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Abstract

We consider the optimal liquidation of a position of stock (long or
short) where trading has a temporary market impact on the price.
The aim is to minimize both the mean and variance of the order
slippage with respect to a benchmark given by the market VWAP
(volume weighted average price). In this setting, we introduce a new
model for the relative volume curve which allows simultaneously for
accurate data fit, economic justification and mathematical tractabil-
ity. Tackling the resulting optimization problem using a stochastic
control approach, we derive and solve the corresponding Hamilton-
Jacobi-Bellman equation to give an explicit characterization of the
optimal trading rate and liquidation trajectory.

Running title: Optimal execution of a VWAP order
Key words: Optimal trade execution, VWAP, HJB equation, gamma bridge

1 Introduction

In investment banks today algorithmic trading is rapidly becoming the pre-
ferred method for clients to acquire and liquidate positions of stock. Typ-
ically a computer based algorithm is used to buy (or sell) a position while
attempting to stick to a client selected benchmark. One of the oldest and
most popular of these algorithms is VWAP (volume weighted average price).
The popularity of the VWAP benchmark for both brokers and clients stems
from several reasons. Firstly, it is very simple to calculate, facilitating easy

∗The opinions and ideas expressed in this article are those of the authors alone, and do
not necessarily reflect the views of Deutsche Bank AG, its subsidiaries or affiliates. For
compliance reasons, all technical questions should be addressed solely to Christoph Frei.
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post-trade reporting. Secondly, it encourages the splitting of larger orders
into smaller orders, reducing demand for large liquidity and hence market
impact/volatility. Finally, given a time interval, it is considered a “fair”
benchmark price, in the language of [4], VWAP is a price which

“...is an unbiased estimate of prices that could be achieved by any
randomly selected nonstrategic trader.”

Beating market VWAP would thus be considered as a “good” execution, see
[25] for further detailed discussion.

The current article proposes a stochastic control approach to tackle the
question of how a broker should optimally schedule a VWAP benchmarked
trade. In reality the client specifies either a buy (or sell) quantity as well as a
start and end time and the broker must then acquire (liquidate) the position
attempting to minimize the mean and variance of the difference of the vol-
ume weighted price achieved with the market VWAP over the order lifetime
(slippage). The main motivation for the present research is attempting to
improve execution efficiency. Due to the huge notional volumes being traded
algorithmically, small gains arising from the application of results obtained
can lead to substantial increase in profits for both brokers and their clients.

The question of optimal execution with an arrival price benchmark is well
studied in the literature going back to [5], see also the seminal papers of Alm-
gren and co-authors [1], [2] and [3]. In contrast, perhaps due to the stochastic
nature of the benchmark, there is significantly less literature related to the
present problem. The first work in this area is the article by Konishi [23] who
derives the optimal execution trajectory for single and basket VWAP execu-
tions when the price is given by a Brownian motion. The strategy is then
assessed against actual trade data from the Tokyo stock exchange. Following
this article VWAP tracking has been attacked using a variety of different
methods. McCulloch and Kazakov [26] view it as a quadratic hedging prob-
lem under partial information whereas Kakade et al. [21] and Bia lkowski et
al. [6] use online learning and dynamic volume approaches and Humphery-
Jenner [20] gives a VWAP trading rule which takes intraday noise into con-
sideration. Finally Bouchard and Dang [8] formulate it as a stochastic target
problem and derive a viscosity solution characterization of the value function.
Note that the above articles (excluding [8]) do not take into account the mar-
ket impact of a trade and none of them impose any parametric structure on
the intraday volume curve.

The present article has several contributions. Firstly, we extend previ-
ous literature in this area by allowing for a linear temporary market impact
model. More general models of price impact have been studied both theoret-
ically, e.g. by Gatheral [14], and empirically, e.g. by Bouchaud et al. [9] (see
Gatheral and Schied [16] for a good overview) however the linear model leads
to a tractable problem. Secondly, we provide a parametric model for relative
volume which fits real data well, reflecting meaningful underlying economic
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assumptions and simultaneously being tractable enough to perform optimiza-
tion. Finally, although the optimization problem is involved due to the use of
VWAP as benchmark, we are able to explicitly characterize the optimal con-
trol thus providing a closed-form solution for the optimal trading rate. This
final result opens up, for the first time, a rigorous mathematical approach
to the determination of commission for guaranteed VWAP trades, similar to
that done for Implementation Shortfall in [2].

The paper is organized as follows. In the next section, we introduce
and justify our model which uses VWAP as a benchmark in optimal trade
execution. We present the main result in Section 3, Theorem 3.1, which
provides the explicit solution for the optimal trading rate. Deferring the
proof to Section 5, we explain in Section 3 two crucial properties of the
optimal trading rate. Its sign can switch only once from negative to positive
and never the other way, and the optimal trading rate can be decomposed
into two parts, with one being a deterministic TWAP (time weighted average
price) strategy and the other reflecting the adjustment necessary due to jumps
in the relative volume curve. In Section 4, we show and discuss how well the
parametric model fits to trading volume.

