first

half of (3.68), we can assume δ
H

t <∞ (otherwise there is nothing to prove).
As in Proposition 3.2, we deduce from (3.10) and the definitions of ÑH and
η̃H that

log ΨH
t = γkHt + log E

(
ÑH
)
t,T

+

∫ T

t

γη̃Hs dSs

= γkHt + ÑH
T − ÑH

t −
1

2

〈
ÑH
〉
t,T

+

∫ T

t

γη̃Hs dSs.

Therefore, we have by (3.65) that

log ΨH
t (3.69)

≤ γkHt + ÑH
T − ÑH

t −
1

2 δ
H

t

(〈
ÑH
〉
t,T

+

〈∫
γη̃H dS

〉
t,T

)
+

∫ T

t

γη̃Hs dSs.
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By Proposition 3.2, ÑH is strongly P -orthogonal to each component of M ,
which implies

〈
ÑH ,

∫
γη̃H dS

〉
= 0 by (SC) and the continuity of S. So (3.69)

leads to ∣∣ΨH
t

∣∣ 1

δ
H
t ≤ exp

(
γkHt

δ
H

t

)
E

(
ÑH +

∫
γη̃H dS

δ
H

t

)
t,T

. (3.70)

We have already seen that ÑH is a BMO
(
P̂
)
-martingale. Similarly,

∫
ηH dM

is a BMO(P )-martingale by Theorem 3.9, hence
∫
ηH dS is a BMO

(
P̂
)
-

martingale by Kazamaki’s Theorem 3.6. Moreover,
∫
λ dS is a BMO

(
P̂
)
-

martingale since
〈 ∫

λ dM
〉
T

is bounded by assumption. Thus ÑH +
∫
γη̃H dS

is a BMO
(
P̂
)
-martingale, and we obtain from (3.70) that

EP̂

[∣∣ΨH
t

∣∣ 1

δ
H
t

∣∣∣∣Ft] ≤ eγk
H
t /δ

H
t EP̂

[
E

(
ÑH +

∫
γη̃H dS

δ
H

t

)
t,T

∣∣∣∣∣ Ft
]

= eγk
H
t /δ

H
t

by Theorem 2.3 of Kazamaki [40]. The second inequality in (3.68) is proved
analogously, using that δHt =∞ implies

〈
ÑH
〉
t,T

= 0 and E
(
ÑH
)
t,T

= 1 a.s.,

hence δHt =∞ a.s. by (3.42) and (3.43).

3.8 Appendix B: Specialisation to the model

of Becherer [5]

In this appendix, we recover Theorem 4.4 of Becherer [5] from our Theorem
3.16. This works in two steps, like in the approach used in Section 3.5 to
regain Theorem 13 of Mania and Schweizer [44]. In the first step, we show
for the specific models that if (Γ, ψ, L) is an orthogonal solution of the BSDE
(3.51), (3.52) with bounded Γ, then L and

∫
ψ dS are BMO

(
QE

0

)
-martingales

and E(L) is a QE
0 -martingale which satisfies condition (J). This is stated, for

the setting of [44], in Lemma 3.24 in Section 3.5 and, for [5], in Lemma 3.29
below, which additionally imposes that L and

∫
ψ dS are square-integrable

QE
0 -martingales. In the second step, we use Theorem 3.16 and Corollary 3.23

to show uniqueness of an orthogonal solution (Γ, ψ, L) with bounded Γ
(
and

square-integrable QE
0 -martingales L and

∫
ψ dS for the setting of [5]

)
. This

procedure yields Proposition 3.25, corresponding to Theorem 13 in [44], and
Proposition 3.30 below, corresponding to Theorem 4.4 in [5].

The framework of Becherer [5] is a specialisation of our model presented
in Section 3.2. For convenience of the reader, we recall the model of [5]. It
consists of a d-dimensional Brownian motionW and an integer-valued random
measure µ on

(
[0, T ]× E,B

(
[0, T ]

)
⊗B(E)

)
with compensator νP under P ,



80 Chapter 3. A general semimartingale model

where E := R`\{0} is equipped with its Borel σ-field B(E). Set µ̃P := µ− νP
and denote by P the predictable σ-field on Ω× [0, T ]. In [5], νP is supposed
to be equivalent to a product measure λ⊗Leb with a density ζP such that

νP (ω, dt, de) = ζP (ω, t, e)λ(de) dt, ω ∈ Ω, t ∈ [0, T ], e ∈ E, (3.71)

where λ is a bounded measure on
(
E,B(E)

)
, and the density ζP is a bounded,

nonnegative and
(
P⊗B(E)

)
-measurable function such that for a constant cP ,

0 ≤ ζP ≤ cP <∞, (P⊗λ⊗Leb)-almost everywhere. (3.72)

It is further assumed that, with respect to F and P , W and µ̃P have the
weak property of representation. This means that every square-integrable
P -martingale L has a representation L = L0 +

∫
Z dW + A ∗ µ̃P , where Z

is P- and A is
(
P⊗B(E)

)
-measurable such that EP

[∫ T
0
|Zt|2 dt

]
< ∞ and

EP
[
|A|2 ∗ νPT

]
<∞, and A ∗ µ̃P is the integral process of A with respect

to µ̃P .
The price process S is given by

dSit = Sit

d∑
j=1

σijt
(
ϕjt dt+ dW j

t

)
, t ∈ [0, T ], Si0 > 0, i = 1, . . . , d,

where ϕ is an Rd-valued P-measurable process which is bounded (P⊗Leb)-a.e.
and σ is an Rd×d-valued P-measurable process such that σ is invertible
(P⊗Leb)-a.e. and integrable with respect to Ŵ := W +

∫
ϕ dt. The minimal

local martingale measure P̂ given by dP̂
dP

= E
(
−
∫
ϕ dW

)
T

satisfies RL logL(P )
since ϕ is bounded.

Lemma 3.29. Consider the above specialisation of the model and assume that
H is bounded. Let (Γ, ψ, L) be an orthogonal solution of the BSDE (3.51),
(3.52) with bounded Γ and square-integrable QE

0 -martingales L and
∫
ψ dS.

Then L and
∫
ψ dS are BMO

(
QE

0

)
-martingales and E(L) is a QE

0 -martingale
which satisfies condition (J).

Proof. We first study the form of QE
0 . By Proposition 3.6, QE

0 is given by
dQE0
dP

= E
(
N0
)
T

, where N0 is the first component of the unique FER?(0)(
N0, η0, k0

0

)
. Let us write the equivalent form (3.11) of FER?(0) from Propo-

sition 3.2 for t ∈ [0, T ] as

k̃0
t =

1

γ
log E

(
Ñ0
)
t
+

∫ t

0

η̃0
s dSs + k0

0, k̃0
T = − 1

2γ

〈∫
ϕ dW

〉
T

, (3.73)
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where Ñ0 = N0 +
∫
ϕ dW and η̃0 = η0 − 1

γ
diag(S)−1(σ′)−1ϕ. The process k̃0

is bounded; indeed, (3.73) and Jensen’s inequality yield for t ∈ [0, T ] that

eγ
ek0
t ≤ EQE0

[
E
(
Ñ0
)
t
exp

(
γk0

0 + γ

∫ T

0

η̃0
s dSs

)∣∣∣∣Ft] = EP̂

[
eγ

ek0
T

∣∣∣Ft] ≤ 1.

Because −k̃0
T = 1

2γ

∫ T
0
|ϕs|2 ds is bounded, say by c, we similarly obtain for

t ∈ [0, T ] that

e−γ
ek0
t ≤ EP̂

[
1

E
(
Ñ0
)
t

exp

(
−γk0

0 − γ
∫ T

0

η̃0
s dSs

)∣∣∣∣Ft] = EQE0

[
e−γ

ek0
T

∣∣∣Ft] ≤ eγc,

using that
∫
η̃0 dS is a

(
BMO

(
P̂
)
-
)
martingale by Theorem 3.9 above and

Proposition 7 of Doléans-Dade and Meyer [17]; hence k̃0 is bounded. More-
over, Theorem 3.9 yields that N0 is a BMO(P )-martingale. Because of the
weak property of representation and since QE

0 is a local martingale measure,
we can write N0 = −

∫
ϕ dW + A ∗ µ̃P for a

(
P⊗B(E)

)
-measurable A such

that EQE0
[
|A|2 ∗ νPT

]
<∞. Using the formula for the stochastic exponential,

we can derive from (3.73) that

k̃0
t =

1

γ

∫ t

0

∫
E

log
(
As(e) + 1

)
µ̃P (ds, de) +

∫ t

0

(
η0
s −

1

γ
diag(Ss)

−1(σ′s)
−1ϕs

)
dSs

− 1

γ

∫ t

0

∫
E

(
As(e)− log

(
As(e) + 1

))
νP (ds, de) + k0

0, t ∈ [0, T ]. (3.74)

The jumps of k̃0 are given by

∆k̃0
t =

1

γ

∫
E

log
(
At(e) + 1

)
µ
(
{t}, de

)
, t ∈ [0, T ],

which is bounded uniformly in t since so is k̃0. Because µ is an integer-valued
random measure, log(A+ 1) is bounded (µ⊗P )-a.e.; hence A is bounded
away from −1 and ∞ (µ⊗P )-a.e. and thus also (νP⊗P )-a.e. By (4.24) in
Becherer [5], the QE

0 -compensator νQ
E
0 of µ is given by

νQ
E
0 (dt, de) = (At(e) + 1)νP (dt, de), t ∈ [0, T ], e ∈ E, (3.75)

and νQ
E
0

(
[0, T ], E

)
is bounded due to (3.71), (3.72) and since λ is bounded

by assumption and A is bounded (νP⊗P )-a.e.
We now study an orthogonal solution (Γ, ψ, L) of the BSDE (3.51), (3.52)

with bounded Γ and square-integrable QE
0 -martingales L and

∫
ψ dS. By

Theorem 13.22 of He et al. [30], we have L =
∫
Z dŴ +D ∗ µ̃QE0 for a P-

measurable Z and a
(
P⊗B(E)

)
-measurable D with EQE0

[∫ T
0
|Zt|2 dt

]
<∞
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and EQE0

[
|D|2 ∗ νQ

E
0

T

]
<∞, because W and µ̃P have the weak property of

representation with respect to F and P . Since L is strongly QE
0 -orthogonal

to every component of S and σ is invertible, we have Z ≡ 0. Similarly to
(3.74), we can write (3.51) as

Γt = Γ0 +
1

γ

∫ t

0

∫
E

log
(
Ds(e) + 1

)
µ̃Q

E
0 (ds, de) +

∫ t

0

ψs dSs

− 1

γ

∫ t

0

∫
E

(
Ds(e)− log

(
Ds(e) + 1

))
νQ

E
0 (ds, de), t ∈ [0, T ]. (3.76)

Because νQ
E
0 is equivalent to λ⊗Leb by (3.71) and (3.75), the jumps of Γ are

given by

∆Γt =
1

γ

∫
E

log
(
Dt(e) + 1

)
µ
(
{t}, de

)
, t ∈ [0, T ],

which is bounded uniformly in t since so is Γ. Because µ is an integer-
valued random measure, log(D + 1) is bounded (µ⊗P )-a.e., and thus D is
bounded away from −1 and∞ (µ⊗P )-a.e. and also

(
νQ

E
0 ⊗P

)
-a.e. by (3.75).

Therefore, the process

∫ ∫
E

(
Ds(e)− log

(
Ds(e)+1

))
νQ

E
0 (ds, de) is bounded

since νQ
E
0

(
[0, T ]× E

)
is bounded. This implies by (3.76) that

1

γ

∫ t

0

∫
E

log
(
Ds(e) + 1

)
µ̃Q

E
0 (ds, de) +

∫ t

0

ψs dSs is bounded unif. in t ∈ [0, T ]

and thus both
∫
ψ dS and log(D+1)∗µ̃QE0 are BMO

(
QE

0

)
-martingales by the

same argument as in Lemma 3.4 of Becherer [5]. Since µ is an integer-valued
random measure and D is bounded away from −1 and ∞, L = D ∗ µ̃QE0 has
jumps bounded away from −1 and∞, and 〈L〉T =

∫ T
0

∫
E
|Ds(e)|2 νQ

E
0 (ds, de)

is bounded since so is νQ
E
0

(
[0, T ]× E

)
. Therefore, L is a BMO

(
QE

0

)
-martin-

gale and E(L) is a QE
0 -martingale which satisfies condition (J) by Shimbo(

cited in Protter [49] on p. 142 in the second remark after Theorem III.45
)

and Proposition 6 of Doléans-Dade and Meyer [17].

We can now recover Theorem 4.4 of Becherer [5], which we formulate as a
proposition. It can here be proved like Proposition 3.25, applying Lemma 3.29
instead of Lemma 3.24 and using that the minimal local martingale measure
P̂ satisfies RL logL(P ).

Proposition 3.30. Consider the above specialisation of the model and as-
sume that H is bounded. Then the indifference value process h is the first
component of the unique orthogonal solution (Γ, ψ, L) of (3.51), (3.52) with
bounded Γ and square-integrable QE

0 -martingales L and
∫
ψ dS. Moreover, L

and
∫
ψ dS are BMO

(
QE

0

)
-martingales.



Chapter 4

Convexity bounds for BSDE
solutions

Proving new results for Brownian BSDEs with a particular quadratic gener-
ator, we derive in this chapter bounds for the indifference value in a multi-
dimensional Brownian model.

4.1 Introduction

Backward stochastic differential equations (BSDEs) play an important role
in mathematical finance; see El Karoui et al. [26] for an early overview. Ex-
istence and uniqueness results are well known both for Lipschitz and for
quadratic drivers; see Kobylanski [42]. In this chapter, we study a particular
class of quadratic BSDEs of the form

Γs = H −
∫ T

s

(
f(Λr, Zr + αr) + χr

)
dr +

∫ T

s

Zr dBr, 0 ≤ s ≤ T, (4.1)

where f(Λr, Zr + αr) := 1
2
(Zr + αr)

′Λ−1
r (Zr + αr) and the processes χ, α, Λ

take values in R, Rn and the set Sn of symmetric strictly positive definite
matrices, respectively. Since there is no general formula for the solution Γ of
(4.1), we want to find bounds on Γ that can be computed more explicitly. To
that end, we first show that f(A, z) is jointly convex, deduce that Γ is jointly
concave in (H,Λ, α, χ), and then prove convexity bounds via three different
routes, as follows.

In general, a BSDE is based on a probability space, a filtration and a
probability measure. By changing in (4.1) each of these ingredients in a
suitable way, we obtain other BSDEs whose solutions are upper bounds for
Γ due to concavity. Finding bounds for these changed BSDEs or solving

83
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them is easier than for the original (4.1), because they are driven by a lower-
dimensional Brownian motion or, in some sense, their matrix-valued process
Λ is more regular.

We start by changing the probability measure. Our first main result, The-
orem 4.5, characterises Γ as the essential infimum and supremum of certain
conditional expectations. In particular, it gives upper bounds for Γ, which
depend on the maximal eigenvalue of Λ. This shows that Λ is the crucial
factor in finding good bounds, or even an explicit formula for Γ. The latter
is easy if Λ = cI for some constant c, and we prove in Corollary 4.6 that the
converse holds as well. As a consequence, we then focus on improving the
form of Λ by projecting and/or symmetrising the BSDE (4.1).

For the projection, we change the filtration. The solution Γ of (4.1) relates
to the filtration FB generated by B =

(
B,B

)′
, and our second main result,

Theorem 4.7, gives an upper bound for Γ in terms of the solution Γ to the
BSDE (4.1) obtained by projecting (4.1) onto FB. The projected BSDE (4.1)
is in general easier to solve and the maximal eigenvalue of Λ is lower because
the dimension n of B is smaller.

Finally, we change the probability space. We work on Wiener space and
study how symmetrisation operations via orthogonal transformations there
affect the BSDE (4.1). Our third main result, Theorem 4.11, gives an explicit
upper bound for Γ in terms of the symmetrised parameters (H,Λ, α, χ)Sym.
The proof combines Theorem 4.5 with a result showing that, due to concav-
ity, averaging the probability space over a set of orthogonal transformations
increases the solution of (4.1).

This chapter is structured as follows. We lay out preliminaries and prove
the basic concavity property in Section 4.2.1. All our main results for the
BSDE (4.1) have analogues in terms of solutions to partial differential equa-
tions (PDEs), which actually provided the original motivation and inspiration;
see for instance Alvino et al. [1]. Section 4.2.2 discusses these connections in
some more detail, and Section 4.3 contains the main results explained above.
In Section 4.4, we briefly recall the concept of exponential utility indifference
valuation for a contingent claim H in an incomplete financial market. It
is well known that the corresponding dynamic value process V H , or rather
Γ = − 1

γ
log
(
−V H

)
, satisfies a quadratic BSDE; see for instance Hu et al. [37].

But since this BSDE is not of the form (4.1), we still have to do some work
in Section 4.5 before we can apply our main results. We also discuss there
in a concrete example why the symmetrisation techniques may, but need not
lead to better bounds for Γ. Finally, the Appendix contains some proofs and
auxiliary results.
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4.2 A quadratic convex BSDE

This section serves as preparation for the main results. We first introduce
notation and show some properties of quadratic BSDEs in Section 4.2.1, and
then motivate in Section 4.2.2 the BSDE results of Section 4.3 by presenting
their PDE analogues.

4.2.1 Preliminaries

We work on a finite time interval [0, T ] for a fixed T > 0 and a filtered proba-
bility space

(
Ω,F ,F = (Fs)0≤s≤T , P

)
, where F = FT and F is the augmented

filtration generated by an n-dimensional Brownian motion B. Unless specified
differently, all notions depending on a filtered probability space refer in Sec-
tions 4.2 and 4.3 to (Ω,F ,F, P ), and t ∈ [0, T ] is fixed. For (n× n)-matrices,
we denote by Sn the set of symmetric strictly positive definite ones, by GL(n)
and O(n) the invertible respectively orthogonal ones, and by I the identity.
For a diagonalisable matrix A, we write spec(A) for the spectrum (the set
of eigenvalues) and tr(A) for the trace of A. We shall use several times that
standard operations from linear algebra can be done in a measurable way.
This includes eigenvalues, eigenvectors and diagonalisation; see Corollary 4
of Azoff [3]. Finally, we denote by E(N)s := exp

(
Ns − 1

2
〈N〉s

)
, 0 ≤ s ≤ T ,

the stochastic exponential of a continuous semimartingale N .
Let us consider the BSDE

Γs = H −
∫ T

s

(
f(Λr, Zr + αr) + χr

)
dr +

∫ T

s

Zr dBr, 0 ≤ s ≤ T, (4.2)

where the function f : Sn × Rn → R is given by

f(A, z) :=
1

2
z′A−1z for (A, z) ∈ Sn × Rn. (4.3)

The terminal value H is (usually) in L∞, the process Λ is Sn-valued and
predictable with eigenvalues uniformly bounded away from zero and infinity,
and α, χ are Rn-, R-valued uniformly bounded predictable processes. A
(generalised) solution of (4.2) is a pair (Γ, Z) satisfying (4.2), where Γ is a real-
valued (not necessarily) bounded continuous semimartingale and Z is an Rn-
valued predictable process with

∫ T
0
|Zs|2 ds <∞ almost surely. To emphasise

the dependence on H, Λ, α and χ, we write
(
Γ(H,Λ, α, χ), Z(H,Λ, α, χ)

)
for a solution of (4.2), and we sometimes call Γ(H,Λ, α, χ) alone a solution
of (4.2).

Remark 4.1. For ease of exposition, we formulate and prove all our results
for bounded data H, Λ, α, χ. Extensions to unbounded settings with expo-
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nential moment conditions are partly possible; this is discussed in more detail
in Remark 4.12. ♦

Lemma 4.2. There exists a unique solution (Γ, Z) of (4.2), and
∫
Z dB is a

BMO-martingale.

Proof. Existence follows from Theorem 2.3 of Kobylanski [42], and uniqueness
and the BMO-property from Proposition 7 and Theorem 8 of Mania and
Schweizer [44].

In Lemma 4.21 in the Appendix, we show that f is jointly convex. This
is the basis for the following result.

Proposition 4.3. The solution Γ(H,Λ, α, χ) of (4.2) is jointly concave in
(H,Λ, α, χ).

Remark 4.4. It is BSDE folklore that convexity of the generator implies (un-
der some assumptions) that the solution is concave; see for instance Propo-
sition 3.5 of El Karoui et al. [26], where the generator is fairly general, but
must satisfy a Lipschitz condition in Zr and in Γr. We need the variant in
Proposition 4.3 with a specific quadratic generator for our later results. ♦

Proof of Proposition 4.3. Let µ ∈ [0, 1], H i ∈ L∞, let Λi be predictable
Sn-valued with eigenvalues bounded away from zero and infinity and let
bounded predictable αi be Rn-valued and χi be R-valued, i = 1, 2. We set
H3 := µH1 + (1− µ)H2, define Λ3, α3, χ3 analogously and denote by (Γi, Zi),
i = 1, 2, 3, the solutions of (4.2) corresponding to (H i,Λi, αi, χi). By Lem-
ma 4.2, each of these is unique and

∫
Zi dB are BMO-martingales. Since

µΓ1
T + (1− µ)Γ2

T = µH1 + (1− µ)H2 = H3, (4.2) and Lemma 4.21 yield

Γ3
s −

(
µΓ1

s + (1− µ)Γ2
s

)
=

∫ T

s

(
µf(Λ1

r, Z
1
r + α1

r) + (1− µ)f(Λ2
r, Z

2
r + α2

r)− f(Λ3
r, Z

3
r + α3

r)
)

dr

−
∫ T

s

(
µZ1

r + (1− µ)Z2
r − Z3

r

)
dBr

≥
∫ T

s

(
f
(
Λ3
r, µZ

1
r + (1− µ)Z2

r + α3
r

)
− f(Λ3

r, Z
3
r + α3

r)
)

dr

−
∫ T

s

(
µZ1

r + (1− µ)Z2
r − Z3

r

)
dBr

= −
∫ T

s

(
µZ1

r + (1− µ)Z2
r − Z3

r

)
(dBr − κr dr), 0 ≤ s ≤ T, (4.4)
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with κ := 1
2
(Λ3)−1

(
µZ1+(1−µ)Z2+Z3+2α3

)
. Since the eigenvalues of Λ3 are

bounded away from zero and α3 is bounded,
∫
κ dB is a BMO-martingale.

By Theorem 3.6 of Kazamaki [40] and the BMO(P )-property of
∫
Zi dB,

the process
∫ (
µZ1 + (1 − µ)Z2 − Z3

)
(dB − κ dr) is thus also a BMO

(
P̃
)
-

martingale for the probability measure P̃ given by dP̃
dP

:= E
(∫

κ dB
)
T

. Taking(
P̃ ,Fs

)
-conditional expectations in (4.4) yields Γ3

s −
(
µΓ1

s + (1 − µ)Γ2
s

)
≥ 0

for any s ∈ [0, T ], which concludes the proof since the Γi are continuous.

The basic and well-known case is when α ≡ 0, χ ≡ 0 and Λ = cI for a
fixed c > 0. The BSDE (4.2) then simplifies to

Γs = H−
∫ T

s

1

2c
|Zr|2 dr+

∫ T

s

Zr dBr = Γ0−c log E
(∫

1

c
Z dB

)
s

, 0 ≤ s ≤ T.

Due to Itô’s formula, its explicit solution is

Γs = −c logE[exp(−H/c)|Fs], 0 ≤ s ≤ T (4.5)

because
∫
Z dB is a BMO-martingale by Lemma 4.2, and hence E

(∫
1
c
Z dB

)
is a martingale by Theorem 2.3 of Kazamaki [40].

4.2.2 Motivation for the convexity results

Before we state and prove in Section 4.3 convexity results for the solution of
the BSDE (4.2), we explain the basic ideas using PDEs. Since we only want
to provide motivation, we look at the results exclusively for time 0 and ig-
nore here all technical issues like existence of smooth solutions, interchanging
expectation and differential, etc.

Assume in (4.2) that α, χ and Λ are all deterministic and H = g(BT ) for
a smooth function g : R→ R. In this Markovian setting, one can derive from
Itô’s formula that the solution (Γ, Z) of (4.2) satisfies

Γs = u(s, Bs), Zs = −∇xu(s, Bs) for s ∈ [0, T ],

where u : [0, T ]× Rn → R solves the PDE

∂

∂s
u(s, x) +

1

2
∆xu(s, x)− f

(
Λ(s), α(s)−∇xu(s, x)

)
− χ(s) = 0,

u(T, x) = g(x) for s ∈ [0, T ) and x ∈ Rn.

 (4.6)

Each of our three main results yields an upper bound for Γ. We look in the
following as illustration at the PDE analogue of the symmetrisation result in
Theorem 4.11. The other BSDE theorems have similar PDE analogues. For
ease of notation, we take α, χ, Λ all constant.



88 Chapter 4. Convexity bounds for BSDE solutions

Symmetrisation inequalities play an important role in the theory of linear
parabolic PDEs; see e.g. Alvino et al. [1] and the references therein. They
show that in some sense, the solution of a symmetrised PDE dominates the
symmetrised solution of the original PDE. Theorem 4.11 below can be viewed
as an analogue of these results for nonlinear parabolic PDEs. To explain the
connection, let Perm ⊆ O(n) be the group of permutations of length n, where
we identify permutations with orthogonal matrices. We define

ΛSym =
1

n!

∑
O∈Perm

O′ΛO, αSym :=
1

n!

∑
O∈Perm

O′α, gSym :=
1

n!

∑
O∈Perm

(g ◦O).

Let ũ : [0, T ]× Rn → R solve the symmetrised PDE

∂

∂s
ũ(s, x) +

1

2
∆xũ(s, x)− f

(
ΛSym, αSym −∇xũ(s, x)

)
− χ = 0,

ũ(T, x) = gSym(x) for s ∈ [0, T ) and x ∈ Rn.

 (4.7)

Then Proposition 4.10 below tells us that

ũ(0, 0) ≥ u(0, 0). (4.8)

We justify this here by a PDE comparison argument. For O ∈ Perm, we have
∇Oxu(s,Ox) = O∇xu(s,Ox), ∆Oxu(s,Ox) = ∆xu(s,Ox) and, from (4.3),

f
(
Λ, α−O∇xu(s,Ox)

)
= f

(
O′ΛO,O′α−∇xu(s,Ox)

)
.

Due to (4.6), the symmetrised function u(s, x) := 1
n!

∑
O∈Perm u(s,Ox) solves

∂

∂s
u(s, x) +

1

2
∆xu(s, x)− 1

n!

∑
O∈Perm

f
(
O′ΛO,O′α−∇xu(s,Ox)

)
− χ = 0,

u(T, x) = gSym(x) for s ∈ [0, T ) and x ∈ Rn. (4.9)

By Lemma 4.21 in the Appendix, f is jointly convex, which yields

1

n!

∑
O∈Perm

f
(
O′ΛO,O′α−∇xu(s,Ox)

)
≥ f

(
ΛSym, αSym −∇xu(s, x)

)
.

Since u(0, 0) = u(0, 0), we obtain (4.8) by comparing (4.7) and (4.9). Now
fix c > 0. One can check that the solution û of

∂

∂s
û(s, x) +

1

2
∆xû(s, x)− 1

2c

∣∣αSym −∇xû(s, x)
∣∣2 − χ = 0,

û(T, x) = gSym(x) for s ∈ [0, T ) and x ∈ Rn

 (4.10)
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satisfies

û(0, 0) = −c logE

[
exp

(
−gSym(BT ) +

∫ T

0

αSym dBs

) 1
c

]
−
∫ T

0

χ ds. (4.11)

To compare (4.7) with (4.10), we assume that Λ = diag(Λ11, . . . ,Λnn) is of
diagonal form and set c := sups∈[0,T ]

1
n

tr(Λs) (if Λ is time-dependent). Then
ΛSym = 1

n
tr(Λ)I since Λ is diagonal, and hence

f
(
ΛSym, αSym − x

)
≥ 1

2c

∣∣αSym − x
∣∣2 for x ∈ Rn.

We thus expect by comparing (4.7) and (4.10) that ũ(0, 0) ≤ û(0, 0), which
gives via (4.8) and (4.11) an explicit upper bound for the solution of the
original PDE (4.6). Theorem 4.11 makes this statement precise and provides
a proof in a general BSDE setting.

4.3 Convexity results for quadratic BSDEs

This section contains our three main results. We study how the solution of
the BSDE (4.2) is affected if we change the probability measure, shrink the
filtration, or symmetrise the probability space.

4.3.1 Changing the probability measure

For any predictable κ such that
∫
κ dB is a BMO-martingale, we define

dP κ

dP
:= E

(
−
∫
κ dB

)
T

, Bκ := B +

∫
κ ds (4.12)

and note that Bκ is a Brownian motion under the probability measure P κ.
Recalling that t ∈ [0, T ] is fixed and spec denotes the spectrum, we define

δmax
t := sup

s∈[t,T ]

‖max spec(Λs)‖L∞ , δmin
t := inf

s∈[t,T ]

1

‖max spec(Λ−1
s )‖L∞

,

Hκ
t := H −

∫ T

t

(
χs +

1

2
κ′sΛsκs

)
ds−

∫ T

t

(αs + Λsκs) dBs. (4.13)

For δ > 0, let Kδ be the set of all predictable Rn-valued processes κ such that∫
κ dB is in BMO and there exist p > 1 and a constant C such that

EPκ

[
exp

(∫ T

t

1

2
κ′sΛsκs ds+

∫ T

t

Λsκs dBs

)p/δ∣∣∣∣Fτ]
≤ CEPκ

[
exp

(∫ T

t

1

2
κ′sΛsκs ds+

∫ T

t

Λsκs dBs

)1/δ∣∣∣∣Fτ]p <∞, (4.14)
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for any stopping time τ with values in [t, T ]. The latter condition says that
the martingale

EPκ

[
exp

(∫ T

t

1

2
κ′sΛsκs ds+

∫ T

t

Λsκs dBs

)1/δ∣∣∣∣Fs], t ≤ s ≤ T,

satisfies the reverse Hölder inequality Rp(P
κ). Each Kδ contains all bounded

predictable processes κ, and (4.14) is equivalent to

EPκ
[
exp(−Hκ

t )p/δ
∣∣Fτ] ≤ CEPκ

[
exp(−Hκ

t )1/δ
∣∣Fτ]p <∞, (4.15)

since H, χ and α are bounded. We set K := Kδmax
t ∩ Kδmin

t .

Theorem 4.5. The solution Γ of the BSDE (4.2) satisfies

Γt = −ess sup
κ∈K

logEPκ [exp(−Hκ
t /δ

max
t )|Ft]δ

max
t (4.16)

= −ess inf
κ∈K

logEPκ [exp(−Hκ
t /δ

min
t )|Ft]δ

min
t , (4.17)

and for every κ ∈ K, there exists an Ft-measurable random variable δκ,Ht with
values in [δmin

t , δmax
t ] such that

Γt = − logEPκ [exp(−Hκ
t /δ)|Ft]δ

∣∣
δ=δκ,Ht

. (4.18)

Theorem 4.5 illustrates the importance of the process Λ in the BSDE
(4.2). Indeed, Λ determines via (4.13) the eigenvalue bounds δmin,max

t and
hence the range of δκ,Ht in (4.18). If Λ = cI for a constant c, we have
δmin
t = δmax

t = c = δκ,Ht , and (4.18) is an explicit formula for Γt as distorted
conditional expectation under P κ. Corollary 4.6 below gives a converse: If
for any H, the solution Γt of the BSDE (4.2) is the distorted conditional
expectation under some P κ, then Λ = cI for a constant c. Theorem 4.5 also
generalises Theorem 2.9, as we explain in Section 4.5.3. Moreover, we can
recover the bound in Proposition 2.1 of Kobylanski [42] applied to the BSDE
(4.2); indeed, for κ = −Λ−1α ∈ K, (4.16) yields

Γt ≤ − logEPκ

[
exp

(
−H +

∫ T

t

(
χs +

1

2
α′sΛ

−1
s αs

)
ds

)1/δmax
t
∣∣∣∣Ft]δmax

t

≤ − logEPκ

[
exp

(
−‖H+‖L∞ −

∫ T

t

∥∥∥χs +
1

2
α′sΛ

−1
s αs

∥∥∥
L∞

ds

)1/δmax
t
∣∣∣∣Ft]δmax

t

≤ ‖H+‖L∞ +

∫ T

t

∥∥|χs|+ α′sΛ
−1
s αs

∥∥
L∞

ds,
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which one can also derive from Proposition 2.1 of Kobylanski [42].
From (4.16) we obtain upper bounds for Γt, which depend on the maximal

eigenvalue of Λ. Our other two main results, Theorems 4.7 and 4.11, can
be viewed as approaches to get better bounds by reducing δmax

t (and also
changing H). In Theorem 4.7, we reduce the dimension n of the BSDE
by projecting it onto the filtration of a lower-dimensional Brownian motion,
and replacing Λ by its projection in principle lowers the maximal eigenvalue.
Similarly, the symmetrisation in Theorem 4.11 makes the eigenvalues more
similar and in particular reduces the maximal eigenvalue.

Proof of Theorem 4.5. We first show

Γt ≤ − logEPκ [exp(−Hκ
t /δ

max
t )|Ft]δ

max
t (4.19)

for any κ ∈ K. We obtain from (4.2), (4.3) and (4.12) that

Γs = H −
∫ T

s

1

2
(Zr + αr + Λrκr)

′Λ−1
r (Zr + αr + Λrκr) dr

−
∫ T

s

(
χr − κ′rαr −

1

2
κ′rΛrκr

)
dr +

∫ T

s

Zr dBκ
r , 0 ≤ s ≤ T. (4.20)

Define

Γκs :=− logEPκ [exp(−Hκ
t /δ

max
t )|Fs]δ

max
t

+

∫ s

t

(
χr +

1

2
κ′rΛrκr

)
dr +

∫ s

t

(αr + Λrκr) dBr, t ≤ s ≤ T. (4.21)

Using Itô’s representation theorem as in Lemma 1.6.7 of Karatzas and Shreve
[39] gives

EPκ [exp(−Hκ
t /δ

max
t )|F·] = cκ E

(∫
Zκ dBκ

)
(4.22)

for a constant cκ and a predictable Rn-valued Zκ such that E
(∫

Zκ dBκ
)

is a
P κ-martingale. Since H, χ and α are bounded, (4.13) and (4.14) imply that
E
(∫

Zκ dBκ
)

satisfies the reverse Hölder inequality Rp(P
κ) for some p > 1.

Hence
∫
Zκ dBκ is in BMO(P κ) by Theorem 3.4 of Kazamaki [40], and so is∫

Z̄κ dBκ for
Z̄κ := δmax

t Zκ − α− Λκ. (4.23)

A calculation based on (4.21) and (4.22) gives for t ≤ s ≤ T

Γκs = H −
∫ T

s

1

2δmax
t

∣∣Z̄κ
r + αr + Λrκr

∣∣2 dr

−
∫ T

s

(
χr − κ′rαr −

1

2
κ′rΛrκr

)
dr +

∫ T

s

Z̄κ
r dBκ

r , (4.24)
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and comparing (4.24) and (4.20) yields similarly as in Proposition 4.3 that
Γt ≤ Γκt . This is (4.19).

Now set κ̂ := −Λ−1(Z + α) with Z from (4.20). Then
∫
κ̂ dB ∈ BMO

since α is bounded,
∫
Z dB ∈ BMO and Λ−1 is bounded. Moreover, H κ̂

t is
Ft-measurable; hence κ̂ satisfies (4.15) and thus (4.14) for any δ > 0, and
so κ̂ is in K. Again using that H κ̂

t is Ft-measurable plus (4.20) and (4.13)
shows that

Γt = H κ̂
t = − logEP κ̂ [exp(−H κ̂

t /δ
max
t )|Ft]δ

max
t .

Hence we have (4.16), and (4.17) is proved analogously. (4.18) now follows
by the same interpolation argument as in Theorem 2.2; exp(−Hκ

t /δ
min
t ) + 1 is

the required P κ-integrable majorant for
{

exp(−Hκ
t /δ)

∣∣ δ ∈ [δmin
t , δmax

t ]
}

.

We next study when Γt from (4.2) is a distorted conditional expectation
under some P κ. For δ > 0 and κ ∈ Kδ, let Lδ,κ be the set of random variables
H such that Hκ

t from (4.13) satisfies the reverse Hölder inequality (4.15) for
some p > 1. The definition of Kδ implies that L∞ ⊆ Lδ,κ, but H ∈ Lδ,κ need
not be bounded.

Corollary 4.6. The following are equivalent:

(a) There exists a constant c > 0 such that

Λ = cI on ]]t, T ]] (P⊗Leb)-a.e. (4.25)

(b) There exists a constant δ ∈ [δmin
t , δmax

t ] such that for all κ ∈ Kδ and
H ∈ Lδ,κ, there exists a generalised solution (Γ, Z) on [[t, T ]] of (4.2)
such that

∫
Z dB is a BMO(P )-martingale and

Γt = − logEPκ [exp(−Hκ
t /δ)|Ft]δ. (4.26)

(c) There exist a constant δ ∈ [δmin
t , δmax

t ] and a process κ ∈ Kδ such that
for all H ∈ Lδ,κ, there exists a generalised solution (Γ, Z) on [[t, T ]] of
(4.2) such that

∫
Z dB is a BMO(P )-martingale and (4.26) holds.

In this case, c = δ.

Proof. “(b) =⇒ (c)” is clear. To show “(a) =⇒ (b)”, we use a similar argu-
ment as for Theorem 4.5. Take κ ∈ K and define Γκ and Z̄κ by (4.21) and
(4.23) with δmax

t replaced by δ := c. Then
∫
Z̄κ dBκ is again in BMO(P κ) so

that
∫
Z̄κ dB is in BMO(P ), and like (4.24), we get

Γκs = Γκt +

∫ s

t

1

2δ

∣∣Z̄κ
r + αr + Λrκr

∣∣2 dr

+

∫ s

t

(
χr − κ′rαr −

1

2
κ′rΛrκr

)
dr −

∫ s

t

Z̄κ
r dBκ

r , t ≤ s ≤ T.
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Plugging in (4.25) with δ = c shows after some computation that
(
Γκ, Z̄κ

)
satisfies (4.2) on [[t, T ]]. Finally, (4.26) holds for Γ := Γκ by construction.

To prove “(c) =⇒ (a)”, we define the predictable set

Υ1 :=
{

(ω, s) ∈ ]]t, T ]]
∣∣ min spec

(
Λs(ω)

)
< δ
}

and choose a predictable Rn-valued process v such that Λv =
(
min spec(Λ)

)
v

and |v| = 1 on ]]t, T ]]; so vs(ω) is an eigenvector for the smallest eigenvalue of
Λs(ω). Set

H :=

∫ T

t

(
χs +

1

2
κ′sΛsκs

)
ds+

∫ T

t

(αs + Λsκs) dBs

−
∫ T

t

1Υ1(s)vs dBs +

∫ T

t

1Υ1(s)
( 1

2δ
− v′sκs

)
ds

so that the corresponding Hκ
t given by (4.13) satisfies

exp(−Hκ
t /δ) = E

(∫
1

δ
1Υ1v dBκ

)
T

. (4.27)

Hence H is in Lδ,κ by Theorem 3.4 of Kazamaki [40]; in fact,
∫

1
δ
1Υ1v dBκ is

a BMO(P κ)-martingale because its integrand is bounded.
Now (4.26), (4.27) and Itô’s formula, (4.13) and (4.12) give with some

calculations

Γt = − logEPκ [exp(−Hκ
t /δ)|Ft]δ

= H −
∫ T

t

(
χs − κ′sαs −

1

2
κ′sΛsκs

)
ds−

∫ T

t

(αs + Λsκs) dBκ
s

+

∫ T

t

1Υ1(s)vs dBκ
s −

1

2δ

∫ T

t

1Υ1(s) ds

≥ H −
∫ T

t

(
χs − κ′sαs −

1

2
κ′sΛsκs

)
ds−

∫ T

t

(αs + Λsκs) dBκ
s

+

∫ T

t

1Υ1(s)vs dBκ
s −

∫ T

t

1

2

(
1Υ1(s)vs

)′
Λ−1
s

(
1Υ1(s)vs

)
ds (4.28)

by the definition of Υ1. But we also have like in (4.20) that

Γt = H −
∫ T

t

(
χs − κ′sαs −

1

2
κ′sΛsκs

)
ds+

∫ T

t

Zs dBκ
s

−
∫ T

t

1

2
(Zs + αs + Λsκs)

′Λ−1
s (Zs + αs + Λsκs) ds, (4.29)
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and subtracting (4.29) from (4.28), we obtain

0 ≥
∫ T

t

(
1Υ1(s)vs − αs − Λsκs − Zs

)
×
(

dBκ
s − Λ−1

s

(
1Υ1(s)vs + αs + Λsκs + Zs

)
ds
)
. (4.30)

Like in the proof of Proposition 4.3, the right-hand side of (4.30) has zero ex-
pectation under some equivalent probability measure. Hence it must vanish,
so we must also have equality in (4.28), and this implies (P⊗Leb)[Υ1] = 0.
Analogously, we have (P⊗Leb)[Υ2] = 0 for

Υ2 :=
{

(ω, s) ∈ ]]t, T ]]
∣∣ max spec

(
Λs(ω)

)
> δ
}
.