2 A Framework for Using a VWAP Bench-

mark

Here we describe the model formulation and the key assumptions. We begin
with our trading strategies, without loss of generality we consider a buy
program for Y shares. The situation of a sell can be considered by reversing
the time.

2.1 Trading Costs

We are given a start and end time by the client which we assume (without
loss of generality) to be given by t0 = 0 and T , respectively. We must
complete the purchase of stock by T and will be benchmarked to the market
VWAP over the period [0, T ], for simplicity the reader may think of T = 1,
corresponding to a day VWAP order. As is standard in the literature, we
work on a filtered probability space (Ω,F , (Ft)0≤t≤T , P ) satisfying the usual
hypotheses of right continuity and completeness, and we denote by Xu(t) our
share holdings at t where the trading strategy u is an adapted and integrable
process typically referred to as trading rate. In particular our holdings evolve
according to

dXu(t) = u(t) dt, Xu(0) = 0, Xu(T ) = Y.

The asset price process
(
P (t)

)
0≤t≤T is assumed to be an arithmetic Brown-

ian motion
P (t) = P (0) + σW (t),
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where σ > 0 represents the daily volatility in dollars and
(
W (t)

)
0≤t≤T is a

standard Brownian motion on (Ω,F , (Ft)0≤t≤T , P ). Using an arithmetic as
opposed to a geometric Brownian motion in the present setup is possible since
we are considering an intraday trading horizon, so that P (t) is negative with
an extremely small probability and there are negligible differences between
the two models, see Gatheral and Schied [15].

As is well known, when we trade, we do not realize the above price P (t)
(which could be thought of as the midquote) but instead we pay

P u(t) = P (t) + κu(t),

where κ is the coefficient of the linear (temporary) market impact model.
It represents an instantaneous linear premium on the price due to how fast
we trade. This model (amongst many more complicated ones) is studied
in detail in the literature, see Gatheral [14] or Bouchaud et al. [9]. The
linear form is necessary as it leads to quadratic trading costs which then
produces a tractable problem. However it is also important to note that given
the extremely low predictive accuracy of market impact models (typically <
5% R2), the cost of increased complexity arising from moving away from a
linear model would outweigh any gains from better describing market impact.
Moreover, a linear price impact is supported in the recent empirical study by
Cont et al. [11]. The above will introduce some dependence on impact into
the solution, which is its purpose.

Similarly to Section 1.1 of Almgren [1], our total expenditure TEu to buy
the shares Y using a control u is thus given by

TEu =

∫ T

0

P u(t) dXu(t) = Y P (0) + σ

∫ T

0

W (t)u(t) dt+ κ

∫ T

0

u2(t) dt,

where we applied the relation
∫ T
0
u(t) dt = Xu(T ) − Xu(0) = Y . Using

Xu(T ) = Y and that Xu is of finite variation, the product rule yields∫ T

0

W (t)u(t) dt =

∫ T

0

W (t) dXu(t) = −
∫ T

0

Xu(t) dW (t) + YW (T )

so that

TEu = Y P (0)− σ
∫ T

0

Xu(t) dW (t) + σYW (T ) + κ

∫ T

0

u2(t) dt. (1)

2.2 The VWAP Benchmark

Given a series of prices (Pi)i=1,...,N together with volumes (Vi)i=1,...,N executed
at those prices, the VWAP is defined to be

VWAP =

∑N
i=1 ViPi∑N
i=1 Vi

.
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If we define Ṽi =
∑i

j=1 Vj as the cumulative volume (with Ṽ0 = 0), we have

VWAP =

∑N
i=1(Ṽi − Ṽi−1)Pi

ṼN
≈
∫ T

0

P (t)
dṼ (t)

Ṽ (T )
.

In particular, to model VWAP, we need a continuous-time process for Ṽ (t)

Ṽ (T )
.

This will be nondecreasing and satisfy Ṽ (T )

Ṽ (T )
= 1 as well as Ṽ (0)

Ṽ (T )
= 0. A

natural process to use is the gamma bridge.

Definition 2.1. 1) A gamma process
(
L(t)

)
0≤t≤T is a process with indepen-

dent and identically distributed increments such that L(0) = 0 and L(t) is
gamma distributed with mean mtθ and variance mtθ2 for some m > 0, θ > 0.
2) For a gamma process

(
L(t)

)
0≤t≤T , the gamma bridge

(
γ(t)

)
0≤t≤T is de-

fined by γ(t) = L(t)
/
L(T ).

There are several reasons for our choice of modelling the intraday relative
volume curve by a gamma bridge. Firstly, we will see in Section 4 that our
model fits well to real stock data provided the stock is sufficiently liquidly
traded as well as being finite variation, like real data. Secondly, we can
think of the cumulative trading volume as analogous to the accumulation of
dam rain, similarly to Gani [13] considering the arrival of insurance claims as
analogous to the accumulation of dam rain. The latter can be modelled by
a gamma process as pointed out by Moran [27] so that similarly the relative
amount will be a gamma bridge. Finally, we can prove that the intraday
volume curve must be a gamma bridge if we assume that trading volume is
independent and stationarily distributed through the day and the relative
intraday volume is independent of the total volume. This link is based on
the following theoretical result on gamma processes.

Proposition 2.2. Let
(
L(t)

)
0≤t≤T be a Lévy process with L(T ) > 0 a.s. and

non-deterministic (i.e., P [L(T ) = c] < 1 for all c). Then the following are
equivalent:

(i) L is a gamma process;

(ii) there exists t ∈ (0, T ) such that L(T ) and L(t)/L(T ) are independent;

(iii) for all t ∈ [0, T ], L(T ) and L(t)/L(T ) are independent.

In particular, the proposition shows that the gamma process is the only
positive Lévy process whose intermediate relative values are independent of
the terminal value. We immediately get from Proposition 2.2 the following
application to the relative volume curve.

Corollary 2.3. Assume that the cumulative trading volume has indepen-
dent and stationary increments, its terminal value is non-deterministic and
strictly positive (i.e., trading happens a.s.) and the relative volume curve is
independent of the total trading volume. Then the cumulative volume is a
gamma process and the relative volume curve is a gamma bridge.
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The assumption that the relative volume curve is independent of the total
volume is not too unrealistic; it is hard to imagine that the relative volume
curve on a given day depends significantly on the total traded volume on
that day. This is supported by the left panel of Figure 1 for a major US
and European stock. A consequence of modelling volume with a gamma
process and prices with a Brownian motion is their mutual independence;
see Lemma 15.6 of Kallenberg [22]. The right panel of Figure 1 shows that
the intraday correlation between volume and price changes varies a lot but
is small on average. Hence it is difficult to incorporate in a model, leading
to only a small potential increase in performance and thus justifying the
independence assumption.
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Figure 1: Correlation between relative and total trading volume (left panel) and intraday
correlation between volume and price changes (right panel) for the stocks of Vodafone and
Microsoft during the first 100 trading days of 2012, using 5-minute intraday data.

Looking at the historical volume data and noting its episodic nature the
hypothesis that volume is independent and stationarily distributed through-
out the day is idealistic. However, we can think of the gamma bridge as a
zero-order approximation to the true relative volume curve, which would be
exact should such an assumption hold. This then provides a tractable basis
upon which one can incorporate more realistic features. As a final point, let
us note that the fit to actual data is sufficiently good to conclude that the
effect of deviation from such a hypothesis is (perhaps surprisingly) not too
severe.

Proof of Proposition 2.2. The implication “(i) =⇒ (iii)” is shown in Propo-
sition 3.2 of Brody et al. [10], and (iii) clearly implies (ii) so that it remains
to show “(ii) =⇒ (i)”. Let t ∈ (0, T ) be such that L(T ) and L(t)/L(T ) are
independent. Since L is a Lévy process, it is enough to show that L(t) is
gamma distributed. If we set A = L(t) and B = L(T )−L(t), we have that A,
B are strictly positive, non-deterministic and independent. By assumption,
A + B, A/(A + B) are independent, hence so are A + B, A/B by using the
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measurable mapping x 7→ x/(1− x). It follows from Lukacs’ proportion-sum
independence theorem [24] that both A and B have gamma distributions.

Since we will only consider a gamma bridge but not its underlying gamma
process, by scaling we can (and henceforth do) set θ = 1 without loss of
generality. Moreover, in the later simulations, we fix T = 1 and use m as the
model parameter. Under the assumption of gamma bridge for the relative
volume curve, the expenditure (in dollars) to buy Y shares of market VWAP
is given by

VWAP =

∫ T

0

P (t) d
(
Y γ(t)

)
= Y P (0) + σY

∫ T

0

W (t) dγ(t)

= Y P (0)− σY
∫ T

0

γ(t−) dW (t) + σYW (T ),

where we argued similarly to the derivation of (1). The VWAP benchmark
should be thought of as an average market price over the lifetime of the
order and it ignores the market impact because the mid quote represents a
reasonable estimate of the current fair market price. Observing that we can
scale by 1/Y , we thus can (and do) assume that the client wants to buy 1
share.

One may object to the model formulation in that L(T ) is unknown.
Whilst this is a valid objection, it misunderstands the objective of the present
article. All major brokers who engage in algorithmic trading require mod-
els for the intraday relative volume curve. The primary application for such
models is in the execution of VWAP and PVol (percentage of volume) orders.
When evaluating the viability of such a model in a trading application, one
can compare the performance when using the new model against that in the
“perfect information” case, modelled here by a gamma bridge. The frame-
work presented here allows closed-form solutions for this case and thus allows
new volume curve models to be assessed in a way relevant to their use rather
than just a pure goodness-of-fit test. A second benefit is in post-trade anal-
ysis, the solution presented here provides a broker independent benchmark
for the execution of VWAP trades allowing the scope for relative comparison
as well as the common absolute performance. We will address the issues of
comparing and evaluating different VWAP strategies in future work. In sum-
mary, the focus here is not a real-time (i.e. based on an adapted estimator
of relative volume) strategy for trading VWAP but rather an effort to set up
a framework in which one can get closed-form and implementable solutions
to the VWAP trading problem which are of use for setting upper bounds
on performance and providing broker independent benchmarks. As a conse-
quence, the filtration (Ft)0≤t≤T we are working with is such that the gamma
bridge

(
γ(t)

)
0≤t≤T and the Brownian motion

(
W (t)

)
0≤t≤T are adapted to it.