This shows (4.25) with c := δ and also gives the last assertion.

4.3.2 Projecting the BSDE

Let us split B =
(
B,B

)′
into B and B, an n- and an n-dimensional (F, P )-

Brownian motion with n+ n = n. What happens to the BSDE

Γs = H −
∫ T

s

(
f(Λr, Zr + αr) + χr

)
dr +

∫ T

s

Zr dBr, 0 ≤ s ≤ T (4.2)

if we project it, in a way to be specified, onto the filtration generated by B?
In this section, we precisely formulate and then answer this question.

Let F =
(
F s
)

0≤s≤T be the augmented filtration generated by B. For a

process Z, we denote its componentwise optional (P -)projection onto F by Zo

(if it exists). It is — by definition — the unique F-optional process satisfying
Zo
τ = E

[
Zτ
∣∣F τ] for every F-stopping time τ .

To compare (4.2) with a BSDE driven by B, write α = (α, α)′ and denote
by Λ the upper-left n× n components of Λ. A solution, for s ∈ [0, T ], of

Γ̌s = E
[
H
∣∣FT ]− ∫ T

s

(1

2

(
Žr + αor

)′(
Λ
o

r

)−1(
Žr + αor

)
+ χor

)
dr +

∫ T

s

Žr dBr

(4.31)
is a pair

(
Γ̌, Ž

)
satisfying (4.31), where Γ̌ is a real-valued bounded continuous(

F, P
)
-semimartingale and Ž is an Rn-valued F-predictable process such that∫ T

0

∣∣Žs∣∣2 ds <∞ almost surely. Note that X
o

:=
(
X
)o

= (Xo) for X = α,Λ.

Theorem 4.7. The BSDE (4.31) has a unique solution
(
Γ̌, Ž

)
. It satisfies

Γo ≤ Γ̌, where (Γ, Z) is the solution of (4.2).
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Theorem 4.7 is a Jensen-type inequality for quadratic BSDEs. For a
simple illustration, take n = n = 1 and Λ ≡ cI, α ≡ 0, χ ≡ 0. In this case,
the solution of (4.2) has Γ0 = −c logE[exp(−H/c)] by (4.5), and analogously,
Γ̌0 = −c logE

[
exp
(
−1
c
E
[
H
∣∣FT ])]. So Γo0 ≤ Γ̌0 follows here also directly from

Jensen’s inequality.

Proof of Theorem 4.7. As in Lemma 4.2, (4.31) has a unique solution
(
Γ̌, Ž

)
,

and
∫
Ž dB ∈ BMO

(
F, P

)
. Fix s ∈ [0, T ] and condition (4.2) on F s to get

E
[
Γs
∣∣F s] = Γ0 + E

[∫ s

0

(
f(Λr, Zr + αr) + χr

)
dr

∣∣∣∣F s]− E[∫ s

0

Zr dBr

∣∣∣∣F s].
(4.32)

Note next that χo exists since χ is bounded by assumption. We claim that

E

[∫ s

0

χr dr

∣∣∣∣F s] =

∫ s

0

χor dr, (4.33)

and because F is generated by B, it is by Itô’s representation theorem enough
to show that

E

[∫ s

0

χr dr

∫ s

0

βq dBq

]
= E

[∫ s

0

χor dr

∫ s

0

βq dBq

]
(4.34)

for any F-predictable β such that
∫
β dB is bounded. By Fubini’s theorem,

E

[∫ s

0

χr dr

∫ s

0

βq dBq

]
=

∫ s

0

E

[
χr

∫ s

0

βq dBq

]
dr, (4.35)

and conditioning on F r for r ∈ [0, s] yields

E

[
χr

∫ s

0

βq dBq

]
= E

[
χr

∫ r

0

βq dBq

]
= E

[
χor

∫ s

0

βq dBq

]
,

which implies (4.34) by using (4.35) once for χ and once for χo instead of χ.
So we have (4.33), and using f ≥ 0, we analogously obtain

E

[∫ s

0

f(Λr, Zr + αr) dr

∣∣∣∣F s] =

∫ s

0

(
f(Λ, Z + α)

)o
r

dr. (4.36)

To simplify the term E
[∫ s

0
Zr dBr

∣∣F s] in (4.32), we use the optional projec-
tion of Z. However, we cannot use the classical optional projection because
Z is in general neither bounded nor nonnegative. We define Zo instead by

Zo :=

{
(Z+)o − (Z−)o if |Z|o <∞

0 otherwise,
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where Z± :=
(
(Z1)±, . . . , (Zn)±

)′
. Then Zo is F-optional and |Z|o < ∞

(P⊗Leb)-a.e. since Tonelli’s theorem and
∫
Z dB ∈ BMO(F, P ) by Lemma

4.2 give ∫ T

0

E[|Z|or] dr =

∫ T

0

E[|Zr|] dr = E

[∫ T

0

|Zr| dr
]
<∞.

Write Z =
(
Z,Z

)′
and Zo =

(
Z
o
, Zo
)′

. We then have

E

[∫ s

0

Zr dBr

∣∣∣∣F s] =

∫ T

s

Z
o

r dBr; (4.37)

indeed, using E
[
Zr

∣∣F r] = Z
o

r P -a.s. for Leb-a.a. r ∈ [0, s] and the isometry
property of the stochastic integral, we obtain similarly to (4.34) that

E

[∫ s

0

Zr dBr

∫ s

0

βq dBq

]
= E

[∫ s

0

β′rZr dr

]
= E

[∫ s

0

Z
o

r dBr

∫ s

0

βq dBq

]
for any F-predictable β such that

∫
β dB is bounded, and this implies (4.37)

by Itô’s representation theorem. Combining (4.32), (4.33), (4.36) and (4.37)
thus yields

E
[
Γs
∣∣F s] = E

[
H
∣∣FT ]− ∫ T

s

((
f(Λ, Z +α)

)o
r

+χor

)
dr+

∫ T

s

Z
o

r dBr. (4.38)

Due to Lemma 4.21 in the Appendix, the function f is jointly convex.

Identifying (A, z) in Sn × Rn with a vector in R
n(n+1)

2
+n, we view f as a

function on such vectors and then apply Jensen’s inequality to obtain for any
F-stopping time τ that(

f(Λ, Z + α)
)o
τ

= E
[
f(Λτ , Zτ + ατ )

∣∣F τ] ≥ f(Λo
τ , Z

o
τ + αoτ )1|Z|oτ<∞.

Thus the optional selection theorem and |Z|o <∞ (P⊗Leb)-a.e. yield(
f(Λ, Z + α)

)o ≥ f(Λo, Zo + αo)1|Z|o<∞ = f(Λo, Zo + αo) (4.39)

(P⊗Leb)-a.e. A simple calculation (see Remark 4.8 below) shows that

f(A, z) =
1

2
z′A−1z ≥ 1

2
z′
(
A
)−1

z (4.40)

for any A ∈ Sn and z = (z, z)′ ∈ Rn, with A denoting the upper-left n × n
components of A. In view of (4.38), we obtain from (4.39) and (4.40) that

E
[
Γs
∣∣F s] ≤ E

[
H
∣∣FT ]− ∫ T

s

(1

2

(
Z
o

r + αor
)′(

Λ
o

r

)−1(
Z
o

r + αor
)

+ χor

)
dr

+

∫ T

s

Z
o

r dBr.
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Hence (4.31) implies

E
[
Γs
∣∣F s]− Γ̌s ≤−

∫ T

s

1

2

(
Z
o

r − Žr
)′(

Λ
o

r

)−1(
Z
o

r + Žr + 2αor
)

dr

+

∫ T

s

(
Z
o

r − Žr
)

dBr.

We know that
∫
Ž dB is in BMO

(
F, P

)
, and so is

∫
Z
o

dB because
∫
Z dB

is in BMO(F, P ). Like in the proof of Proposition 4.3, we deduce that
E
[
Γs
∣∣F s] ≤ Γ̌s for s ∈ [0, T ], and this concludes the proof because Γ̌, Γ

and hence Γo are continuous.

Remark 4.8. 1) As the proof shows, we do not need for Theorem 4.7 that the
generator of the BSDE (4.2) is purely quadratic like f in (4.3). We only need
that it is jointly convex, satisfies a quadratic growth condition and dominates
the generator of the projected BSDE (4.31). In particular, Theorem 4.7 also

applies for a generator f̃ of the form f̃(A, z) = 1
2
z′A

−1
z with z and A as in

(4.40). This will later be used in the applications to indifference valuation.
2) In linear algebra, the shorted operator sh : Sn → Sn is defined by

sh(A) := A11 − A12(A22)−1(A12)′ for A =

(
A11 A12

(A12)′ A22

)
∈ Sn.

One can check that (A11)−1 = sh(A−1) and verify by completion of squares
that

z′sh(A)z = min
z∈Rn

(
(z′, z′)A

(
z
z

))
for z ∈ Rn and A ∈ Sn.

The inequality (4.40) follows immediately. ♦

4.3.3 Symmetrising the BSDE

This section establishes our third main result, Theorem 4.11, giving an explicit
upper bound for the solution Γ of (4.2). We first study how the BSDE (4.2) is
affected by orthogonal transformations on the underlying probability space.
To have some structure, we work on Wiener space, i.e., take Ω := C([0, T ],Rn)
with the Borel σ-field F and Wiener measure P so that the coordinate process
B is a P -Brownian motion. Recall that t ∈ [0, T ] is fixed.

For an orthogonal (n × n)-matrix, u ∈ O(n), we define the mapping
Ut : C([0, T ],Rn)→ C([0, T ],Rn) by applying u from time t on, i.e.,

Ut(g)(s) =

{
g(s) if s ≤ t,
g(t) + u

(
g(s)− g(t)

)
if s > t,

for g ∈ C([0, T ],Rn).
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Then Bu := Ut ◦B is an Rn-valued (F, P )-Brownian motion since u is or-
thogonal. The following result says that if one transforms by Ut the driver
and the terminal value of a BSDE, the solution of the new BSDE is the
Ut-transformation of the original solution. This is very intuitive and anal-
ogous to orthogonally transforming the variables in a second-order PDE;
compare Section 4.2.2. The reason why this also works for BSDEs is that
B ◦ Ut = Ut ◦B = Bu, i.e., Brownian motion and the transformation Ut com-
mute on Wiener space.

Lemma 4.9. Let u ∈ O(n) and assume that the BSDE

Γs = H −
∫ T

s

Fr(Γr, Zr) dr +

∫ T

s

Zr dBr, 0 ≤ s ≤ T (4.41)

for a general F-predictable F : Rn+1 → R has a unique solution (Γ, Z) (in the
sense of Section 4.2.1). Then (Γ ◦ Ut, Z ◦ Ut) is the unique solution of

Γ̃s = H ◦ Ut −
∫ T

s

(F ◦ Ut)r
(
Γ̃r, Z̃r

)
dr +

∫ T

s

Z̃r dBu
r , 0 ≤ s ≤ T. (4.42)

In particular, the solution (Γ ◦ Ut, Z ◦ Ut) of (4.42) coincides on [[0, t]] with
the solution (Γ, Z) of (4.41).

Proof. Let (Γ, Z) be the solution of (4.41) and define Γ̃ for 0 ≤ s ≤ T by

Γ̃s := Γ0 +

∫ s

0

(F ◦ Ut)r (Γr ◦ Ut, Zr ◦ Ut) dr −
∫ s

0

(Zr ◦ Ut) dBu
r

= Γ0 +

(∫ s

0

Fr (Γr, Zr) dr

)
◦ Ut −

∫ s

0

(Zr ◦ Ut) dBu
r . (4.43)

In Lemma 4.22 in the Appendix, we prove that, as one expects,∫
(Z ◦ Ut) dBu =

(∫
Z dB

)
◦ Ut. (4.44)

This gives by (4.41) that Γ̃ = Γ ◦ Ut and thus (Γ ◦ Ut, Z ◦ Ut) solves (4.42).
Uniqueness for (4.42) follows since Ut is bijective; indeed, if

(
Γ̃, Z̃

)
solves

(4.42), then (4.43) and (4.44) imply that
(
Γ̃ ◦ U−1

t , Z̃ ◦ U−1
t

)
solves (4.41)

whose unique solution is (Γ, Z).

The next proposition states that averaging in ω over a set of orthogonal
transformations increases the solution of (4.2).
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Proposition 4.10. Take a finite subset O of O(n) with cardinality |O| and set

HO :=
1

|O|
∑
u∈O

H ◦ Ut, ΛO :=
1

|O|
∑
u∈O

u′(Λ ◦ Ut)u,

αO :=
1

|O|
∑
u∈O

u′(α ◦ Ut), χO :=
1

|O|
∑
u∈O

χ ◦ Ut.

Then the solutions (Γ, Z) of (4.2) and
(
ΓO, ZO

)
, for 0 ≤ s ≤ T , of

Γ̃s = HO −
∫ T

s

(
f
(
ΛOr , Z̃r + αOr

)
+ χOr

)
dr +

∫ T

s

Z̃r dBr (4.45)

satisfy Γt ≤ ΓOt almost surely.

Proof. By Lemma 4.2, (4.2) and (4.45) have unique solutions. For u ∈ O,
we denote by (Γu, Zu) the solution of (4.2) corresponding to the parameters(
H ◦ Ut, u′(Λ ◦ Ut)u, u′(α ◦ Ut), χ ◦ Ut

)
. The concavity from Proposition 4.3

gives ΓO = Γ
(
HO,ΛO, αO, χO

)
≥ 1
|O|
∑

u∈O Γu, and so it is enough to show

Γut = Γt for every u ∈ O. Fix u ∈ O. Applying Lemma 4.9 to (4.2) yields
that the solution of the Ut-transformed BSDE is

(
Γ̃, Z̃

)
:= (Γ ◦ Ut, Z ◦ Ut).

Setting Ẑ := u′Z̃ and using Ẑ dB = Z̃ dBu and, due to (4.3),

f
(
Λ ◦ Ut, Z̃ + α ◦ Ut

)
= f

(
u′(Λ ◦ Ut)u, Ẑ + u′(α ◦ Ut)

)
,

we obtain that the Ut-transformed BSDE is, for t ≤ s ≤ T , equivalent to

Γ̃s = H ◦Ut−
∫ T

s

(
f
(
u′(Λ◦Ut)ru, Ẑr+u′(α◦Ut)r

)
+(χ◦Ut)r

)
dr+

∫ T

s

Ẑr dBr.

But this is (4.2) with the parameters
(
H ◦ Ut, u′(Λ ◦ Ut)u, u′(α ◦ Ut), χ ◦ Ut

)
.

So Γu = Γ̃ = Γ ◦Ut on [[t, T ]] and thus Γut = Γt, since Γ ◦Ut = Γ on [[0, t]].

The idea to exploit Proposition 4.10 is now that choosing a “good” set
O yields with (4.45) an easier BSDE than the original one in (4.2), so that
an upper bound for the solution (Γ, Z) of (4.2) becomes more explicit. By
Theorem 4.5, the upper bound for Γ is increasing in the maximal eigenvalue,
max spec(Λ). Assume for the moment that Λ is deterministic. If we first
apply Proposition 4.10 to (4.2) and then Theorem 4.5 to (4.45), we obtain an
upper bound depending on max spec

(
1
|O|
∑

u∈O u
′Λu
)
. A simple calculation

shows that for any matrix A ∈ Sn and finite subset O of O(n),

1

n
tr(A) ≤ max spec

(
1

|O|
∑
u∈O

u′Au

)
≤ max spec(A), (4.46)
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and so we obtain a smaller distortion power δmax
t by averaging over O. On

the other hand, however, averaging H, α and χ may worsen the bound on Γ,
and an example in Section 4.5.3 shows how these two effects interact. The
best lower bound for max spec(A) that we can obtain by averaging over O
is 1

n
tr(A) by (4.46), and if A is diagonal, this is attained for O = Perm,

the symmetric group of permutations of length n.
(
We identify permutations

with corresponding orthogonal matrices and use

1

|Perm|
∑

u∈Perm

u′Au =
tr(A)

n
I for any diagonal matrix A.

)
The idea to choose O = Perm leads us to the next result.

Theorem 4.11. Assume that Λ = (Λij)i,j=1,...,n is a diagonal matrix, and
define

HSym :=
1

n!

∑
u∈Perm

H ◦ Ut, dt := sup
s∈[t,T ]

∥∥∥∥ 1

n

n∑
j=1

max
u∈Perm

(Λjj
s ◦ Ut)

∥∥∥∥
L∞
,

αSym :=
1

n!

∑
u∈Perm

u′(α ◦ Ut), χSym :=
1

n!

∑
u∈Perm

χ ◦ Ut.

Then the solution (Γ, Z) of (4.2) satisfies

Γt ≤ −dt logE

[
exp

(
−HSym +

∫ T

t

αSym
s dBs +

∫ T

t

χSym
s ds

) 1
dt

∣∣∣∣∣Ft
]
. (4.47)

Proof. By choosing O := Perm, we obtain from Proposition 4.10 a first upper
bound Γt ≤ ΓOt , where ΓOt solves the BSDE (4.45) with O := Perm. We now
apply Theorem 4.5 to ΓO with κ ≡ 0, which gives

Γt ≤ −δt logE

[
exp

(
−HSym +

∫ T

t

αSym
s dBs +

∫ T

t

χSym
s ds

) 1
δt

∣∣∣∣∣Ft
]

with

δt := sup
s∈[t,T ]

∥∥∥∥max spec

(
1

n!

∑
u∈Perm

u′(Λs ◦ Ut)u
)∥∥∥∥

L∞
≤ dt

since Λ is diagonal. Thus (4.47) follows from Jensen’s inequality.

The assumption that Λ is diagonal is less restrictive than it looks. We can
always rewrite (4.2) to another BSDE of the same type with diagonal Λ by
changing α and B. In fact, there exist a predictable O(n)-valued process O
and a predictable diagonal matrix D such that Λ = O′DO. If we now define
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an (F, P )-Brownian motion by dBO = O dB, a direct calculation shows that
if (Γ, Z) solves (4.2) with parameters (H,Λ, α, χ), then (Γ, OZ) solves (4.2)
with parameters (H,D,Oα, χ) and with B replaced by BO. This reduces the
problem to the case of a diagonal matrix Λ, but we then have to symmetrise
with respect to BO and not B. For this, H, α and χ must be measurable for
the filtration FO generated by BO, which can be smaller than F. This limi-
tation does not come up if Λ is deterministic, since then so is O and hence
FO = F. In Section 4.5, we relate the BSDE (4.2) to an optimisation problem
where the matrix Λ is a transform of the correlation matrix of certain price
processes. In applications, such matrices are often assumed to be determinis-
tic. Similarly, things typically become less restrictive in a Markovian setting
because one can often do everything in the filtration of the factor process.

Remark 4.12. One can generalise Theorems 4.7 and 4.11 to the case where
H, α and χ are unbounded, but |H| and

∫ T
0

(
|αs|2 + |χs|

)
ds have exponential

moments of all order. We sketch the procedure for such a generalisation. One
first uses Corollary 6 of Briand and Hu [12] for the existence of a generalised
solution (Γ, Z) of (4.2) and its uniqueness in a suitable class. Then one sets
Hj := H+ ∧ j − H− ∧ j, j ∈ N, defines αj and χj analogously, and applies
Theorems 4.7 and 4.11 when H, α and χ are replaced by Hj, αj and χj. By
taking limits in a suitable sense and applying Proposition 7 of Briand and
Hu [12], one can deduce generalised versions of Theorems 4.7 and 4.11. We
do not know whether Theorem 4.5 can also be formulated for unbounded H,
α and χ, because the above generalisation procedure does not work there.

One cannot weaken in the above way the assumption that the eigenvalues
of Λ are bounded away from zero, since this condition is needed to apply the
results of Briand and Hu [12]. However, one can get rid of the restriction that
the eigenvalues of Λ are bounded away from infinity. Theorems 4.5 and 4.11
can be formulated without this assumption similarly to Theorem 3.12. If the
componentwise optional projection of Λ, whose eigenvalues are not bounded
away from infinity, exists (P⊗Leb)-a.e., one can prove Theorem 4.7 in the
same way as in Section 4.3.2. ♦

4.4 Exponential utility indifference valuation

This section recalls the financial concept of indifference valuation, in prepa-
ration for applying the convexity results from Section 4.3.

We work on a finite time interval [0, T ] for a fixed T > 0, and we fix
t ∈ [0, T ]. On a complete probability space (Ω,G, P ), we have independent
Brownian motions W and W⊥ with values in Rm and Rn. We denote by
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G = (Gs)0≤s≤T the P -augmented filtration generated by (W,W⊥) and assume
G = GT . Moreover, we suppose there is an Rn-valued (G, P )-Brownian motion
Y such that

dYs = Rs dWs +
√
I −RsR′s dW⊥

s , 0 ≤ s ≤ T (4.48)

for a G-predictable (n × m)-matrix R describing correlations between W

and Y . We assume that all eigenvalues of RR′ are bounded away from one
uniformly on Ω× [0, T ], i.e., there exists c ∈ [0, 1) with

max spec(RR′) ≤ c (P⊗Leb)-a.e. on Ω× [0, T ]. (4.49)

For a fixed γ > 0, the Sn-valued process

Λ =
1

γ
(I −RR′)−1 (4.50)

is well defined, G-predictable and satisfies spec(Λ) ⊆
[

1
γ
, 1
γ(1−c)

]
. In the nota-

tion of Section 4.3, this implies that δmin
t (Λ) ≥ 1/γ.

Our financial market consists of a risk-free bank account yielding zero
interest and m traded risky assets S = (Sj)j=1,...,m with dynamics

dSjs = Sjsµ
j
s ds+

m∑
k=1

Sjsσ
jk
s dW k

s , 0 ≤ s ≤ T, Sj0 > 0, j = 1, . . . ,m;

the drift vector µ = (µj)j=1,...,m and the volatility matrix σ = (σjk)j,k=1,...,m

are G-predictable. We assume that σ is invertible, λ := σ−1µ is bounded
(uniformly in ω and s) and that there exists a constant C such that

Cβ′β ≥ β′σσ′β ≥ 1

C
β′β on Ω× [0, T ] for all β ∈ Rm.

(In other words, σ is uniformly both bounded and elliptic.) The processes

Ŵ := W +

∫
λ ds and Ŷ := Y +

∫
Rλ ds (4.51)

are Brownian motions under the minimal martingale measure P̂ given by

dP̂

dP
:= E

(
−
∫
λ dW

)
T

. (4.52)

Let H be a bounded GT -measurable random variable, interpreted as a con-
tingent claim or payoff due at time T . To value H, we assume that our
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investor has an exponential utility function U(x) = − exp(−γx), x ∈ R, for a
fixed γ > 0. He starts at time t with bounded Gt-measurable initial capital
xt and runs a self-financing strategy π = (πs)t≤s≤T so that his wealth at time
s ∈ [t, T ] is

Xxt,π
s = xt +

∫ s

t

m∑
j=1

πjr
Sjr

dSjr = xt +

∫ s

t

π′rσr dŴr,

where πj represents the amount invested in Sj, j = 1, . . . ,m. The set At
of admissible strategies on [t, T ] consists of all G-predictable Rm-valued pro-
cesses π = (πs)t≤s≤T which satisfy

∫ T
t
|πs|2 ds <∞ a.s. and are such that

exp
(
−γXxt,π

s

)
, t ≤ s ≤ T, is of class (D) on (Ω,GT ,G, P ).

We define V H (and analogously V 0) by

V H
t (xt) := ess sup

π∈At
EP
[
U(Xxt,π

T +H)
∣∣Gt]

= e−γxt ess sup
π∈At

EP

[
− exp

(
−γ
∫ T

t

π′sσs dŴs − γH
)∣∣∣∣Gt] (4.53)

so that V H
t (xt) is the maximal expected utility the investor can achieve by

starting at time t with initial capital xt, using some admissible strategy π,
and receiving H at time T . For ease of notation, we write

V H
t (xt) = e−γxtV H

t (0) =: e−γxtV H
t .

Viewed over time, V H =
(
V H
t

)
0≤t≤T is then the dynamic value process for

the stochastic control problem associated to exponential utility maximisation.
Compared to (2.6) and (3.2) in Chapters 2 and 3, we have changed the sign
of H in the definition (4.53) of V H

t (xt). This is done only for notational
convenience to avoid later additional minus signs. For the same reason, we
next consider the indifference buyer value and not the seller value. This is no
restriction since the seller value of H equals minus the buyer value of −H.

The time t indifference (buyer) value ht(xt) for H is implicitly defined by

V 0
t (xt) = V H

t

(
xt − ht(xt)

)
.

This says that the investor is indifferent between solely trading with initial
capital xt, versus trading with reduced initial capital xt−ht(xt) but receiving
H at T . Our goal is to find bounds for ht(xt). By (4.53),

ht(xt) = ht =
1

γ
log

V 0
t

V H
t

(4.54)
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does not depend on xt, but directly on V H
t and V 0

t . We consider here V 0
t

as fixed via the financial market, and our focus lies on finding H-dependent
bounds for V H from the optimisation problem (4.53). An overview of the
literature on exponential utility indifference valuation in Brownian settings
can be found in Section 2.4.2.

4.5 Valuation bounds from convexity

In this section, we consider the same setup as in Section 4.4. In order to
apply the convexity results from Section 4.3, we want to associate V H to a
quadratic convex BSDE of the form (4.2). We start with the following result
which follows directly from Theorem 7 and Proposition 9 of Hu et al. [37].

Lemma 4.13. The BSDE

Γ̌s = H−
∫ T

s

(γ
2

∣∣Žr∣∣2−Ẑ ′rλr− 1

2γ
|λr|2

)
dr+

∫ T

s

Ẑr dWr+

∫ T

s

Žr dW⊥
r (4.55)

for s ∈ [0, T ] has a unique solution
(
Γ̌, Ẑ, Ž

)
such that

(
Ẑ, Ž

)
is (Rm × Rn)-

valued and G-predictable with EP

[∫ T
0

(∣∣Ẑs∣∣2 +
∣∣Žs∣∣2) ds

]
<∞ and Γ̌ is G-

predictable and bounded. Furthermore, we have V H
τ = − exp

(
−γΓ̌τ

)
for any

G-stopping time τ .

Unfortunately, we cannot (yet) apply the results from Section 4.3 to the
BSDE (4.55), because its generator is quadratic in Ž, but only linear in Ẑ. In
contrast, the generator of (4.2) is quadratic in the full vector Z =

(
Ž, Ẑ

)′
. The

next sections present three different approaches to circumvent this problem.
In Section 4.5.1, we simply add a term ε

∣∣Ẑ∣∣2 to the generator of (4.55) and
study the limit as ε tends to zero. Section 4.5.2 exploits the fact, pointed out
in Remark 4.8, that one can apply the projection result in Theorem 4.7 to
a BSDE with a more general generator. In a third approach, we impose in
Section 4.5.3 measurability assumptions on the claim H and the coefficients
of the asset S and then use symmetrisation arguments.

Lemma 4.13 also shows that the dynamic value process V H has a contin-
uous version. In the sequel, we always use this version of V H .

4.5.1 ε-regularising the BSDE and changing the mea-
sure

In this approach, we add a term ε
∣∣Ẑ∣∣2 to the generator of (4.55) to bring it to

the form of (4.2). In some sense, this makes the BSDE (4.55) more regular.
We first study how the solution of the changed BSDE behaves as ε↘ 0.
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Lemma 4.14. For each fixed ε > 0, the BSDE

Γ̌εs = H −
∫ T

s

(γ
2

∣∣Žε
r

∣∣2 + ε
∣∣Ẑε

r

∣∣2 − (Ẑε
r)
′λr −

1

2γ
|λr|2

)
dr

+

∫ T

s

Ẑε
r dWr +

∫ T

s

Žε
r dW⊥

r , 0 ≤ s ≤ T, (4.56)

has a unique solution
(
Γ̌ε, Ẑε, Žε

)
(in the sense of Lemma 4.13). The solution

Γ̌ to (4.55) satisfies

Γ̌t = ess sup
ε>0

Γ̌εt = lim
ε↘0

Γ̌εt a.s.

Lemma 4.14 is a variation of Proposition 3.1 of El Karoui et al. [26], which
gives a similar conclusion for BSDEs with a Lipschitz-continuous generator.

Proof. Lemma 4.2 gives for each ε > 0 a unique solution
(
Γ̌ε, Ẑε, Žε

)
of (4.56)

with bounded Γ̌ε, and both
∫
Ẑε dW and

∫
Žε dW⊥ are in BMO(G, P ). As

in the proof of Proposition 4.3, one can show that Γ̌ε ≤ Γ̌ and that
∣∣Γ̌ε∣∣

is bounded by ‖H‖L∞ + 1
2γ

∥∥ ∫ T
0
|λs|2 ds

∥∥
L∞

, uniformly in ε. Applying Itô’s

formula to exp
(
Γ̌ε
)

then yields like in the proof of Proposition 7 of Mania

and Schweizer [44] that the BMO(G, P )-norms of
∫
Ẑε dW and

∫
Žε dW⊥ are

bounded uniformly in ε. By Theorem 3.6 of Kazamaki [40], the BMO
(
G, P̌ ε

)
-

norm of
∫
Ẑε dW is thus bounded uniformly in ε, where

dP̌ ε

dP
:= E

(
−
∫
λ dW +

γ

2

∫ (
Žε + Ž

)
dW⊥

)
T

.

We now obtain from (4.55) and (4.56) by conditioning on Gt under P̌ ε that

0 ≤ Γ̌t − Γ̌εt = εEP̌ ε

[∫ T

t

∣∣Ẑε
s

∣∣2 ds

∣∣∣∣Gt] ≤ ε

∥∥∥∥∫ Ẑε dW

∥∥∥∥2

BMO2(G,P̌ ε)
,

and this converges almost surely to 0 for ε↘ 0.

To apply the change of measure result in Theorem 4.5, we use notations
analogous to Section 4.3.1, whose B corresponds to (W,W⊥). Let us set

γHκ,ε
t := γH +

1

2

∫ T

t

(
|λs|2 + ε−1(|λs|2 − |κs|2)

)
ds− ε−1

∫ T

t

(κs − λs) dWs,

dQκ

dP
:= E

(
−
∫
κ dW

)
T

.
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Note that K = K(m) is here a set of Rm-valued processes. The next result
follows fairly directly from Lemma 4.14 and Theorem 4.5, but spelling out
all details is rather tedious and gives no new insights; hence we only outline
the argument. We apply Theorem 4.5 to (4.56) with ε̃ := γε

2
, B̃ := (W,W⊥)′,

ñ := m+ n,

Λ̃ :=
1

γ

(
ε−1Im×m 0

0 In×n

)
, α̃ := −Λ̃

(
λ
0

)
and χ̃ := −

( 1

2γε
+

1

2γ

)
|λ|2.

This gives δmin
t

(
Λ̃
)

= 1/γ, and now we obtain from Lemma 4.14 and (4.17)

in Theorem 4.5 for K̃ := K(m) ×K(n) the following result.

Proposition 4.15. We have

Γ̌t = −ess inf
ε∈]0,1]

ess inf
κ∈K(m)

log EQκ [exp(−γHκ,ε
t )|Gt]1/γ. (4.57)

By picking arbitrary κ ∈ K(m) and ε ∈ ]0, 1], the representation (4.57)
allows us to get lower bounds for Γ̌t, and hence also for V H

t by Lemma 4.13.
Note that Qκ is a martingale measure for S only for κ = λ. In that case, Qκ

equals the minimal martingale measure P̂ , and we get from (4.57) that

Γ̌t ≥ − log EP̂

[
exp

(
−γH − 1

2

∫ T

t

|λs|2 ds

)∣∣∣∣Gt]1/γ

.

4.5.2 Projecting onto incompleteness

This short section exploits the projection result from Section 4.3.2 to give
an upper bound for V H

0 . For any process Z, we denote by FZ =
(
FZs
)

0≤s≤T
the P -augmented filtration generated by Z. In this section, Zo stands for the
optional projection of Z onto the filtration FW⊥ under the minimal martingale
measure P̂ , i.e., Zo

τ = EP̂
[
Zτ
∣∣FW⊥τ

]
for any FW⊥-stopping time τ.

Proposition 4.16. For any s ∈ [0, T ], V H satisfies(
log(−V H)

)o
s
≥ logEP̂

[
exp

(
−EP̂

[
γH
∣∣FW⊥T

]
− 1

2

∫ T

s

(
|λ|2
)o
r

dr

)∣∣∣∣FW⊥s

]
.

Proof. Using (4.51), we can rewrite (4.55) in the form

Γ̌s = H −
∫ T

s

(γ
2

∣∣Žr∣∣2 − 1

2γ
|λr|2

)
dr +

∫ T

s

Ẑr dŴr +

∫ T

s

Žr dW⊥
r .

By Remark 4.8, we have Γ̌o ≤ Γ̄ where
(
Γ̄, Z̄

)
solves the BSDE

Γ̄s = EP̂
[
H
∣∣FW⊥T

]
−
∫ T

s

(γ
2

∣∣Z̄r∣∣2 − 1

2γ

(
|λ|2
)o
r

)
dr +

∫ T

s

Z̄r dW⊥
r
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for 0 ≤ s ≤ T . A direct calculation shows similarly to (4.5) that

Γ̄s = −1

γ
logEP̂

[
exp

(
−EP̂

[
γH
∣∣FW⊥T

]
− 1

2

∫ T

s

(
|λ|2
)o
r

dr

)∣∣∣∣FW⊥s

]
, 0 ≤ s ≤ T,

which concludes the proof since V H = − exp
(
−γΓ̌

)
by Lemma 4.13.

Proposition 4.16 gives an upper bound for V H
0 and thus also for h0, but

these bounds are rather rough. In the next section, we show how additional
measurability assumptions can be exploited to derive other bounds via the
symmetrisation result of Section 4.3.3.

4.5.3 Symmetrising a nontradable claim

Recall that FZ =
(
FZs
)

0≤s≤T denotes the P -augmented filtration generated

by a process Z. We recall W and Y from (4.48) and write for brevity

W = (Ws)0≤s≤T for FW , Y = (Ys)0≤s≤T for FY , Ŷ =
(
Ŷs
)

0≤s≤T for FŶ .

If Rλ is Y-predictable, then Ŷ from (4.51) is Y-adapted and hence Ŷ ⊆ Y.
In general, however, none of the above three filtrations contains any other.
We study two cases which were introduced in Section 2.4.1 in a setting with
one-dimensional W and Y .

Cases. We consider one of the following two situations:

(I) H ∈ L∞(YT , P ), λ is Y-predictable, and R is Y-predictable.

(II) H ∈ L∞
(
ŶT , P

)
, λ is FS,Ŷ -predictable, and λ is W-predictable.

Each case reflects a situation where the payoff H is driven by Y
(
or Ŷ

)
,

whereas hedging can only be done in S which is imperfectly correlated with
Y
(
or Ŷ

)
. Direct hedging in the underlying of H may be impossible for two

basic reasons: In case (I), its driver is not traded at all (e.g., a volatility or a
consumer price index), whereas in case (II), it is traded in principle but not
tradable for our investor, due to legal, liquidity, practicability, cost or other
reasons. We refer to Section 2.4.1 for a thorough explanation and motivation
of the assumptions in cases (I) and (II).

We focus in this section on case (I) and first relate V H to a BSDE of the
form (4.2). A similar result for case (II) is given in Proposition 4.23 in the
Appendix. Recall from (4.50) that Λ := 1

γ
(I −RR′)−1.
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Proposition 4.17. In case (I), the BSDE

Γs = H −
∫ T

s

(1

2
Z ′rΛ

−1
r Zr − Z ′rRrλr −

1

2γ
|λr|2

)
dr +

∫ T

s

Zr dYr (4.58)

for 0 ≤ s ≤ T has a unique solution (Γ, Z) where Γ is a real-valued bounded
continuous (Y, P )-semimartingale and Z is an Rn-valued Y-predictable pro-
cess such that

∫ T
0
|Zs|2 ds <∞ almost surely. Moreover, V H = − exp(−γΓ).

Proposition 4.17 shows in particular that V H is Y-adapted in case (I).
This generalises Remark 3.3 of Ankirchner et al. [2] who made the same
observation in a Markovian setting. It also shows that the distortion power
δĤ in Theorem 2.9 can be chosen Y-adapted.

Proof. The BSDE (4.58) can be brought into the form (4.2) by defining

B := Y, F := Y, χ := −1

2
λ′
(1

γ
I +R′ΛR

)
λ and α := −ΛRλ, (4.59)

and so (4.58) has a unique solution (Γ, Z) by Lemma 4.2. Using (4.48) then
shows that

(
Γ, R′Z,

√
I −RR′Z

)
solves (4.55), and

EP

[∫ T

0

(
Z ′sRsR

′
sZs + Z ′s(I −RsR

′
s)Zs

)
ds

]
= EP

[∫ T

0

|Zs|2 ds

]
<∞,

since
∫
Z dY ∈ BMO(Y, P ) by Lemma 4.2. Moreover, V H = − exp(−γΓ) by

uniqueness for (4.55). For later use, note that plugging (4.59) into (4.13) gives

Hκ
t = H +

1

2γ

∫ T

t

|λs|2 ds− 1

2

∫ T

t

(
κ′sΛsκs − (Rsλs)

′Λs(Rsλs)
)

ds

−
∫ T

t

Λs(κs −Rsλs) dYs. (4.60)

The key point for rewriting the description of V H from (4.55) in Lemma
4.13 to (4.58) in Proposition 4.17 is that the latter BSDE has the form (4.2);
and this reformulation, by working in the filtration FY instead of G = F(W,W⊥),
is possible thanks to the measurability conditions imposed by case (I). We
could now apply to (4.58) all the results of Section 4.3, but we focus here on
symmetrisation via Theorem 4.11. However, we also briefly mention in the
next remarks some consequences of the probability change via Theorem 4.5
and the projection via Theorem 4.7.
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Remark 4.18. 1) Theorem 4.5 applied to the BSDE (4.58) generalises The-
orem 2.9, which corresponds to the choice κ = Rλ. In that case, Hκ

t from
(4.60) simplifies to HRλ

t = H + 1
2γ

∫ T
t
|λs|2 ds, PRλ is the projection onto YT

of the minimal martingale measure P̂ in (4.52), and δĤt from Theorem 2.9 is
linked to δRλ,−Ht from Theorem 4.5 via δĤt = γδRλ,−Ht . The freedom in The-
orem 4.5 of choosing κ arbitrarily allows one to obtain other bounds. Note
from (4.60) that κ = Rλ is special because only with this choice, Hκ

t has no
dY -integral in addition to H. So the minimality of P̂ in the original sense
corresponds to the minimality of HRλ

t in the sense that it only differs from H
by the terminal value of a finite variation process.

2) Theorem 3.12 is the general semimartingale analogue of Theorem 4.5
applied to (4.58), with slightly different assumptions.

3) Proposition 4.17 starts with an optimisation problem in a financial
market and relates this to the solution of a BSDE. In the opposite direction,
one could also start with a BSDE and link its solution to an optimisation
problem in an artificially constructed financial market. For the BSDE (4.2)
with fixed (H,Λ, α, χ) as in Section 4.2.1, we can define

γ := sup
s∈[t,T ]

∥∥max spec(Λ−1
s )
∥∥
L∞

+ 1, R :=

√
I − 1

γ
Λ−1, λ := −R−1Λ−1α,

H̃ := H +

∫ T

t

χs ds+
1

2

∫ T

t

λ′s

(1

γ
I +R′sΛsRs

)
λs ds, m := n.

If we construct with these parameters a model as in Section 4.4, then Propo-
sition 4.17 yields Γt = − 1

γ
log
(
−V H̃

t

)
.

4) Theorem 4.7 gives an upper bound for the solution of (4.58) in terms
of a solution to a projected, lower-dimensional BSDE. Combining this with
the above remark shows that projecting the optimisation problem relates to
constructing a lower-dimensional artificial market. ♦

Applying Theorem 4.5 to the BSDE (4.58) yields bounds for V H
t which

depend directly on the claim H. If we also use symmetrisation via Theorem
4.11, we obtain bounds depending on a symmetrisation of H.