The reader will notice that our trading is not taken into account when
calculating the relative volume curve, so that it becomes exogenous. This
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is clearly a simplification and is effectively equivalent to assuming that the
(unnormalized) size Y is small relative to the total volume traded, i.e. that
we are dealing with small orders. Since typical algorithmically traded VWAP
orders are traded with an effective (when scaled to a day) size of 10–15% of
the daily volume this assumption is not too restrictive and hugely simplifies
the problem under consideration. As explained in Hu [19], who analyzes
the difference in VWAP with and without own trading, it might even be
desirable to exclude our own trading from the market VWAP calculation in
order to compare our performance with a benchmark which is not affected
by us. The interesting case of large VWAP trades (>50% daily volume) will
be considered elsewhere.

Remark 2.4. It is important to be precise about what is meant here by
“volume”. In recent years the number of trading facilities with visible order
books (lit venues) has increased substantially. For example in 2008 one could
only trade Vodafone Group PLC (VOD) on the LSE (its primary exchange)
whereas today one can trade this on BATS, CHI-X and Turquoise (amongst
others). Since most modern smart order routers are able to access these
MTFs (Multilateral Trading Facilities), it makes sense to consider everything
in a consolidated view, so that (for example) day volume in this article should
be understood as the total volume traded in a day on all (lit) venues. 3

2.3 Algorithm Performance

Now that the quantity of shares is normalized to Y = 1, our costs can be
thought of as per share in dollars. Our first aim is to minimize the expected
slippage, defined as

slipu = TEu − VWAP = σ

∫ T

0

(
γ(t−)−Xu(t)

)
dW (t) + κ

∫ T

0

u2(t) dt.

From a broker’s perspective, simply having small expected slippage, whilst
good, is not the sole goal. From a post-trade perspective, it will be necessary
to explain to clients why slippage was significantly far from that expected,
should that occur. Our second aim is therefore to attempt to minimize the
variance of the slippage. We use the approximation

Var[slipu] ≈ E

[(
σ

∫ T

0

(
γ(t−)−Xu(t)

)
dW (t)

)2]
= σ2E

[ ∫ T

0

(
γ(t)−Xu(t)

)2
dt

]
,

where we assumed for the last equation that
∫
Xu dW is a square integrable

martingale and used that γ is bounded and has only countably many jumps.
The main reason for this approximation is tractability, without this the

difficulty would be increased significantly. The mathematical reason for the
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difficulty of the original problem is its time inconsistency. As explained in
Section 1.2 of Björk and Murgoci [7], time inconsistence of mean-variance
problems of the form E[X] + λVar[X] is caused by the term (E[X])2 in
Var[X] = E[X2]− (E[X])2. While standard time consistent problems are al-
lowed to have expected values of nonlinear functions such as E[X2], the term
(E[X])2 is a nonlinear function of the expected value and not an expected
value of a nonlinear function. However, in our particular problem, the time
inconsistency is mild in the sense that the value of Var[slipu] is close to the

variance of
∫ T
0

(
γ(t)−Xu(t)

)
dW (t) which has zero mean, hence leading to a

time consistent formulation. Therefore, such an approximation is appropriate
in our situation.

Hence, we study the minimization of

κE

[ ∫ T

0

u2(t) dt

]
+ λσ2E

[ ∫ T

0

(
γ(t)−Xu(t)

)2
dt

]
as an approximation of the mean-variance problem

inf
u

(
E[slipu] + λVar[slipu]

)
for a given mean-variance tradeoff parameter λ > 0. In further justification
of this approximation we note that similar to Almgren [1] and Konishi [23]
it is the case that the main driver of Var[slipu] is typically the volume curve
γ and not the trading rate u, so that we capture the dominant term.

To get an idea of the approximation error, we used a Monte Carlo simula-

tion to compare Var[slipu] and σ2E
[ ∫ T

0

(
γ(t)−Xu(t)

)2
dt
]
. Our calculation

showed that, when using the optimal strategy û for the approximated prob-
lem from Theorem 3.1, the relative error

Var[slipû]− σ2E
[ ∫ T

0

(
γ(t)−X û(t)

)2
dt
]

Var[slipû]

was always very small. For example, choosing σ = 0.01, κ = 10−8 (see
Remark 2.5), λ = 1, m = 25 and T = 1, the relative error was less than
10−3 = 0.1 %.