For any Y-predictable Sn-valued process Λ, there exist a Y-predictable O
valued in O(n) and a Y-predictable diagonal matrix D = diag(D11, . . . , Dnn)
with Λ = O′DO. For a bounded Y-predictable process κ, we define a process
Y κ,O null at 0 by dY κ,O = O(dY + κ ds), and we set Yκ,O =

(
Yκ,Os

)
0≤s≤T

:= FY κ,O . For the next result, we work on Wiener space with coordinate
process Y κ,O and use the notations of Sections 4.3.1 and 4.3.3 with B := Y κ,O

and χ, α given by (4.59).
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Proposition 4.19. Write Λ = O′DO and fix a bounded Y-predictable pro-
cess κ. In case (I), assume that D is Yκ,O-predictable and Hκ

t in (4.60) is
Yκ,OT -measurable, and set Hκ,Sym

t := 1
n!

∑
u∈Perm H

κ
t ◦ Ut. Then we have

V H
t ≤ −EPκ

[
exp
(
−Hκ,Sym

t

/
dt
)∣∣Yκ,Ot ]γdt

a.s., (4.61)

where

dt := sup
s∈[t,T ]

∥∥∥∥ 1

n

n∑
j=1

sup
u∈Perm

(Djj
s ◦ Ut)

∥∥∥∥
L∞
.

Proof. By Proposition 4.17, V H
t = − exp(−γΓt) where (Γ, Z) solves (4.58).

If
(
Γ̃, Z̃

)
solves for 0 ≤ s ≤ T the BSDE

Γ̃s = Hκ
t −

1

2

∫ T

s

(
OrZ̃r

)′
D−1
r

(
OrZ̃r

)
dr +

∫ T

s

(
OrZ̃r

)
dY κ,O

r , (4.62)

combining (4.62), (4.60) and (4.58) on [[0, T ]] shows Z = Z̃ − Λ(κ−Rλ) and

Γ = Γ̃− 1

2

∫ t∨·

t

(
|λ|2/γ − (κ−Rλ)′Λ(κ+Rλ)

)
ds+

∫ t∨·

t

Λ(κ−Rλ) dY

so that in particular Γt = Γ̃t. Now we apply Theorem 4.11 to the BSDE
(4.62) and obtain (4.61) from (4.47), except for one detail: The payoff Hκ

t

from (4.60) is not bounded, as Theorem 4.11 requires. But a closer look
shows that Hκ

t differs from a bounded payoff only by
∫ T
t

Λs(κs − Rsλs) dYs,
and since this Y -integrand is bounded, the arguments from Theorem 4.11 still
go through.

If we choose κ = Rλ in Proposition 4.19, the random variable Hκ
t in (4.60)

simplifies to HRλ
t = H + 1

2γ

∫ T
t
|λs|2 ds and the resulting upper bound

V H
t ≤ −EP̂

[
exp
(
−HRλ,Sym

t

/
dt
)∣∣YRλ,Ot

]γdt
a.s.

can be written under the minimal martingale measure P̂ from (4.52). In
general, the bound of Proposition 4.19 differs from the upper bound in The-
orem 4.5 in two respects. On the one hand, the expectation in (4.61) is dis-
torted by dt which depends on the average eigenvalue of (the permuted) D,
whereas δmax

t from Theorem 4.5 reflects the maximal eigenvalue of D. We
have dt ≤ δmax

t and in the multidimensional case n > 1, there can be a big
difference between dt and δmax

t so that the bound of Proposition 4.19 may
significantly improve that of Theorem 4.5. But on the other hand, the bound
of Proposition 4.19 depends on the symmetrised claim Hκ,Sym

t instead of Hκ
t ,
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which may make it worse. It depends on the concrete situation which of the
two impacts is stronger and whether Proposition 4.19 or Theorem 4.5 gives
the better bound. For n = 1, the bounds coincide.

In practice, the claim H often has symmetry properties (e.g., if it is the
sum of individual assets); then Hκ,Sym

t does not differ much from Hκ
t , and the

bounds of Proposition 4.19 can be much better than those from Theorem 4.5.
We illustrate the above discussion in the next simple example.

Example 4.20. Take m = dim W = 1 and n = dim Y = 2. We assume that
instantaneous correlations between W and Y are given by R = (ρ1, ρ2)′ for
two constants ρ1, ρ2 ∈ ]−1, 1[ with 0 6= |ρ1|2 + |ρ2|2 < 1. By (4.50), we have

Λ =
1

γ
(I −RR′)−1 =

1

γ

(
1− |ρ1|2 −ρ1ρ2

−ρ1ρ2 1− |ρ2|2
)−1

,

which can be written as Λ = O′DO for

D =
1

γ

(
1 0
0 1

1−|ρ1|2−|ρ2|2

)
and O =

1√
|ρ1|2 + |ρ2|2

(
ρ2 −ρ1

ρ1 ρ2

)
.

We assume that λ = µ
σ

is constant, and we consider a claim of the form
H = q1Y 1

T + q2Y 2
T = q′YT for a constant q = (q1, q2)′ ∈ R2\{0}. In this simple

setting, V H can be explicitly determined. Indeed, writingH = q′Yt +
∫ T
t
q dYs,

plugging this into (4.60) and choosing κ = Λ−1q +Rλ leads to

Hκ
t = q′Yt +

1

2

(
λ2/γ − 2λR′q − q′Λ−1q

)
(T − t),

and because this is Yt-measurable, we get V H
t = − exp(−γHκ

t ). But note
that this works only because H is of the special form H =

∫ T
0
q dY and q, R

and λ are deterministic.
Although V H

t is explicitly known here, we next also compare the bounds
from Theorem 4.5 and Proposition 4.19 for the special choice κ = Rλ. We
choose this κ since it does not depend on H and also has nice consequences,
as explained after Proposition 4.19; and we compute the bounds despite their
non-optimality since they are explicit and illustrative. Applying Theorem 4.5
for κ = Rλ to the BSDE (4.58) gives with an easy computation for the
indifference value in (4.54) the upper bound

h0 ≤ − logEPRλ [exp(−H/δmax
0 )]δ

max
0

= −γT
2

(
1− |ρ1|2 − |ρ2|2

)(
|q1|2 + |q2|2

)
− Tλ(q1ρ1 + q2ρ2), (4.63)
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where δmax
0 = max spec(Λ) = 1

γ(1−|ρ1|2−|ρ2|2)
. To apply Proposition 4.19 with

κ = Rλ, we have to symmetrise with respect to Y Rλ,O
s = OYs + ORλs,

0 ≤ s ≤ T . The symmetrised claim is

HRλ,Sym
0 =

1

2
(q1, q2)O′Y Rλ,O

T +
1

2
(q1, q2)O′

(
(Y Rλ,O

T )2

(Y Rλ,O
T )1

)
− Tλ(q1ρ1 + q2ρ2)

=
1

2
(q̃1 + q̃2)

(
(Y Rλ,O

T )1 + (Y Rλ,O
T )2

)
− Tλ(q1ρ1 + q2ρ2),

where (
q̃1

q̃2

)
:= O

(
q1

q2

)
=

1√
|ρ1|2 + |ρ2|2

(
ρ2q1 − ρ1q2

ρ1q1 + ρ2q2

)
,

and so Proposition 4.19 and (4.54) yield

h0 ≤ − logEPRλ
[
exp
(
−HRλ,Sym

0

/
d0

)]d0
= −γT

2

(
1− |ρ1|2 − |ρ2|2

) (q̃1 + q̃2)2

2− |ρ1|2 − |ρ2|2
− Tλ(q1ρ1 + q2ρ2),

where d0 = 1
2

tr(Λ) = 1−|ρ1|2/2−|ρ2|2/2
γ(1−|ρ1|2−|ρ2|2)

. Due to the symmetry of the model, we

can interchange ρ1 and ρ2 and, simultaneously, q1 and q2. This leads to

h0 ≤− Tλ(q1ρ1 + q2ρ2)− γT
(
1− |ρ1|2 − |ρ2|2

)
(4.64)

×
max

{(
ρ1(q1 − q2) + ρ2(q1 + q2)

)2
,
(
ρ2(q2 − q1) + ρ1(q1 + q2)

)2}
2(2− |ρ1|2 − |ρ2|2)(|ρ1|2 + |ρ2|2)

,

which is a better bound for h0 than (4.63) if and only if

1 <
max

{(
ρ1(q1 − q2) + ρ2(q1 + q2)

)2
,
(
ρ2(q2 − q1) + ρ1(q1 + q2)

)2}
(|q1|2 + |q2|2)(2− |ρ1|2 − |ρ2|2)(|ρ1|2 + |ρ2|2)

. (4.65)

We assume without loss of generality that q1 6= 0. Then q2 = cq1 for some
c ∈ R, and a calculation shows that (4.65) is equivalent to

(ρ1, ρ2) 6∈
(
D 1√

2
(c−, c+)∪D 1√

2
(−c−,−c+)

)
∩
(
D 1√

2
(c+,−c−)∪D 1√

2
(−c+, c−)

)
,

(4.66)
where c± := 1±c

2
√

1+|c|2
and D 1√

2
(z) denotes the closed disk of radius 1

/√
2

centered at z ∈ R2. Note that |c−|2 + |c+|2 = 1/2 so that the centers of
all four disks in (4.66) lie on a circle of radius 1

/√
2 centered at the origin.

Figure 4.1 below shows in green the area on which (4.66) holds and in red
its complement in the unit disk. In the green area, the symmetrised bound
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Figure 4.1: Graphical visualisation of (4.66) for c = 1 (left panel) and c = 3 (right panel)
with ρ1 on the horizontal and ρ2 on the vertical axis. We have c− = 0, c+ = 1/

√
2 (left

panel) and c− = −1/
√

10, c+ = 2/
√

10 (right panel).

(4.64) is better than (4.63), and vice versa in the red area. The green area
amounts to 2/π ≈ 63.66 % of the total surface of the unit disk. In principle,
the bigger |ρ1|2 +|ρ2|2 is and the nearer (ρ1, ρ2) is to one of the points (c−, c+),
(−c−,−c+), (c+,−c−) or (−c+, c−), the more likely it is that (ρ1, ρ2) is in the
green area and the symmetrised bound is better. This reflects the idea that if
H is more symmetric with respect to Y Rλ,O and the eigenvalues of Λ differ a
lot, then making everything symmetric will achieve more than only squeezing
the eigenvalues together. ♦

4.6 Appendix: Auxiliary results

Lemma 4.21. The function f(A, z) = 1
2
z′A−1z in (4.3) is jointly convex.

Proof. It is enough to show that, for fixed z, y ∈ Rn and A,F ∈ Sn,

z′A−1z + y′F−1y ≥ (z + y)′(A+ F )−1(z + y). (4.67)

We first note that there is C ∈ GL(n) such that C ′AC = I and D := C ′FC
is diagonal. Indeed, A = U ′U for some U ∈ GL(n), and (U−1)′FU−1 is
symmetric; so there exists V ∈ O(n) with V ′(U−1)′FU−1V diagonal, and
C := U−1V will do. Thus (4.67) is equivalent to

|ž|2 + y̌′D−1y̌ ≥ (ž + y̌)′(I +D)−1(ž + y̌), ž := C ′z and y̌ := C ′y,

or, with D = diag(D11, . . . , Dnn), to

n∑
j=1

(
|žj|2 + |y̌j|2

/
Djj
)
≥

n∑
j=1

|žj + y̌j|2

1 +Djj
.
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But the last relation is true because for j = 1, . . . , n, we have

(
|žj|2 + |y̌j|2

/
Djj
)
− |ž

j + y̌j|2

1 +Djj
=

∣∣žj√Djj − y̌j
/√

Djj
∣∣2

1 +Djj
≥ 0.

Lemma 4.22. In the setting of Section 4.3.3, we have(∫
Z dB

)
◦ Ut =

∫
(Z ◦ Ut) dBu. (4.68)

for any predictable process Z on Wiener space with
∫ T

0
|Zs|2 ds <∞ a.s.

Proof. By Itô’s representation theorem, any local martingale is of the form
c+
∫
β dB for a constant c and a predictable process β with

∫ T
0
|βs|2 ds <∞

a.s. Therefore, (4.68) is equivalent to〈(∫
Z dB

)
◦ Ut,

∫
β dB

〉
=

〈∫
(Z ◦ Ut) dBu,

∫
β dB

〉
(4.69)

for any predictable β with
∫ T

0
|βs|2 ds <∞ a.s. To prove (4.69), we note first

that P ◦ U−1
t = P by the invariance of Wiener measure under orthogonal

transformations, and thus

E[X ◦ Ut] = E[X] for all X ∈ L1. (4.70)

This implies that the (local) martingale property is invariant under Ut, i.e.,
for an adapted integrable process M , we have

M is a (local) martingale ⇐⇒ M ◦ Ut is a (local) martingale. (4.71)

Indeed, if τ is a stopping time and Mτ∧· is a martingale, then τ ◦ Ut is a
stopping time and we have for any s ∈ [0, T ] and A ∈ Fs that

E
[
(M ◦ Ut)(τ◦Ut)∧T1A

]
= E

[(
Mτ∧T1U−1

t (A)

)
◦ Ut

]
= E

[
Mτ∧T1U−1

t (A)

]
= E

[
Mτ∧s1U−1

t (A)

]
= E

[
(M ◦ Ut)τ∧s1A

]
by (4.70), using also that U−1

t (A) ∈ Fs. This gives “=⇒” in (4.71), and “⇐=”
follows by symmetry.

We are now ready to prove (4.69). Its left-hand side equals〈(∫
Z dB

)
◦ Ut,

∫
β dB

〉
=

∫
d

〈(∫
Z dB

)
◦ Ut, B

〉
β, (4.72)
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and by (4.71) we have〈(∫
Z dB

)
◦ Ut, B

〉
=

〈(∫
Z dB

)
◦ Ut,

(
(1[[0,t]]I + 1]]t,T ]]u

−1)B
)
◦ Ut

〉
=

〈∫
Z dB, (1[[0,t]]I + 1]]t,T ]]u

−1)B

〉
◦ Ut

=

∫ t∧·

0

Z ′ ds+

(∫ t∨·

t

Z ′(u−1)′ ds

)
◦ Ut.

Since
(∫

Z ′(u−1)′ ds
)
◦ Ut =

∫
(Z ◦ Ut)′u ds, we obtain from (4.72) that〈(∫

Z dB

)
◦ Ut,

∫
β dB

〉
=

∫ (
1[[0,t]]Z

′β + 1]]t,T ]](Z ◦ Ut)′uβ
)

ds

=

〈∫
(Z ◦ Ut) dBu,

∫
β dB

〉
,

which shows (4.69) and concludes the proof.

The following result is the analogue of Proposition 4.17 for case (II).

Proposition 4.23. Under the assumptions of case (II) in Section 4.5.3 with
the additional requirement that R is Ŷ-predictable, the BSDE

Γs = H −
∫ T

s

1

2
Z ′rΛ

−1
r Zr dr +

∫ T

s

Zr dŶr, 0 ≤ s ≤ T (4.73)

has a unique solution (Γ, Z) where Γ is a real-valued bounded continuous(
Ŷ, P̂

)
-semimartingale and Z is an Rn-valued Ŷ-predictable process such that∫ T

0
|Zs|2 ds <∞ almost surely. Moreover, for any s ∈ [0, T ],

V H
s = − exp

(
−γΓs −

1

2
EP̂

[∫ T

s

|λr|2 dr

∣∣∣∣Ws

])
a.s. (4.74)

Proof. This follows the same idea as Proposition 4.17, using additionally that
the mean-variance tradeoff

∫ T
0
|λr|2 dr is in case (II) attainable by trading in

S. In more detail, we replace P in Section 4.2 by P̂ and set

B := Ŷ , F := Ŷ, α := 0 and χ := 0

to bring (4.73) into the form (4.2). By Lemma 4.2, (4.73) has a unique
solution (Γ, Z), and

∫
Z dŶ is in BMO

(
Ŷ, P̂

)
. Since Rλ is bounded,

∫
Z dY

is a (G, P )-martingale, and because Γ is bounded, we obtain from (4.73) that
EP
[

1
2

∫ T
0
Z ′sΛ

−1
s Zs ds

]
<∞, which implies EP

[∫ T
0
|Zs|2 ds

]
<∞ due to (4.49).
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To deal with the term involving λ, we use Itô’s representation theorem as in
Lemma 1.6.7 of Karatzas and Shreve [39] and obtain a W-predictable process
η = (ηs)0≤s≤T with EP̂

[∫ T
0
|ηs|2 ds

]
<∞ and

1

2γ

∫ T

0

|λs|2 ds =
1

2γ
EP̂

[∫ T

0

|λs|2 ds

]
+

∫ T

0

ηs dŴs

=
1

2γ
EP̂

[∫ T

0

|λs|2 ds

]
+

∫ T

0

η′sλs ds+

∫ T

0

ηs dWs. (4.75)

Here we use that λ is W-predictable in case (II), recalling that W = FW . As
λ is bounded,

∫
η dŴ is in BMO

(
G, P̂

)
and so

∫
η dW is in BMO(G, P ) by

Theorem 3.6 of Kazamaki [40]. For the solution (Γ, Z) of (4.73), we set

(
Γ̌, Ẑ, Ž

)
:=

(
Γ +

1

2γ
EP̂

[∫ T

·
|λs|2 ds

∣∣∣∣W·],−η +R′Z,
√
I −RR′Z

)
and calculate

dΓ̌s = dΓs +
1

2γ
d

(
EP̂

[∫ T

0

|λr|2 dr

∣∣∣∣Ws

]
−
∫ s

0

|λr|2 dr

)
= dΓs + η′sλs ds+ ηs dWs −

1

2γ
|λs|2 ds

=
(γ

2

∣∣Žs∣∣2 − Ẑ ′sλs − 1

2γ
|λs|2

)
ds− Ẑs dWs − Žs dW⊥

s , 0 ≤ s ≤ T

by (4.48), (4.51) and (4.75). Hence
(
Γ̌, Ẑ, Ž

)
solves (4.55) and we also have

EP

[∫ T

0

(
(ηs +R′sZs)

′(ηs +R′sZs) + Z ′s(I −RsR
′
s)Zs

)
ds

]
≤ 3EP

[∫ T

0

|Zs|2 ds

]
+ 2EP

[∫ T

0

|ηs|2 ds

]
<∞.

Finally, (4.74) follows from the uniqueness of solutions to (4.55).



Chapter 5

A convergence result for BSDEs

This chapter yields an explicitly computable sequence that converges to the
indifference value in a two-dimensional Brownian model with stochastic cor-
relation.

5.1 Introduction

In a basic model, the financial market consists of a risk-free bank account
and a stock S driven by a Brownian motion W . The contingent claim H to
be valued via exponential utility indifference depends on another Brownian
motion Y , which has instantaneous correlation ρ with W . If ρ is determin-
istic and constant in time, an explicit formula for the indifference value ht is
available from Tehranchi [56]. However, for general (stochastic and/or time-
dependent) ρ, only bounds and a structurally explicit but not an explicit
formula3 for ht are known; see Chapter 2.

Our starting point to study this problem with general ρ is the well-known
characterisation of (ht)0≤t≤T via a backward stochastic differential equation
(BSDE). We deduce that if ρ is piecewise constant in time, we can obtain an
explicit formula for ht in the same way as for constant ρ, just by considering
iteratively the BSDE on intervals where ρ is constant. For general ρ, the idea
is to approximate ρ pointwise by a sequence (ρn)n∈N of piecewise constant
processes and to replace ρ by ρn in the BSDE so that the solutions have an
explicit form. These solutions then converge to (a transform of) ht by a con-
vergence result for quadratic BSDEs, which we prove in a general continuous
filtration. We thus have an explicitly known sequence which converges to ht.

3 Recall that according to the footnote 1 on page 6, a structurally explicit formula is defined
as a formula which is explicit in principle, but, unlike an explicit formula, some parameters
are not directly given in terms of the input parameters of the model.
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The only point left is whether we can approximate ρ pointwise by a se-
quence (ρn)n∈N of piecewise constant processes. To handle this issue, we first
restrict our study to the case where ρ is deterministic. We show that the
above approximation of ρ and thus that of ht work in a general way if ρ is
Riemann integrable. A bounded real-valued function is Riemann integrable
if and only if it is Lebesgue-almost everywhere continuous, which is satisfied
for every correlation function in practice, except for “pathological examples”.
We also give such a counterexample where the approximation of ht indeed
fails. For general stochastic ρ, we prove that the approximation of ht works
if ρ has left-continuous paths.

This chapter is structured as follows. In Section 5.2, we state convergence
results for quadratic BSDEs in a general continuous filtration. Section 5.3
gives a first application of these results. We show that the indifference value
in a general continuous filtration with trading constraints enjoys a continuity
property in the constraints. The results on the indifference valuation in a
Brownian setting are contained in Section 5.4. We lay out the model and
prove some preliminary results in Section 5.4.1. We then study in Section 5.4.2
the approximation of the indifference value ht by applying the convergence
results of Section 5.2. Section 5.4.3 shows a continuity property of ht in the
correlation ρ. Finally, the Appendix contains the proofs of the convergence
results of Section 5.2.

5.2 Convergence results

The financial applications in the subsequent sections are based on convergence
results for quadratic BSDEs in the setting of Morlais [46]. We first recall this
framework and then state the main convergence theorem.

We work on a finite time interval [0, T ] for a fixed T > 0, and we
fix t ∈ [0, T ] throughout this section. Let

(
Ω,F ,F = (Fs)0≤s≤T , P

)
be a

filtered probability space satisfying the usual assumptions with F = FT .
We assume that F is continuous, i.e., all local martingales are continuous.
We fix an Rd-valued local martingale M = (Ms)0≤s≤T and take a nonde-
creasing and bounded process D

(
e.g., D = arctan

(∑d
j=1〈M j〉

) )
such that

d〈M〉 = mm′ dD for an Rd×d-valued predictable process m.
Let us consider, for 0 ≤ s ≤ T , the BSDE

Γs = H+

∫ T

s

f(r, Zr) dDr+
β

2

(
〈N〉T−〈N〉s

)
−
∫ T

s

Zr dMr−(NT−Ns), (5.1)

where f : Ω × [0, T ] × Rd → R is P × B(Rd)-measurable
(
P denotes the

σ-field of all predictable sets on Ω × [0, T ] and B(Rd) is the Borel σ-field
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on Rd
)
, β ∈ R is a constant and H is a bounded random variable. A so-

lution of (5.1) is a triple (Γ, Z,N) satisfying (5.1), where Γ is a real-valued
bounded continuous semimartingale, Z is an Rd-valued predictable process
with E

[∫ T
0
|msZs|2 dDs

]
<∞ and N is a real-valued square-integrable mar-

tingale null at 0 and strongly orthogonal to M .

Theorem 5.1. Let (fn, βn, Hn)n=1,2,...,∞ be a sequence of P×B(Rd)-measur-
able real-valued mappings, constants, and random variables uniformly bounded
in L∞, such that

(i) there exist a nonnegative predictable κ1 with
∥∥ ∫ T

0
κ1
s dDs

∥∥
L∞

<∞ and
a constant c1 such that

|fn(s, z)| ≤ κ1
s + c1|msz|2 for all s ∈ [0, T ], z ∈ Rd (5.2)

and n = 1, . . . ,∞;

(ii) there exist a nonnegative predictable κ2 with
∥∥ ∫ T

0
|κ2
s|2 dDs

∥∥
L∞

<∞ and
a constant c2 such that∣∣fn(s, z1)− fn(s, z2)

∣∣ ≤ c2
(
κ2
s + |msz

1|+ |msz
2|
)∣∣ms(z

1 − z2)
∣∣

for all s ∈ [0, T ], z1, z2 ∈ Rd and n = 1, . . . ,∞;

(iii) limn→∞ β
n = β∞, limn→∞H

n = H∞ a.s. and for (P⊗D)-almost all
(ω, s) ∈ [[t, T ]], limn→∞ f

n(s, z)(ω) = f∞(s, z)(ω) for all z ∈ Rd.

Then there exist unique solutions (Γn, Zn, Nn) to the BSDE (5.1) with pa-
rameters (fn, βn, Hn) for n = 1, . . . ,∞, and Γnt converges to Γ∞t a.s. as
n → ∞. Moreover, sups∈[t,T ] |Γns − Γ∞s | → 0 as n → ∞ in probability and in
Lp, 1 ≤ p <∞.

The proofs of Theorem 5.1 and of the next corollary are presented in the
Appendix.

Corollary 5.2. Suppose in addition to the assumptions of Theorem 5.1 that

(iv) Hn converges to H∞ in L∞ as n→∞;

(v) there exist sequences (an)n∈N and (an)n∈N of deterministic functions
which converge to 1 uniformly on [t, T ] (up to a (P⊗D)-nullset) such
that fn = anf + anf for every n = 1, . . . ,∞, where f , f satisfy (5.2)

with fn replaced by f , f .
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Then we have sups∈[t,T ] |Γns − Γ∞s | → 0 in L∞ as n→∞ and there even exists
a constant K > 0 such that for all n ∈ N,∥∥∥∥ sup

s∈[t,T ]

|Γns − Γ∞s |
∥∥∥∥
L∞
≤ K

(
‖an − 1‖L∞(P⊗D) + ‖an − 1‖L∞(P⊗D)

+ |βn − β∞|+ ‖Hn −H∞‖L∞
)
. (5.3)

Further,
∫
Zn dM →

∫
Z∞ dM and Nn → N∞ on [[t, T ]] in BMO as n→∞.

In the literature on BSDEs, convergence results are also called stability
results. The main differences between Theorem 2.8 of Kobylanski [42] and
our Theorem 5.1 are the following: Kobylanski [42] works in a Brownian set-
ting and imposes locally uniform convergence on the generators, whereas our
Theorem 5.1 is stated in a general continuous filtration and for generators
(fn)n=1,...,∞ that converge only pointwise. Moreover, the generators in Koby-
lanski’s Theorem 2.8 can unlike ours also depend on Γn, and there is also an
L2(P⊗Leb)-convergence result for (Zn)n=1,...,∞, which is, however, less strong
than the BMO-convergence in Corollary 5.2. Another convergence result in a
Brownian setting is Proposition 7 of Briand and Hu [12], which gives conver-

gence of the moments of exp
(
sups∈[t,T ] |Γns − Γ∞s |

)
and

(∫ T
t
|Zn

s − Z∞s |2 ds
)1/2

for unbounded terminal conditions if the generators are convex.
For a general continuous filtration, a convergence result for an exponen-

tial transformation of the BSDE (5.1) is available from Lemma 3.3 and Re-
mark 3.4 of Morlais [46]. Lemma 3.3 serves in [46] as an auxiliary result to
show existence of a solution to (5.1) with a more general generator f which
can also depend on Γ. The proof of the existence result first establishes a
one-to-one correspondence between solutions to (5.1) and those to a sim-
pler BSDE which results from an exponential transformation of the original
BSDE. Lemma 3.3 is then used in proving existence of a solution to the sim-
pler BSDE. Due to the one-to-one correspondence between solutions to the
original and to the simpler BSDEs, Lemma 3.3 gives also a convergence result
for the original BSDE, as Morlais remarks. In particular, its application to
(5.1) needs that exp(βnHn) and a certain transform of fn are nondecreasing
in n, and it yields E

[
sups∈[t,T ] |eβ

nΓns − eβ
∞Γ∞s |

]
→ 0, which is equivalent to

sups∈[t,T ] |Γns − Γ∞s | → 0 in L1 for β∞ 6= 0; the equivalence can be shown using

min{ex, ey}|x− y| ≤ |ex − ey| ≤ max{ex, ey}|x− y|, x, y ∈ R,

and that Γn is uniformly bounded in n = 1, . . . ,∞ by Lemma 3.1 of Mor-
lais [46]. In contrast to Morlais [46], who proves existence and uniqueness of
solutions to (5.1), we focus on convergence questions and work in the proof of
Theorem 5.1 directly with the BSDE (5.1) instead of doing first an exponential
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transformation. Standard BSDE comparison techniques and the application
of BMO-theory enable us to prove in the Appendix the a.s. convergence of
Γnt under weak assumptions.

5.3 Indifference valuation under convergent

constraints

Before we restrict our study to a Brownian setting, we give in this section a
first application of Theorem 5.1 in a financial context. We work within the
framework of Section 5.2 with a continuous filtration F. Recall that M is a
local martingale and d〈M〉 = mm′ dD. We suppose that almost surely, the
matrix ms is invertible for every s ∈ [0, T ]. The financial market consists of
a risk-free bank account yielding zero interest and d risky assets whose price
process S = (Ss)0≤s≤T is given by

dSjs
Sjs

= dM j
s +

d∑
i=1

λis d〈M j,M i〉s, 0 ≤ s ≤ T, Sj0 > 0 for j = 1, . . . , d,

where λ is a predictable process which satisfies
∥∥ ∫ T

0
|msλs|2 dDs

∥∥
L∞

<∞,
i.e., the mean-variance tradeoff process is bounded. Let H be a bounded
random variable, interpreted as a contingent claim or payoff due at time T ,
and let C ⊆ Rd be a closed set with 0 ∈ C. We assume that our investor
has an exponential utility function U(x) = − exp(−γx), x ∈ R, for a fixed
γ > 0. Starting at time t with bounded Ft-measurable capital xt, she runs a
self-financing strategy π = (πs)t≤s≤T valued in C so that her wealth at time

s ∈ [t, T ] is Xxt,π
s = xt +

∫ s
t

∑d
j=1

πjr
Sjr

dSjr , where πj represents the amount

invested in Sj, j = 1, . . . , d. The set ACt of C-admissible strategies on [t, T ]
consists of all predictable Rd-valued processes π = (πs)t≤s≤T which satisfy

a.s., πs ∈ C for all s ∈ [t, T ], E
[ ∫ T

t
|msπs|2 dDs

]
<∞ and are such that

exp(−γXxt,π
s ), t ≤ s ≤ T , is of class (D). We define V H,C

t (xt) by

V H,C
t (xt) := ess sup

π∈ACt
E
[
U(Xxt,π

T +H)
∣∣Ft]

= e−γxtess sup
π∈ACt

E
[
− exp

(
−γX0,π

T − γH
)∣∣Ft] (5.4)

so that V H,C
t (xt) is the maximal expected utility the investor can achieve by

starting at time t with initial capital xt, using some C-admissible strategy π,
and receiving H at time T . For ease of notation, we write

V H,C
t (xt) = e−γxtV H,C

t (0) =: e−γxtV H,C
t . (5.5)
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Viewed over time t, V H,C is then the dynamic value process for the stochastic
control problem associated to exponential utility maximisation.

The time t indifference (buyer) value hH,Ct (xt) for H is implicitly de-
fined by

V 0,C
t (xt) = V H,C

t

(
xt − hH,Ct (xt)

)
. (5.6)

This says that the investor is indifferent between solely trading with initial
capital xt, versus trading with initial capital xt − hH,Ct (xt) but receiving H

at T . By (5.5),

hH,Ct (xt) = hH,Ct =
1

γ
log

V 0,C
t

V H,C
t

(5.7)

does not depend on xt.
The following proposition can be seen as a kind of continuity result for

V H,C
t and hH,Ct in (H,C).

Proposition 5.3. Let Hn, n = 1, 2, . . . ,∞, be uniformly bounded random
variables with limn→∞H

n = H∞ a.s., and let Cn, n = 1, 2, . . . ,∞, be closed
subsets of Rd which contain zero and are such that (P⊗D)-a.e.,

lim
n→∞

inf
y∈Cn
|m(y − z)| = inf

y∈C∞
|m(y − z)| for all z ∈ Rd. (5.8)

Then limn→∞ V
Hn,Cn

t = V H∞,C∞

t and limn→∞ h
Hn,Cn

t = hH
∞,C∞

t a.s., and
there exist continuous versions V Hn,Cn and hH

n,Cn, n = 1, . . . ,∞, such that

lim
n→∞

sup
s∈[t,T ]

∣∣V Hn,Cn

s − V H∞,C∞

s

∣∣ = 0 in probab. and in Lp, 1 ≤ p <∞,

lim
n→∞

sup
s∈[t,T ]

∣∣hHn,Cn

s − hH∞,C∞s

∣∣ = 0 in probab. and in Lp, 1 ≤ p <∞. (5.9)

Proof. Fix n ∈ {1, . . . ,∞}. By Theorem 4.1 of Morlais [46], there is a version
V Hn,Cn such that V Hn,Cn = − exp(γΓn), where (Γn, Zn) is the solution of (5.1)
with β := γ, H replaced by −Hn and with generator fn given by

fn(s, z) := inf
y∈Cn

(
γ

2

∣∣∣ms

(
y − z − 1

γ
λs

)∣∣∣2)− (msz)′(msλs)−
1

2γ
|msλs|2

for s ∈ [0, T ] and z ∈ Rd. Remarks 2.3 and 2.4 of Morlais [46] and (5.8) imply
that the assumptions (i)–(iii) of Theorem 5.1 are satisfied, which yields

lim
n→∞

Γnt = Γ∞t a.s. and lim
n→∞

sup
s∈[t,T ]

|Γns−Γ∞s | = 0 in probab. and in Lp. (5.10)

Therefore, we obtain limn→∞ V
Hn,Cn

t = limn→∞−eγΓnt = −eγΓ∞t = V H∞,C∞

t

a.s. and analogously limn→∞ V
0,Cn

t = V 0,C∞

t a.s., so limn→∞ h
Hn,Cn

t = hH
∞,C∞

t
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a.s. by (5.7). Because we have

sup
s∈[t,T ]

∣∣hHn,Cn

s − hH∞,C∞s

∣∣ =
1

γ
sup
s∈[t,T ]

∣∣∣∣ log
V 0,Cn

s

V 0,C∞
s

− log
V Hn,Cn

s

V H∞,C∞
s

∣∣∣∣
≤ 1

γ
sup
s∈[t,T ]

∣∣∣∣ log
V 0,Cn

s

V 0,C∞
s

∣∣∣∣+ sup
s∈[t,T ]

|Γns − Γ∞s |,

we obtain (5.9) from (5.10) and its analogue with (Hn, Cn) replaced by
(0, Cn). We also have limn→∞ sups∈[t,T ]

∣∣eγΓns − eγΓ∞s
∣∣ = 0 in probab. and

in Lp, since

sup
s∈[t,T ]

∣∣eγΓns − eγΓ∞s
∣∣ ≤ γ exp

(
γ
∥∥∥ sup
n=1,...,∞

sup
s∈[t,T ]

|Γns |
∥∥∥
L∞

)
sup
s∈[t,T ]

|Γns − Γ∞s |

and Γn is uniformly bounded by Lemma 3.1 of Morlais [46]. This concludes
the proof because V Hn,Cn = − exp(γΓn) for a version V Hn,Cn .

Remark 5.4. 1) The condition (5.8) can be rephrased as follows. Define a
time-dependent random inner product 〈·, ·〉m by 〈x, y〉m := x′m′my for x, y
in Rd and denote by dm the induced metric, i.e., dm(x, y) := 〈x− y, x− y〉m
for x, y ∈ Rd. Then 〈·, ·〉m is the standard scalar product on Rd after a basis
transformation by m−1. Defining dm(x,C) := infy∈C dm(x, y) for a closed set
C ⊆ Rd, the condition (5.8) is equivalent to limn→∞ dm(x,Cn) = dm(x,C∞)
for all x ∈ Rd. This means that the sets (Cn)n∈N are Wijsman convergent to
C∞ with respect to the metric dm. A survey on Wijsman convergence, which
is a weaker notion than convergence in the Hausdorff metric, is provided by
Beer [6].

2) We have used an exponential utility function U(x) = − exp(−γx),
x ∈ R, for a fixed γ > 0. By applying Theorems 4.4 and 4.7 of Morlais [46],
analogous results can be derived for the value process related to power util-
ity U(x) = xγ/γ, x > 0, for a fixed γ ∈ ]0, 1[, and to logarithmic utility
U(x) = log x, x > 0, when there is no claim, i.e., H = 0. ♦

5.4 Indifference valuation in a Brownian set-

ting

We now apply the convergence Theorem 5.1 to the indifference valuation in a
Brownian setting with variable correlation. We first introduce in Section 5.4.1
the model and explain the problem. We then apply Theorem 5.1 in Sections
5.4.2 and 5.4.3 to give convergence results for the indifference value and the
dynamic value process.
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5.4.1 Model setup and preliminary results

We work on a finite time interval [0, T ] for a fixed T > 0, and we fix
t ∈ [0, T ] throughout this section. On a complete filtered probability space(
Ω,G,G = (Gs)0≤s≤T , P

)
, we have two independent one-dimensional (G, P )-

Brownian motions Y and Y ⊥. We denote by Y = (Ys)0≤s≤T the P -augmented
filtration generated by Y . Let W be a (G, P )-Brownian motion with instan-
taneous correlation ρ to Y so that

dWs = ρs dYs +
√

1− ρ2
s dY ⊥s , 0 ≤ s ≤ T. (5.11)

Our financial market consists of a risk-free bank account yielding zero
interest and a traded risky asset S with dynamics

dSs = Ssµs ds+ Ssσs dWs, 0 ≤ s ≤ T, S0 > 0;

the drift µ and the (positive) volatility σ are G-predictable. We set λ := µ
σ

and assume that
∫ T

0
λ2
s ds is bounded. The processes

Ŵ := W +

∫
λ ds and Ŷ := Y +

∫
ρλ ds

are Brownian motions under the minimal martingale measure P̂ given by

dP̂

dP
:= E

(
−
∫
λ dW

)
T

:= exp

(
−
∫ T

0

λs dWs −
1

2

∫ T

0

λ2
s ds

)
. (5.12)

In contrast to Section 5.3, the investor here can trade in S without constraints.
He starts at time t with bounded Gt-measurable capital xt and runs a self-
financing strategy π = (πs)t≤s≤T so that his wealth at time s ∈ [t, T ] is

Xxt,π
s = xt +

∫ s

t

πr
Sr

dSr = xt +

∫ s

t

πrσr dŴr, (5.13)

where π represents the amount invested in S. For a bounded random vari-
able H, we define V H

t (xt) like V H,C
t (xt) in (5.4) with Gt instead of Ft and

ACt replaced by At which consists of all G-predictable real-valued processes
π = (πs)t≤s≤T which satisfy

∫ T
t
π2
sσ

2
s ds <∞ a.s. and are such that

exp(−γXxt,π
s ), t ≤ s ≤ T, is of class (D) on (Ω,GT ,G, P ). (5.14)

The dynamic value process V H and the indifference value hHt are defined
analogously to (5.5) and (5.6). From (5.7), we see that once we can calculate
V H
t and V 0

t , we also know hHt . So our focus lies on studying V H
t .
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We always impose without further mention the standing assumption that

H ∈ L∞(YT , P ) and λ, ρ are Y-predictable. (5.15)

This reflects a situation where the payoff H is driven by Y , whereas hedging
can only be done in S which is in general imperfectly correlated with Y .
We refer to Section 2.4.1 for a thorough explanation and motivation of the
standing assumption (5.15), which corresponds to case (I).

(
For case (II),

results analogous to those in Section 5.4.2 can be derived if ρ is predictable
for the filtration generated by Ŷ .

)
We next state a BSDE characterisation for V H .

Lemma 5.5. The BSDE

Γs = H −
∫ T

s

(1

2
γ(1− ρ2

r)Z
2
r − Zrρrλr −

λ2
r

2γ

)
dr +

∫ T

s

Zr dYr (5.16)

for 0 ≤ s ≤ T has a unique solution (Γ, Z) where Γ is a real-valued bounded
continuous (Y, P )-semimartingale and Z is a Y-predictable process such that
EP
[∫ T

0
Z2
s ds

]
<∞. Moreover, there exists a continuous version V H (which

we always use in the sequel) such that V H = − exp(−γΓ).

Lemma 5.5 is essentially well known. In particular, Proposition 4.17 gives
a multidimensional version. However, two assumptions of that proposition are
not satisfied in our setting; G is not necessarily generated by W and a Brown-
ian motion orthogonal to W , and |ρ| is not bounded away from 1. Instead of
adapting the proof of Proposition 4.17, we give the complete argument.

Proof of Lemma 5.5. Existence and uniqueness of a solution (Γ, Z) of (5.16)
follow from Theorem 5.1 with F := Y, M := −Y and

f(s, z) := −1

2
γ(1− ρ2

s)z
2 + zρsλs +

λ2
s

2γ
for s ∈ [0, T ] and z ∈ R.(

Since any Y-martingale orthogonal to Y is constant, we can choose in (5.1)
β ∈ R arbitrarily.

)
Moreover, Proposition 7 of Mania and Schweizer [44] and

its proof yield that
∫
Z dY is in both BMO(Y, P ) and BMO(G, P ).