Remark 2.5. It is a simple exercise to calibrate a market impact model and
determine κ, however as a first order approximation we simply use the trading
rule of thumb, see [14] (amongst others), that trading one day’s volume costs
approximately one day’s volatility in basis points. This is quite accurate
in most cases and suffices for our purposes. In particular this implies the
following relation for our linear impact model:

κ

∫ T

0

u2(t) dt ≈ σV

where V is the daily volume (shares) and σ is again the volatility in ($).
Assuming a linear execution for V (and noting T = 1), this reduces to κ ≈
σ
V
≈ 10−8 (for a stock like Vodafone). 3
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Dynamically formulated, the value function for the optimization problem
is given by

v(t, x, γ) = inf
u
E

[
κ

∫ T

t

u2(s) ds+ λσ2

∫ T

t

(
γ(s)−Xu(s)

)2
ds

]
, (2)

where
(
γ(s)

)
t≤s≤T is a gamma bridge with γ(t) = γ and the infimum is over

all adapted and integrable u with

dXu(s) = u(s) ds, Xu(t) = x, Xu(T ) = 1.

In conclusion, we are considering a mean-variance formulation of minimizing
slippage from VWAP.

Remark 2.6. The framework here is similar to the seminal paper of Almgren
and Chriss [2]. The key extra technical difficulty in the present case comes
from the switch from an arrival price benchmark (P (0)) to a VWAP bench-
mark (VWAP). This introduces extra stochastic complexity coming from the
gamma bridge.

Under a gamma bridge
(
γ(s)

)
t≤s≤T with γ(t) = γ we understand a process

of the form γ(s) = γ+ L(s)−L(t)
L(T )−L(t)(1−γ) for a gamma process L so that starting

with γ at t, we take the remaining part 1− γ proportional to the remaining
relative portion of L. Note that L(s)−L(t)

L(T )−L(t) , t ≤ s ≤ T , is again a gamma

bridge and independent of L(t)
L(T )

by page 673 of Émery and Yor [12].
The reader will notice that we have not considered auctions in the current

model. Indeed we have formulated the VWAP tracking problem for orders
executed in the so called “continuous” (non-auction) trading phase. For US
stocks it would be a reasonable approximation to simply ignore auctions, since
the average volumes traded there are a small percentage of total volume. In
Europe where auction volumes are typically much higher, one could imagine
a small modification to the above framework where a dynamic model would
be used to estimate the fractions executed in the open and close auction and
the above model could then be used to execute the remainder. Since the focus
of this article is not the prediction of auction volumes, we assume that the
historical mean values have been used and the total amount to be traded has
been reduced accordingly in a preliminary step so that the results presented
here apply equally to US and European stocks. 3

3 Main Result

Our main result is an explicit characterization of the value function v and
the optimal control in (2).

Theorem 3.1. The value function v is given by

v(t, x, γ) = a(t)x2 + b(t)γx+ c(t)x+ d(t)γ2 + f(t)γ + g(t)

10



for t ∈ [0, T ), x ≥ 0 and γ ∈ [0, 1] with the functions a, b, c, d, f, g : [0, T )→ R
defined by

a(t) =
√
κλσ2

e2T
√
λσ2/κ + e2t

√
λσ2/κ

e2T
√
λσ2/κ − e2t

√
λσ2/κ

, b(t) = −2a(t) +
2κ

T − t
, c(t) = − 2κ

T − t
,

d(t) =

∫ T

t

(
λσ2 − 1

4κ
b2(s)

) T − s
T − t

T − s+ 1/m

T − t+ 1/m
ds,

f(t) =
1

T − t

∫ T

t

(
b(s) + 2d(s)

T − s
T − s+ 1/m

)
ds,

g(t) = a(t)− (T − t)λσ2

−
∫ T

t

(
b(s)

2

(a(s)

κ
(T − s) + 1

)
− f(s)− d(s)/m

T − s+ 1/m

)
1

T − s
ds.

The optimal control û and the corresponding share holdings X̂ are given by

û(s) = − vx
2κ

(
s, X̂(s), γ(s)

)
= −2a(s)X̂(s) + b(s)γ(s) + c(s)

2κ
, (3)

X̂(s) = xe−
1
κ

∫ s
t a(r) dr − 1

2κ

∫ s

t

(
b(z)γ(z) + c(z)

)
exp

(
− 1

κ

∫ s

z

a(r) dr

)
dz.

We postpone the proof of Theorem 3.1 to Section 5 and instead give a
non-rigorous motivation.

Suppose we replace (2) by the approximate problem,

vn(t, x, γ) = inf
u
E

[
κ

∫ T

t

u2(s) ds+λσ2

∫ T

t

(
γ(s)−Xu(s)

)2
ds+n

(
Xu(T )−1

)2]
,

(4)
where the infimum is over all adapted and integrable u with

dXu(s) = u(s) ds, Xu(t) = x.