To establish the result, it remains to show V H
t = − exp(−γΓt). A simple

calculation based on (5.13) and (5.16) yields for π ∈ At that

exp
(
−γX0,π

s

)
= exp(γΓs − γΓt)

E
(∫

γZ dY −
∫
γπσ dW

)
s

E
(∫

γZ dY −
∫
γπσ dW

)
t

× exp

(
1

2

∫ s

t

(γρrZr + λr − γπrσr)2 dr

)
(5.17)

≥ exp(γΓs − γΓt)
E
(∫

γZ dY −
∫
γπσ dW

)
s

E
(∫

γZ dY −
∫
γπσ dW

)
t

, t ≤ s ≤ T.
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Therefore, if
∫
πσ dW ∈ BMO(G, P ), we obtain

EP
[
exp
(
−γX0,π

T − γH
)∣∣Gt] ≥ exp(−γΓt), (5.18)

since the stochastic exponential of a continuous BMO-martingale is a true
martingale by Theorem 2.3 of Kazamaki [40]. By a localisation argument and
(5.14), we have (5.18) for every π ∈ At, which implies V H

t ≤ − exp(−γΓt).
Equality in (5.18) holds for π = π? := ρ

σ
Z + λ

γσ
. Since exp

(
−γX0,π?

)
is by

(5.17) the product of a bounded process and a (G, P )-martingale, it is of
class (D) on (Ω,GT ,G, P ); hence π? ∈ At and V H

t = − exp(−γΓt).

Although V H is given in terms of the solution of (5.16), there is no com-
putable formula available for V H

t unless ρ is deterministic and constant in
time. While the methods in Chapters 2 and 4 give bounds for V H

t , we approx-
imate in the subsequent sections V H

t by approaching ρ by piecewise constant
processes. Let us denote by Ξ the set of all processes q of the form

q = q11{τ0} +
n∑
j=1

qj1]]τj−1,τj ]], for t = τ0 ≤ τ1 ≤ · · · ≤ τn = T,

where τj is a Y-stopping time and qj is a Yτj−1
-measurable random variable

valued in ]−1, 1[. We call (qj, τj)j=1,...,n a characterising sequence of q.

Proposition 5.6. Let q be a bounded Y-predictable process. The BSDE

Γqs = H −
∫ T

s

(1

2
γ(1− q2

r)|Zq
r |2 − Zq

rρrλr −
λ2
r

2γ

)
dr +

∫ T

s

Zq
r dYr (5.19)

for 0 ≤ s ≤ T has a unique solution (Γq, Zq) (in the sense of Lemma 5.5).
1) If q ∈ Ξ with characterising sequence (qj, τj)j=1,...,n, then

e−γΓqt = EP̂

[
· · ·EP̂

[
EP̂

[
eĤ(1−|qn|2)

∣∣∣Yτn−1

]1−|qn−1|2

1−|qn|2
∣∣∣∣Yτn−2

]1−|qn−2|2

1−|qn−1|2

· · ·

∣∣∣∣∣Yt
] 1

1−|q1|2

,

(5.20)
where Ĥ := −γH − 1

2

∫ T
t
λ2
s ds.

2) If |q| ≥ |ρ| (P⊗Leb)-almost everywhere, then V H ≤ − exp(−γΓq).
3) If |q| ≤ |ρ| (P⊗Leb)-almost everywhere, then V H ≥ − exp(−γΓq).

If ρ itself is in Ξ, Proposition 5.6 gives explicit formulas for V H
t and hHt by

choosing q = ρ and using (5.7). For general ρ, the idea is to find a sequence
(qn)n∈N in Ξ which converges pointwise to ρ. The solutions Γq

n

t of (5.19) with
q = qn have the explicit form (5.20) and converge a.s. to the solution Γt = Γρt
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of (5.16) by Theorem 5.1. We thus obtain an explicitly known sequence
converging a.s. to V H

t . The only open point, which we treat in Section 5.4.2,
is whether we can find a sequence (qn)n∈N in Ξ which converges pointwise to ρ.

Note that the right-hand side of (5.20) is not the value of V H
t in a model

with correlation q instead of ρ. Comparing (5.19) with (5.16), we see that
only the ρ in front of |Z|2 is replaced by q; the ρ in the term linear in Z is kept.
This implies that the measure used in the iterated expectations in (5.20) is
P̂ , which does not depend on q— a property desired for the above-mentioned
approximation of V H

t , since we prefer to take always the same explicitly known
measure in calculating the conditional expectations. If we replace ρ in (5.19)
by q, the solution of the BSDE is linked to the value of V H

t when ρ is replaced
by q. In Section 5.4.3, we deduce from this a continuity property of V H

t in ρ.
Parts 2) and 3) of Proposition 5.6 can be seen as a monotonicity property

of V H
t . However, since ρ still appears in (5.19), we cannot simply say that V H

t

is monotonic in |ρ|. This has already been pointed out in Section 2.5 by say-
ing that V H

t is monotonic in |ρ| only when the measure P̂ from (5.12), which
depends via W on ρ, is kept fixed. Proposition 2.14 gives a result analogous to
parts 2) and 3) of Proposition 5.6 when |q| and |ρ| can be separated by a con-
stant. Proposition 5.6 shows that this additional assumption is superfluous
and thus generalises Proposition 2.14 as announced in Remark 2.15.

Proof of Proposition 5.6. Like in the proof of Lemma 5.5, (5.19) has a unique
solution (Γq, Zq) and

∫
Zq dY ∈ BMO(Y, P ). Theorem 3.6 of Kazamaki [40]

yields
∫
Z dŶ ,

∫
Zq dŶ ∈ BMO

(
Y, P̂

)
for the solution (Γ, Z) of (5.16), and

as a consequence, their stochastic exponentials are true martingales.
To prove 1), we fix j ∈ {1, . . . , n} and write (5.19), for τj−1 ≤ s ≤ τj as

Γqs = Γqτj +
1

2γ

∫ τj

s

λ2
r dr − 1

2
γ(1− |qj|2)

∫ τj

s

|Zq
r |2 dr +

∫ τj

s

Zq
r dŶr,

which implies

e−γ(1−|qj |2)Γqτj−1 exp

(
γ(1− |qj|2)

∫ τj

τj−1

Zq
r dŶr −

1

2
γ2(1− |qj|2)2

∫ τj

τj−1

|Zq
r |2 dr

)
= exp

(
−γ(1− |qj|2)Γqτj −

1− |qj|2

2

∫ τj

τj−1

λ2
r dr

)
.

Taking
(
Yτj−1

, P̂
)
-conditional expectations and logarithms yields

Γqτj−1
= − 1

γ(1− |qj|2)
logEP̂

[
exp

(
−γΓqτj −

1

2

∫ τj

τj−1

λ2
r dr

)1−|qj |2∣∣∣∣Yτj−1

]
.
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Using this argument iteratively for j = n, . . . , 1 results in (5.20).
To prove 2), we subtract (5.16) from (5.19), which gives

Γqs − Γs =
1

2
γ

∫ T

s

(
(1− ρ2

r)|Zr|2 − (1− q2
r)|Zq

r |2
)

dr +

∫ T

s

(Zq
r − Zr) dŶr

≥ 1

2
γ

∫ T

s

(1− ρ2
r)
(
|Zr|2 − |Zq

r |2
)

dr +

∫ T

s

(Zq
r − Zr) dŶr

=

∫ T

s

(Zq
r − Zr)

(
dŶr − κr dr

)
, 0 ≤ s ≤ T, (5.21)

with κ := 1
2
γ(1 − ρ2)(Zq + Z). The BMO

(
Y, P̂

)
-property of

∫
Z dŶ and∫

Zq dŶ implies that
∫
κ dŶ is in BMO

(
Y, P̂

)
, and by Theorem 3.6 of Kaza-

maki [40], the process
∫

(Zq − Z)
(
dŶ − κ dr

)
is thus also a BMO

(
Y, P̂ ′

)
-

martingale for the probability measure P̂ ′ given by dP̂ ′

dP̂
:= E

(∫
κ dŶ

)
T

. Tak-

ing
(
Ys, P̂ ′

)
-conditional expectations in (5.21) yields Γqs ≥ Γs for any s ∈ [0, T ],

which gives V H = − exp(−γΓ) ≤ − exp(−γΓq) by Lemma 5.5 and the conti-
nuity of Γ and Γq. The proof of 3) goes analogously to 2).

5.4.2 Approximating the indifference value

As explained after Proposition 5.6, the question whether V H
t is the a.s. limit

of an explicitly known sequence boils down to whether it is possible to find a
sequence (qn)n∈N in Ξ which converges pointwise to ρ. We start with the case
where ρ is deterministic, give afterwards a counterexample to the possibility
of approximating V H

t , and conclude with a result for general (stochastic) ρ.

Deterministic correlation

The approximation of ρ with piecewise constant processes is reminiscent of
the construction of the Riemann integral. We recall that a bounded function
g : [t, T ]→ R is called Riemann integrable if there exists J ∈ R such that for
every ε > 0, there exists δ > 0 such that∣∣∣∣J − n∑

j=1

g(sj)(tj − tj−1)

∣∣∣∣ < ε

for every partition (t0, . . . , tn) of [t, T ] with max1≤j≤n(tj− tj−1) < δ and every
choice of sj ∈ [tj−1, tj].

The following result, which is shown on page 29 of Lebesgue [43], is known
as Lebesgue’s theorem.
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Lemma 5.7. A bounded function g : [t, T ]→ R is Riemann integrable if and
only if it is Lebesgue-almost everywhere continuous on [t, T ].

We now come to the convergence result for V H
t when ρ is deterministic.

Theorem 5.8. Assume that ρ is deterministic, Riemann integrable and val-
ued in ]−1, 1[, and recall Ĥ = −γH − 1

2

∫ T
t
λ2
s ds. Then for every sequence

(tn0 , . . . , t
n
`n

)n∈N of partitions of [t, T ] with limn→∞
(
max1≤j≤`n(tnj − tnj−1)

)
= 0

and every choice of sj ∈ [tnj−1, t
n
j ] (the dependence of sj on n is omitted for

notational reasons),

−EP̂

[
· · ·EP̂

[
EP̂

[
eĤ(1−ρ2

s`n
)
∣∣∣Ytn`n−1

]1−ρ2s`n−1

1−ρ2
s`n

∣∣∣∣Ytn`n−2

]1−ρ2s`n−2

1−ρ2
s`n−1 · · ·

∣∣∣∣∣Yt
] 1

1−ρ2
s1

(5.22)

converges to V H
t a.s. If (νn)n∈N = (tn0 , . . . , t

n
`n

)n∈N is a sequence of partitions
of [t, T ] with νn ⊆ νn+1, n ∈ N, and limn→∞

(
max1≤j≤`n(tnj − tnj−1)

)
= 0, then

−EP̂

[
· · ·EP̂

[
EP̂

[
eĤ(1−ρ2n,`n )

∣∣∣Ytn`n−1

]1−ρ2n,`n−1

1−ρ2
n,`n

∣∣∣∣Ytn`n−2

]1−ρ2n,`n−2

1−ρ2
n,`n−1 · · ·

∣∣∣∣∣Yt
] 1

1−ρ2n,1

with ρn,j := infs∈[tnj−1,t
n
j ] |ρs| (or ρn,j := sups∈[tnj−1,t

n
j ] |ρs|) is a nondecreasing

(or nonincreasing) sequence which converges to V H
t a.s.

Proof. Fix n ∈ N and let (Γq
n
, Zqn) be the solution of the BSDE (5.19) with

q = qn :=
∑`n

j=1 ρsj1]tnj−1,t
n
j ]. By 1) of Proposition 5.6, − exp

(
−γΓq

n

t

)
equals

(5.22), and we show that this converges to V H
t a.s. Because ρ is Riemann

integrable, Lemma 5.7 yields limn→∞ |qns | = |ρs| for a.a. s ∈ [t, T ]. From
Theorem 5.1 and Lemma 5.5 follows that − exp

(
−γΓq

n

t

)
converges to V H

t a.s.
The second part of Theorem 5.8 follows analogously, with qn replaced by∑`n

j=1 ρn,j1]tnj−1,t
n
j ], using additionally parts 2) and 3) of Proposition 5.6.

Let us mention two straightforward generalisations of Theorem 5.8. The
convergence still works if ρ itself is not Riemann integrable, but ρ equals
Lebesgue-almost everywhere a Riemann integrable function ρ̃. One simply
replaces ρ by ρ̃ in Theorem 5.8, and uses V H

t = − exp(−γΓρt ) = − exp
(
−γΓρ̃t

)
a.s. for the solutions (Γρ, Zρ) and (Γρ̃, Z ρ̃) of the BSDE (5.19) with q = ρ and
q = ρ̃, respectively. An example for such a pair of ρ and ρ̃ is ρ = 1

2
1Q∩[t,T ]

and ρ̃ = 0.
In the first part of Theorem 5.8, one can easily get rid of the restriction

that ρ is valued in ]−1, 1[. To this end, one replaces |ρsj | by |ρsj | ∧ (1− 1/n)
in (5.22), and uses for the proof that

∑`n
j=1 |ρsj | ∧ (1 − 1/n)1]tnj−1,t

n
j ] con-

verges pointwise to |ρ| since the correlation ρ is valued in [−1, 1]. The
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same procedure works for the second part of Theorem 5.8, but the sequence
of iterated expectations with ρn,j := sups∈[tnj−1,t

n
j ] |ρs| ∧ (1− 1/n) instead of

ρn,j := sups∈[tnj−1,t
n
j ] |ρs| is no longer nonincreasing.

Further comments on Theorem 5.8 are given in the next remark.

Remark 5.9. 1) One can show that the a.s. convergence of (5.22) to V H
t

holds uniformly with respect to the partitions. In more detail, we denote by
gt(∆

n, ~s n) the random variable given by the iterated conditional expectation
in (5.22), where the pair (∆n, ~s n) =

(
(tn0 , . . . , t

n
`n

), (s1, . . . , s`n)
)

is called a
tagged partition of [t, T ] with mesh |∆n|. The first part of Theorem 5.8
yields limn→∞ gt(∆

n, ~s n) = V H
t a.s. In the Appendix, we sketch the proof of

the more general result

lim
ε↘0

ess sup
(∆,~s ): |∆|<ε

∣∣gt(∆,~s )− V H
t

∣∣ = 0 a.s., (5.23)

where the essential supremum is taken over all tagged partitions (∆,~s ) of
[t, T ] with mesh |∆| < ε.

2) For q valued in [−1, 1], the generator of (5.19) is concave in Zq
r , and we

can apply to (−Γq, Zq) the convergence result of Briand and Hu [12]. Recall
(Γq

n
, Zqn) from the proof of Theorem 5.8, and let (Γ, Z) be the solution of

(5.16). Proposition 7 of [12] yields for every p ≥ 1 that

lim
n→∞

EP

[
exp

(
sup
s∈[t,T ]

∣∣Γqns − Γs
∣∣)p +

(∫ T

t

∣∣Zqn

s − Zs
∣∣2 ds

)p/2]
= 0. (5.24)

From the proof of Lemma 5.5, we have that the optimiser π? for V H
t is given

by π? = ρ
σ
Z + λ

γσ
. If σ is uniformly bounded away from zero, (5.24) implies

for every p ≥ 1 that limn→∞EP

[(∫ T
t

∣∣ ρs
σs
Zqn

s + λs
γσs
− π?s

∣∣2 ds
)p/2]

= 0.

3) Assume that ρ is deterministic and the one-sided limits limr↗s ρr for
all s ∈ ]t, T ] and limr↘s ρr for all s ∈ [t, T [ exist. This condition is a bit more
restrictive than the assumption of Theorem 5.8. Fix n ∈ N and define by

tn0 := t, tnj := inf
{
s > tnj−1 :

∣∣∣ρs − lim
r↘tnj−1

ρr

∣∣∣ > 1/n
}
∧ T, j ∈ N,

a partition of [t, T ], noting that there is `n ∈ N such that tn`n = T by a com-

pactness argument. For every sj ∈ ]tnj−1, t
n
j [, qn =

∑`n
j=1 ρsj1]tnj−1,t

n
j ] converges

to ρ in L∞(Leb, [t, T ]) as n→∞. For this uniform convergence, Corollary 5.2
yields convergence results in addition to that from Theorem 5.8. ♦
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A counterexample

We have seen that V H
t is the a.s. limit of an explicitly known sequence if

ρ equals almost everywhere a Riemann integrable function. In particular,
the choice of a nondecreasing sequence of partitions in Theorem 5.8 allows
us to approximate V H

t from above and below. We give here an example of
a correlation process which is not almost everywhere equal to a Riemann
integrable function and where indeed the approximations of V H

t in the sense
of Theorem 5.8 from above and below are not possible.

We take for simplicity t = 0, T = 1, γ = 1, µ ≡ 0 and σ ≡ 1. Let
C ⊆ [0, 1] be the “fat” Cantor set with Lebesgue measure 1/2. This set,
which is also known as Smith-Volterra-Cantor set, is constructed iteratively
as follows: Start by removing ]3/8, 5/8[ from the interval [0, 1]; in the n-th
step, remove subintervals of width 1/22n from the middle of each of the 2n−1

intervals. If we continue like this, C consists of all points in [0, 1] that are
never removed. Because C is the complement of a countable union of open
intervals, it is Borel measurable. Moreover, it is well known that C is nowhere
dense, yet has Lebesgue measure 1/2. We assume that the correlation ρ is
given by ρ = 1

2
1C∩[0,1/2] + 1

2
1Cc∩]1/2,1] and H := Y1. Since Y1 is not bounded,

we have to adjust slightly the definition of admissible strategies: Instead of
(5.14), we impose on π ∈ A0 that

(
exp(−X0,π

s − Y1)
)

0≤s≤T is of class (D).

(Alternatively, one could approximate Y1 by bounded random variables like
in the example in Section 2.5.) We claim that

sup
q∈Ξ,|q|≤ρ

Γq0 ≤ −15/32 < − log
(
−V H

0

)
= −7/16 < −13/32 ≤ inf

q∈Ξ,|q|≥ρ
Γq0,

where Γq is the solution of (5.19). This means that ρ cannot be approximated
by piecewise constant processes from above and below such that the corre-
sponding values converge to V H

0 . We first show V H
0 = − exp(7/16). For any

π ∈ A0 with bounded
∫ T

0
π2
s ds, we have

EP
[
U
(
X0,π

1 +H
)]

= −EP
[
exp

(
−
∫ 1

0

πs dWs − Y1

)]
= −EP

[
exp

(
−
∫ 1

0

πs dWs − Y1 −
1

2

〈∫
π dW + Y

〉
1

+
1

2

∫ 1

0

(
(πs + ρs)

2 + 1− ρ2
s

)
ds

)]
≤ −EP

[
exp

(
−
∫ 1

0

πs dWs − Y1 −
1

2

〈∫
π dW + Y

〉
1

)]
× exp

(
1

2

∫ 1

0

(
1− ρ2

s

)
ds

)
,
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which implies

EP
[
U
(
X0,π

1 +H
)]
≤ − exp

(
1

2

∫ 1

0

(
1− ρ2

s

)
ds

)
= − exp(7/16) (5.25)

since Leb
(
C∩[0, 1/2]

)
= Leb

(
Cc∩]1/2, 1]

)
= 1/4. Equality in (5.25) holds for

π = −ρ ∈ A0. Because of the class (D) condition on
(
exp(−X0,π

s − Y1)
)

0≤s≤T
for any π ∈ A0, we obtain V H

0 = − exp(7/16) by a localisation argument. To
prove supq∈Ξ,|q|≤ρ Γq0 ≥ −15/32, we note that q ∈ Ξ, |q| ≤ ρ implies q ≡ 0 on
[0, 1/2] since C does not contain any nontrivial intervals. By 3) of Proposi-
tion 5.6 with ρ replaced by ρ̃ := ρ1]1/2,1] = 1

2
1Cc∩]1/2,1], we have

sup
q∈Ξ,|q|≤ρ

Γq0 ≤ Γρ̃0,

and a calculation similar to (5.25) shows Γρ̃0 = −15/32, using that by Lemma
5.5, − exp

(
−Γρ̃0

)
equals V H

0 with ρ replaced by ρ̃. Similarly, we obtain

inf
q∈Ξ,|q|≥ρ

Γq0 ≥ Γρ̂0 = −13/32,

where ρ̂ := ρ1[0,1/2] + 1
2
1]1/2,1] = 1

2
1C∩[0,1/2] + 1

2
1]1/2,1].