Observe now that Xu has no fixed terminal condition. Using that γ(./m)
is a gamma bridge on [tm, Tm] with underlying mean growth rate equal
to 1, it follows from Corollary 1 of Émery and Yor [12] that the infinitesimal
generator of the gamma bridge γ is given by

m

∫ 1

0

(
f
(
γ(t) +

(
1− γ(t)

)
z
)
− f

(
γ(t)

))
(1− z)Tm−tm−1

1

z
dz,

where f is a function on R+ with bounded variation on compacts. If we
assume that vn is sufficiently regular, it should satisfy

vnt + λσ2(γ − x)2 + inf
u∈R

(vnxu+ κu2)

+m

∫ 1

0

(
vn
(
t, x, γ + (1− γ)z

)
− vn(t, x, γ)

)
(1− z)Tm−tm−1

1

z
dz = 0,

vn(T, x, γ) = n(x− 1)2.
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Due to the quadratic structure, we propose the ansatz

vn(t, x, γ) = an(t)x2 + bn(t)γx+ cn(t)x+ dn(t)γ2 + fn(t)γ + gn(t).

After some algebra, we derive that an, . . . , gn should solve

ant −
1

κ
(an)2 + λσ2 = 0, an(T ) = n,

bnt −
1

κ
anbn − 2λσ2 − bnϕ0 = 0, bn(T ) = 0,

cnt + bnϕ0 −
1

κ
ancn = 0, cn(T ) = −2n,

dnt − 2dnϕ0 + dnϕ1 −
1

4κ
(bn)2 + λσ2 = 0, dn(T ) = 0,

fnt −
1

2κ
bncn + 2dnϕ0 − fnϕ0 − 2dnϕ1 = 0, fn(T ) = 0,

gnt −
1

4κ
(cn)2 + fnϕ0 + dnϕ1 = 0, gn(T ) = n,

where ϕ0(t) = 1
T−t and ϕ1(t) = 1

T−t −
1

T−t+1/m
. It is intuitively sensible

to expect that vn ↑ v as well as that an → a, bn → b etc. However if we
let n ↑ ∞ we would end up with difficult singular conditions in c and g.
To avoid this, observe that the ratio an(T )

cn(T )
and the difference an(T )− gn(T )

are all constant and independent of n. Due to the convergence we would
expect this to hold in the limit, this is precisely what the functions a, c and g
satisfy; see Lemma 5.1 below. A second justification is to see that as n ↑ ∞
the terminal condition behaves like a quadratic function in x with one root
at 1 which is infinite elsewhere. That is to say we have

lim
t↗T

(
a(t)x2 + c(t)x+ g(t)

)
= lim

t↗T
v(t, x, 0) =∞

for all x 6= 1. We thus expect that g behaves like a, and c behaves like −2a
for t↗ T , again consistent with Lemma 5.1.

Remark 3.2. Note that our main result gives explicit formulae for both the
optimal trading rate û and the optimal holdings X̂. This desirable formula
for X̂ is due to our requirement that the holdings be absolutely continuous
with respect to t. In contrast, this is not enforced in McCulloch and Kazakov
[26] so that one may not directly compare their results with ours.

Observe that the optimal trading rate depends on the volume curve but
not on the price process. We give some intuition as to why this is a natural
consequence of using a VWAP optimization criterion together with a Brown-
ian price process. When comparing the VWAPs of two strategies, only price
movements but not the absolute level of the price process are relevant. Since
in our model the price movements are independent from past prices (they are
given by Brownian increments), information about past prices is not included
in the optimal strategy. 3

12



Let us now describe in further detail the structure of the optimal control.
It is intuitively clear that there should be a buy and sell region; more precisely
from (3) we can see that the sign of û(s) depends on X̂(s). In particular,

û(s) is positive if and only if X̂(s) < −b(s)γ(s)−c(s)
2a(s)

. Indeed, if we have low

holdings X̂(s), we will make purchases to come closer to our target while for
high X̂(s), it can be beneficial to temporarily reduce the holdings to come
closer to γ(s). This leads us to define the frontier ζ by

ζ(t, γ) =
−b(t)γ − c(t)

2a(t)
, t ∈ [0, T ], γ ∈ [0, 1]

so that we have

û(t) < 0 on X̂(t) > ζ
(
t, γ(t)

)
,

û(t) = 0 on X̂(t) = ζ
(
t, γ(t)

)
,

û(t) > 0 on X̂(t) < ζ
(
t, γ(t)

)
.

A key practical requirement is that for the original buy program (i.e. when
we start with 0 shares) we should not sell. Indeed most clients would typically
be unhappy if during their execution the stock holdings were not monotone
increasing. In addition, in US markets such behaviour is actually prohibited
by the regulators.1 The following proposition shows that in our formulation,
for any parameter values, this is indeed the case, underlining the model’s
applicability and compliance with this important regulatory aspect.

Corollary 3.3. Both partial derivatives of ζ are positive on [0, T ) × [0, 1)
and it holds that ζ(0, 0) > 0. Starting with X̂(0) = 0 and γ(0) = 0, the
process û(t) is nonnegative for all t.