Stochastic correlation

When ρ is stochastic, we cannot approximate V H
t from above and below like

in Theorem 5.8. However, we still have a convergence result for V H
t if ρ is

left-continuous.

Theorem 5.10. Assume that ρ is on ]]t, T ]] left-continuous and valued in
]−1, 1[. Then for every sequence (t = τn0 ≤ · · · ≤ τn`n = T )n∈N of [t, T ]-valued
Y-stopping times with limn→∞

(
max1≤j≤`n(τnj − τnj−1)

)
= 0 a.s.,

−EP̂

[
· · ·EP̂

[
EP̂

[
e
Ĥ(1−ρ2

τn
`n−1

)
∣∣∣Yτn`n−1

]1−ρ2τn`n−2

1−ρ2
τn
`n−1

∣∣∣∣Yτn`n−2

]1−ρ2τn`n−3

1−ρ2
τn
`n−2 · · ·

∣∣∣∣∣Yt
] 1

1−ρ2t

(5.26)

converges to V H
t a.s.

Proof. Fix n ∈ N and let (Γq
n
, Zqn) be the solution of the BSDE (5.19)

with q = qn :=
∑`n

j=1 ρτnj−1
1]]τnj−1,τ

n
j ]], which is Y-predictable. By 1) of Propo-

sition 5.6, − exp
(
−γΓq

n

t

)
equals (5.26). We have limn→∞ q

n
s (ω) = ρs(ω) for

a.a. (ω, s) ∈ [[t, T ]] by the left-continuity of ρ, and from Theorem 5.1 and
Lemma 5.5 it follows that − exp

(
−γΓq

n

t

)
converges to V H

t a.s.
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In the same way as Theorem 5.8, one can slightly generalise Theorem 5.10
to the case where ρ equals (P⊗Leb)-a.e. a (P⊗Leb)-a.e. left-continuous pro-
cess, and one can get rid of the assumption that ρ is valued in ]−1, 1[.

Remark 5.11. The assumption from Section 5.4.1 that
∫ T

0
λ2
s ds is bounded

can be slightly weakened. Theorem 5.10 still holds if
∫
λ dW ∈ BMO(G, P )

and

sup
s∈[0,T ]

∥∥∥∥EP[exp

(∫ T

s

(1 + ρ2
r)λ

2
r dr

)∣∣∣∣Gs]∥∥∥∥
L∞

<∞. (5.27)

By the John-Nirenberg inequality (see Theorem 2.2 of Kazamaki [40]), (5.27)
is satisfied if, for example, the BMO2(G, P )-norm of

∫
λ dW is less than

1/
√

2. In the Appendix, we sketch the proof of this slight generalisation of
Theorem 5.10. ♦

5.4.3 Continuity of the value process in the correlation

This short section exploits the convergence Theorem 5.1 to show a continuity
property of V H in ρ.

Let us introduce more precise notations by writing (5.11) as

dWs(ρ̃) = ρ̃s dYs +
√

1− ρ̃2
s dY ⊥s , 0 ≤ s ≤ T

for a G-predictable process ρ̃ denoting the instantaneous correlation between
the (G, P )-Brownian motions W (ρ̃) and Y so that W = W (ρ). We replace
in all definitions W by W (ρ̃) and write Ŵ (ρ̃), V H(ρ̃), etc. V H(ρ̃) is then the
dynamic value process for a stochastic control problem when the correlation
between the underlying Brownian motions W (ρ̃) and Y is ρ̃. Note that if we
change ρ̃, only W (ρ̃) and all expressions depending on it will change. This is
reasonable; clearly H and Y should not be affected.

Proposition 5.12. Let (ρn)n∈N be a sequence of Y-predictable [−1, 1]-valued
processes which converge pointwise to ρ on [[t, T ]]. Then V H

t (ρn) converges to
V H
t = V H

t (ρ) P -a.s. as n → ∞. Moreover, sups∈[t,T ]

∣∣V H
s (ρn)− V H

s

∣∣→ 0 as
n→∞ in P -probability and in Lp(P ), 1 ≤ p <∞.

Proof. This follows from Lemma 5.5 and Theorem 5.1, using additionally the
same argument as in the last part of the proof of Proposition 5.3 to show the
second statement.

Proposition 5.12 can be generalised to a multidimensional setting where
W and Y are stochastically correlated multidimensional Brownian motions.
But we give no details since this provides no essential new insights.
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5.5 Appendix: Proofs of the convergence re-

sults

Proof of Theorem 5.1. By Theorems 2.5 and 2.6 of Morlais [46], there ex-
ist unique solutions (Γn, Zn, Nn) to (5.1) with parameters (fn, βn, Hn) for
n = 1, . . . ,∞. Moreover, Lemma 3.1 of Morlais [46] implies that Γn and the
BMO(P )-norms of

∫
Zn dM and Nn are bounded uniformly in n = 1, . . . ,∞.

(Theorems 2.5, 2.6 and Lemma 3.1 of [46] do not use the assumption in Sec-
tion 2.1 of [46] that a.s., the matrix msm

′
s is invertible for every s ∈ [0, T ].)

We now subtract (5.1) with parameters (f∞, β∞, H∞) from that with
parameters (fn, βn, Hn) for a fixed n ∈ N to obtain, for 0 ≤ s ≤ T ,

Γns − Γ∞s

= Hn −H∞ +

∫ T

s

(
fn(r, Zn

r )− f∞(r, Z∞r )
)

dDr −
∫ T

s

(Zn
r − Z∞r ) dMr

+
βn

2

(
〈Nn〉T − 〈Nn〉s

)
− β∞

2

(
〈N∞〉T − 〈N∞〉s

)
−
∫ T

s

d(Nn −N∞)r

=
βn − β∞

2

(
〈N∞〉T − 〈N∞〉s

)
−
∫ T

s

(Zn
r − Z∞r )

(
dMr − d〈M〉rgnr

)
+Hn −H∞ −

∫ T

s

(
d(Nn −N∞)r −

βn

2
d〈Nn −N∞, Nn +N∞〉r

)
+

∫ T

s

(
fn(r, Z∞r )− f∞(r, Z∞r )

)
dDr, (5.28)

where gn is defined for 0 ≤ s ≤ T by

gns :=

{
fn(s,Zns )−fn(s,Z∞s )
|m(Zns −Z∞s )|2 (Zn

s − Z∞s ) if |m(Zn
s − Z∞s )| 6= 0,

0 otherwise.

Due to the assumption (ii) of the theorem,
∫
gn dM is in BMO(P ) and its

BMO(P )-norm is uniformly bounded since the BMO(P )-norm of
∫
Zn dM

is bounded uniformly in n = 1, . . . ,∞. Therefore, taking conditional expec-
tations in (5.28) under the probability measure Qn given by

dQn

dP
:= E

(∫
gn dM +

βn

2
(Nn +N∞)

)
T

(5.29)

yields

Γns − Γ∞s =
βn − β∞

2
EQn

[
〈N∞〉T − 〈N∞〉s

∣∣Fs]+ EQn [Hn −H∞|Fs]

+ EQn

[∫ T

s

(
fn(r, Z∞r )− f∞(r, Z∞r )

)
dDr

∣∣∣∣Fs]. (5.30)
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Because the convergent sequence (βn)n=1,...,∞ is bounded, the BMO(P )-norm
of M̃n :=

∫
gn dM + βn

2
(Nn +N∞), which equals the stochastic logarithm of

the P -density process of Qn, is uniformly bounded in n = 1, . . . ,∞. There-
fore, Theorem 3.6 of Kazamaki [40] and continuity in s of EQn [〈N∞〉T |Fs]
and 〈N∞〉s imply∥∥∥∥ sup

n=1,...,∞
sup
s∈[0,T ]

EQn [〈N∞〉T − 〈N∞〉s|Fs]
∥∥∥∥
L∞(P )

<∞, (5.31)

and hence

lim
n→∞

sup
s∈[0,T ]

∣∣∣∣βn − β∞2
EQn

[
〈N∞〉T − 〈N∞〉s

∣∣Fs]∣∣∣∣ = 0 in L∞(P ). (5.32)

Since the BMO(P )-norm of M̃n is uniformly bounded in n, there exist by
Theorem 3.1 of Kazamaki [40] p > 1 and a constant Cp, which both do not
depend on n, such that for all n = 1, . . . ,∞

EQn

[(
E(M̃n)T

E(M̃n)s

)1/(p−1)
∣∣∣∣∣Fs
]

= EP

[(
E(M̃n)T

E(M̃n)s

)p/(p−1)
∣∣∣∣∣Fs
]
≤ Cp. (5.33)

Recall the constant c1 from the assumption (i) of the theorem and set

α :=
1

2pc1‖
∫
Z∞ dM‖2

BMO2(P ) + 1
. (5.34)

Using αx ≤ eαx − 1 for x ∈ R, the Hölder inequality and (5.33) yields

EQn

[∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

∣∣∣∣Fs]
≤ 1

α
EQn

[(
E(M̃n)T

E(M̃n)s

)1/p( E(M̃n)s

E(M̃n)T

)1/p(
eα

R T
s |f

n(r,Z∞r )−f∞(r,Z∞r )| dDr − 1
)∣∣∣∣Fs]

≤ 1

α
|Cp|(p−1)/pEP

[(
eα

R T
s |f

n(r,Z∞r )−f∞(r,Z∞r )| dDr − 1
)p∣∣∣Fs]1/p

. (5.35)

By the assumption (i), we have(
eα

R T
s |f

n(r,Z∞r )−f∞(r,Z∞r )| dDr − 1
)p

≤ exp

(
pα

∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

)
≤ exp

(
2pα

∥∥∥∥∫ T

0

κ1
r dDr

∥∥∥∥
L∞(P )

)
exp

(
2pc1α

∫ T

0

|mrZ
∞
r |2 dDr

)
,
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and the last expression is P -integrable by the definition (5.34) of α and the
John-Nirenberg inequality; see Theorem 2.2 of Kazamaki [40]. Therefore,
dominated convergence and (5.35) imply that for s ∈ [t, T ],

lim
n→∞

EQn

[∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

∣∣∣∣Fs] = 0 P -a.s. (5.36)

Similarly to (5.35), we obtain

EQn
[
|Hn −H∞|

∣∣Fs] ≤ |Cp|(p−1)/pEP

[(
e|H

n−H∞| − 1
)p∣∣∣Fs]1/p

, (5.37)

which again converges P -a.s. to zero by dominated convergence. Therefore,
(5.30), (5.32) and (5.36) give limn→∞ |Γns − Γ∞s | = 0 P -a.s. for every s ∈ [t, T ].

We obtain from (5.35) and the maximum inequality for martingales that,
for any ε ≥ 0,

εpP

[
sup
s∈[t,T ]

EQn

[∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

∣∣∣∣Fs] ≥ 1

α
|Cp|(p−1)/pε

]

≤ εpP

[
sup
s∈[t,T ]

EP

[(
eα

R T
s |f

n(r,Z∞r )−f∞(r,Z∞r )| dDr − 1
)p∣∣∣Fs]1/p

≥ ε

]
≤ εpP

[
sup
s∈[t,T ]

EP

[(
eα

R T
t |f

n(r,Z∞r )−f∞(r,Z∞r )| dDr − 1
)p∣∣∣Fs] ≥ εp

]
≤ EP

[(
eα

R T
t |f

n(r,Z∞r )−f∞(r,Z∞r )|dDr − 1
)p]

, (5.38)

which converges to zero as n →∞ by dominated convergence. Analogously,
we obtain from (5.37) that

εpP

[
sup
s∈[t,T ]

EQn
[
|Hn −H∞|

∣∣Fs] ≥ |Cp|(p−1)/pε

]
≤ EP

[(
e|H

n−H∞| − 1
)p]

,

(5.39)
which also converges to zero as n → ∞ by dominated convergence. All in
all, (5.30), (5.32), (5.38) and (5.39) show that sups∈[t,T ] |Γns − Γ∞s | converges
in P -probability to zero, and also convergence in Lp(P ), 1 ≤ p <∞, follows
since Γn is bounded uniformly in n.

Remark 5.13. To prove (5.36), one can also apply directly the energy in-
equalities instead of using the John-Nirenberg inequality. In fact, taking ` ∈ N
with ` ≥ p, we obtain from (5.33) and the Hölder inequality that

EQn

[∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

∣∣∣∣Fs]
≤ |Cp|(p−1)/pEP

[(∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

)`∣∣∣∣Fs]1/`

. (5.40)
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By the assumption (i), we have(∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

)`
≤
(

2

∫ T

0

κ1
r dDr + 2c1

∫ T

0

|mrZ
∞
r |2 dDr

)`
= 2`

∑̀
j=0

(
`

j

)(∫ T

0

κ1
r dDr

)`−j
|c1|j

〈∫
Z∞ dM

〉j
T

,

which is P -integrable since
∥∥ ∫ T

0
κ1
r dDr

∥∥
L∞(P )

<∞ and

EP

[〈∫
Z∞ dM

〉j
T

]
≤ j!

∥∥∥∥∫ Z∞ dM

∥∥∥∥2j

BMO2(P )

<∞, j ∈ N

by the energy inequalities; see the corollary to Theorem 4 of Kikuchi [41].
Dominated convergence and (5.40) now imply (5.36). ♦

Proof of Corollary 5.2. To show (5.3), it is by (5.30) and (5.31) enough to
prove the existence of a constant K > 0 such that

sup
s∈[t,T ]

EQn

[∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

∣∣∣∣Fs]
≤ K

(
‖an − 1‖L∞(P⊗D) + ‖an − 1‖L∞(P⊗D)

)
, n ∈ N.

But the assumption (v) implies

sup
s∈[t,T ]

EQn

[∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

∣∣∣∣Fs]
≤ ‖an − 1‖L∞(P⊗D) sup

s∈[t,T ]

EQn

[∫ T

s

∣∣f(r, Z∞r )
∣∣ dDr

∣∣∣∣Fs]
+ ‖an − 1‖L∞(P⊗D) sup

s∈[t,T ]

EQn

[∫ T

s

∣∣f(r, Z∞r )
∣∣ dDr

∣∣∣∣Fs],
and the conditional expectations are bounded in L∞(P ) uniformly in n ∈ N
and s ∈ [t, T ] by an argument similar to (5.31). So (5.3) is established, and
since its right-hand side converges to zero by the assumptions (iii)–(v), we
have sups∈[t,T ] |Γns − Γ∞s | → 0 in L∞(P ).

To show that
∫
Zn dM →

∫
Z∞ dM andNn → N∞ on [[t, T ]] in BMO(P ),

we apply Itô’s formula between a stopping time τ valued in [[t, T ]] and T , and
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use (5.28) to obtain

exp(Hn −H∞)− exp(Γnτ − Γ∞τ )

= −
∫ T

τ

eΓns−Γ∞s (Zn
s − Z∞s )

(
dMs − d〈M〉sgns

)
−
∫ T

τ

eΓns−Γ∞s

(
d(Nn −N∞)s −

βn

2
d〈Nn −N∞, Nn +N∞〉s

)
+

∫ T

τ

eΓns−Γ∞s

((
fn(s, Z∞s )− f∞(s, Z∞s )

)
dDs +

1

2
(βn − β∞) d〈N∞〉s

)
+

1

2

∫ T

τ

eΓns−Γ∞s
(
|ms(Z

n
s − Z∞s )|2 dDs + d〈Nn −N∞〉s

)
so that

EQn

[∫ T

τ

eΓns−Γ∞s
(
|ms(Z

n
s − Z∞s )|2 dDs + d〈Nn −N∞〉s

)∣∣∣∣Fτ]
= 2EQn

[
exp(Hn −H∞)− exp(Γnτ − Γ∞τ )

∣∣Fτ]
− 2EQn

[∫ T

τ

eΓns−Γ∞s
(
fn(s, Z∞s )− f∞(s, Z∞s )

)
dDs

∣∣∣∣Fτ]
+ (β∞ − βn)EQn

[∫ T

τ

eΓns−Γ∞s d〈N∞〉s
∣∣∣∣Fτ]

for Qn defined by (5.29). Using |ex − ey| ≤ max{ex, ey}|x − y| for x, y ∈ R
and that Γn − Γ is bounded uniformly in n, there is a constant k such that

EQn

[∫ T

τ

|ms(Z
n
s − Z∞s )|2 dDs

∣∣∣∣Fτ]+ EQn
[
〈Nn −N∞〉T − 〈Nn −N∞〉τ

∣∣Fτ]
≤ k‖Hn −H∞‖L∞(P ) + k

∥∥∥∥ sup
s∈[t,T ]

|Γns − Γ∞s |
∥∥∥∥
L∞(P )

+ kEQn

[∫ T

τ

∣∣fn(s, Z∞s )− f∞(s, Z∞s )
∣∣ dDs

∣∣∣∣Fτ]
+ k|β∞ − βn|EQn

[
〈N∞〉T − 〈N∞〉τ

∣∣Fτ].
Similarly to the first claim, this implies

sup
τ

∥∥∥∥EQn[∫ T

τ

|ms(Z
n
s − Z∞s )|2 dDs

∣∣∣∣Fτ]∥∥∥∥
L∞(Qn)

→ 0 and

sup
τ

∥∥∥EQn[〈Nn −N∞〉T − 〈Nn −N∞〉τ
∣∣Fτ]∥∥∥

L∞(Qn)
→ 0 as n→∞,

and then
∫
Zn dM →

∫
Z∞ dM and Nn → N∞ on [[t, T ]] in BMO(P ) as

n→∞ by Theorem 3.6 of Kazamaki [40].
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Sketch of the proof of (5.23) in Remark 5.9.1. To check (5.23), one first de-

duces from Lemma 5.7 that limε↘0 sup(∆,~s ):|∆|<ε
∣∣q(∆,~s )
r − ρr

∣∣ = 0 for Leb-a.a.

r ∈ [t, T ], where one sets q(∆,~s ) :=
∑`

j=1 ρsj1]tj−1,tj ] for any tagged partition

(∆,~s ) =
(
(t0, . . . , t`), (s

1, . . . , s`)
)
. Then one slightly generalises Theorem 5.1

in the sense that this uniform convergence of q(∆,~s ) in (∆,~s ) implies that the

corresponding solutions Γq
(∆,~s )

t of (5.19) converge a.s. to Γρt = − 1
γ

log
(
−V H

t

)
uniformly in (∆,~s ). In fact, one needs only to generalise (5.36), which goes
similarly to (5.35) by dominated convergence. Now one deduces (5.23) from

lim
ε↘0

ess sup
(∆,~s ): |∆|<ε

∣∣∣− 1

γ
log
(
−gt(∆,~s )

)
+

1

γ
log
(
−V H

t

)∣∣∣
= lim

ε↘0
ess sup

(∆,~s ): |∆|<ε

∣∣∣Γq(∆,~s )

t +
1

γ
log
(
−V H

t

)∣∣∣ = 0 a.s.

similarly to the last part of the proof of Proposition 5.3, using that −gt(∆,~s )

is bounded away from zero by e−‖Ĥ‖L∞(P ) uniformly in (∆,~s ).

Sketch of the proof of Remark 5.11. From Proposition 3 of Briand and Hu
[12] and Proposition 7 and Theorem 8 of Mania and Schweizer [44], one
deduces that for a [−1, 1]-valued Y-predictable process q, the BSDE (5.19)
still has a unique solution (Γq, Zq) where Γq is a real-valued bounded con-
tinuous (Y, P )-semimartingale and Zq is a Y-predictable process such that
EP
[∫ T

0
|Zq

s |2 ds
]
<∞. Furthermore,

∫
Zq dY is in both BMO(Y, P ) and

BMO(G, P ), and the BMO-norms are bounded uniformly with respect to
the [−1, 1]-valued q. Now one can proceed like in Lemma 5.5 and Propo-
sition 5.6 to obtain V H = − exp(−γΓρ) and (5.20). The argument is fin-
ished by applying Theorem 5.1, using that, under the assumption of uniform
boundedness of the BMO(F, P )-norms of

∫
Zn dM and Nn, the convergence

result can also be shown if in the assumptions (i) and (ii), one only has
supτ

∥∥EP [∫ Tτ κ1
s dDs

∣∣Fτ]∥∥L∞ < ∞ and supτ
∥∥EP [∫ Tτ |κ2

s|2 dDs

∣∣Fτ]∥∥L∞ < ∞
instead of

∥∥ ∫ T
0
κ1
s dDs

∥∥
L∞

<∞ and
∥∥ ∫ T

0
|κ2
s|2 dDs

∥∥
L∞

<∞, where the supre-
ma are taken over all F-stopping times τ .
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