We postpone the proof to Subsection 5.3. The idea of the second part is
that when the process X̂(t) is below ζ

(
t, γ(t)

)
, it will not cross ζ

(
s, γ(s)

)
at

a later time point due to the properties of the frontier ζ. Figure 2 illustrates
this behaviour of X̂, that it can cross ζ only from above but not from below.
We can also see that for different starting points, the paths of X̂ are on very
similar trajectories after only a short time. This is due to the multiplication
by e−

1
κ

∫ s
t a(r) dr of x in the definition (3) of X̂, which makes the impact of the

starting value x vanish soon since a diverges to ∞.

Recalling that the gamma bridge satisfies E[γ(t)] = t
T

, a natural question
to ask is how our current optimization is related to the deterministic problem
obtained by replacing γ(t) by its mean, namely

inf
u

(
κ

∫ T

t

u2(s) ds+ λσ2

∫ T

t

( s
T
−Xu(s)

)2
ds

)
, (5)

1see FINRA directive 5310 on Best Execution and Interpositioning,
http://finra.complinet.com/en/display/display main.html?rbid=2403&element id=10455
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Figure 2: Simulations of X̂: each colored curve corresponds to and starts at one initial
condition (t, X̂(t)) while the path of the gamma bridge is always the same. X̂ can cross
the frontier ζ (black curve) only from above (left panels) but not from below (right panels).
The parameters are κ = 10−8 (compare Remark 2.5), σ = 0.01, λ = 1, m = 25 and T = 1.

where the infimum is over all integrable u with

dXu(s) = u(s) ds, Xu(t) =
t

T
, Xu(T ) = 1.

The optimal control for the problem (5) is constant and since time is measured
in calendar units in our model this corresponds to a TWAP (time weighted
average price) execution. A nice consequence of attempting to relate (5) to
our original problem is that we are able to show that the solution of the
original problem can be decomposed into two components.

Corollary 3.4. The optimal trading rate û and the holdings X̂ of the opti-
mization problem (2) can be decomposed as

û = û1 + û2 and X̂ = X̂1 + X̂2, (6)

where û1(s) = 1/T , X̂1(s) = s/T for s ≥ t is the solution to (5). The
processes X̂2 and û2 are given by

X̂2(s) =
(
x− t

T

)
e−

1
κ

∫ s
t a(r) dr+

1

2κ

∫ s

t

b(z)
( z
T
−γ(z)

)
exp

(
−1

κ

∫ s

z

a(r) dr

)
dz
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and û2(s) = X̂ ′2(s) = − 1
2κ

(
2a(s)X̂2(s) + b(s)

(
γ(s)− s

T

))
.

The proof of Corollary 3.4 is contained in Subsection 5.3. This decom-
position of the optimal control can be interpreted as follows: the first part
corresponds to the TWAP execution. The second part shows how we need to
deviate from this deterministic strategy due to the randomness and jumps of
γ(s). Such a result corresponds nicely to heuristic algorithm design where a
“historical”or average amount is always executed with an adaptive correction
due to volume spikes.

Using a > 0 and the form of û2, we see that X̂2 has a zero-reversion
property: if X̂2 equals to a big positive (negative) value, û2 will become
negative (positive) so that X̂2 will be decreasing (increasing).

We also note that for κT � 1, the optimal strategy û may be approx-
imated by û1 because û2 depends on 1

κ

(
γ(s) − s

T

)
, whose variance vanishes

as κT → ∞. This behaviour is inline with Section 1.2 of Almgren [1] and
to be expected from the original optimization problem (2): if κ is huge, the
first term dominates the second, which leads to an approximately uniform
distribution of the stock purchases due to the assumption of a linear market
impact. Similarly, a huge T means that γ(s) will be close to s/T (low vari-
ance of γ(s)) and hence the second term will again have a minor impact for
a linear X̂(t).

4 Fitting the Model to Data

To fit our gamma bridge based model to data, one could attempt to fit m,
using for example least squares. We note that since the mean increase of
the gamma bridge over the day is independent of m due to the fact that
E[γ(t)] = t

T
this fit must be done on the variance or standard deviation. In

reality it is known that trading volume is U -shaped (higher volume at the
beginning and end of the day) which implies an approximate cubic shape for
cumulative relative volume, see Figure 5. To incorporate this feature in our
model, we make a deterministic time change given by a polynomial

t 7→ G(t) = at3 + bt2 + ct+ d

for some constants a, b, c, d. We require that G be an increasing bijection
of [0, T ], so we have d = 0 and c = 1 − aT 2 − bT . In the next subsection,
we discuss how the parameters a, b and m can be chosen to fit data. In
Subsection 4.2, we explain how this time change affects our model and results.

4.1 Estimating the Model Parameters

We exemplify the estimation of the parameters on the stocks of Vodafone
Group PLC (VOD) and Microsoft Corp (MSFT).2 We also analyzed other

2All data is used with permission of Bloomberg L.P.
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liquid European and US stocks and the results were similar. We used in-
traday volume observed at 5 minute frequencies, a reasonable duration for a
volume prediction, although the below parameters were not sensitive to this
choice. We applied a method of moments estimator computed using nonlin-
ear regression and based on the first and second moments of the intraday
volume curves for the first 60 trading days of 2012. Since for our problem,
the relative and not the absolute volume is relevant, we study the fit to the
relative volume. Figure 3 displays the resulting curves, which led to the
estimations:

â b̂ m̂
VOD 1.3538 −1.6467 45.2344

MSFT 1.0739 −1.8151 84.9270

We see in Figure 3 that we get overall a good fit for the mean and standard
deviation of the intraday volume curve, given that we only have three model
parameters.
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Figure 3: Example fits for the mean and standard deviation for one US and one EU stock.

To verify that the model does not exhibit any extreme seasonal depen-
dence, we calibrated the parameters a, b and m with a 60 day rolling window
for the next 30 days. The time series are shown in Figure 4. Note that the
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variance of the gamma bridge is proportional to 1
mT+1

so that the large range
of m is not as severe as might be first assumed.
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Figure 4: Rolling parameter estimations of a, b and m.

We next discuss not only the fit in the moments but the general fit. In a
first qualitative analysis, we can compare the intraday volume curves of the
60 trading days with a sample of 60 trajectories based on the gamma bridge
with a time change using the estimated parameters. We see in Figure 5 that
the patterns of the true and sample trajectories look similar although the
simulated paths have a more erratic behaviour.
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Figure 5: Comparison of the intraday volume curves with sample paths.
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To make a more quantitative statement, we consider two goodness-of-
fit tests. We again use the estimated parameters â, b̂ and m̂, given in the
above table and based on the first 60 trading days of 2012. We then take the
following 30 days as an out-of-sample test data set. Under our assumption
of a gamma bridge for the relative volume, we have, at each time t, 30
i.i.d. observations from a beta distribution with parameters

α(t) = m̂
(
ât3 + b̂t2 +

(
1− â− b̂

)
t
)

and β(t) = m̂T − α(t).

The first test uses that the sample mean is approximately normally dis-
tributed with mean α(t)

α(t)+β(t)
and variance α(t)β(t)

30(α(t)+β(t))2(α+β+1)
by the central

limit theorem. Performing a z-test leads to the p-values shown in Figure 6.
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Figure 6: p-values based on a 30 days out-of-sample data set.

The second test, displayed also in Figure 6, is the well known Kolmogorov-
Smirnov test, which assesses the null hypothesis that the sample is drawn
from a Beta

(
α(t), β(t)

)
-distribution. Observe that we now consider the whole

empirical cumulative distribution and not just the sample mean. Since there
is dependence across different time points, one should interpret Figure 6 in
the following way: if one selects a time interval during the day at random,
the corresponding y-values are the p-values of the two tests at that given
time. Generally, in the morning we do not reject the null hypothesis whereas
in parts of the afternoon we do. This conclusion of an imperfect fit in parts
of the day is not very surprising. Indeed, relative volume is not distributed as
a gamma bridge, being subject to idiosyncratic factors that the model does
not (and cannot) fully capture. The model proposed here aims to capture
the main stylized features whilst being tractable enough for optimization,
compare with the use of Brownian motion as a model for the price despite
the non-Gaussianity of returns as well as the Black-Scholes framework for
option pricing. Taking these considerations into account, we conclude that
the model is suitable for our purposes.

One final point related to fitting the model to data concerns the choices
of the parameters κ and λ. A calculation shows that one consequence of our
model formulation is that as κ ↓ 0, since the costs vanish, we end up being
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able to track VWAP perfectly. In a real trading environment this is of course
not possible since each execution of a market order incurs a per share cost
of one half the spread (vs. mid-quote). One way to resolve this issue would
be a reformulation of the impact costs to include a fixed cost of one half
the spread. This naturally leads to an impulse control formulation which is
beyond the scope of this paper. A more pragmatic solution observes that the
key parameter driving the optimal control/trajectory is κ

λσ2 . In practice one
can therefore simply choose a value of λ so that this ratio is in an appropriate
range for the model to be applicable. Broadly speaking, one is choosing an
“effective λ” to take into account spread costs, similarly as is done in trading
systems employing the Implementation Shortfall framework described in [2].

4.2 Integrating the Time Change into the Model

As we have seen in the above discussion, the gamma bridge fits well to the
relative volume curve, but only after a deterministic time transformation.
We next see that our main result still holds when the model undergoes such
a time change. We first explain the reason in a simple example and give
afterward the mathematical argument. Assume that one has calculated the
optimal control and the value function in the model of Section 2. Now it is
given that the model fits well except that the expected trading frequency in
the second half of the day is double that of the first half. How should the
optimal trading strategy be modified? A natural answer is to scale the orig-
inal strategy accordingly by simply changing the speed of trading execution.
In the morning, it is reduced by a third so that in the middle of the day
one has the same position as one would have had after one third of the day
with the original strategy. In the afternoon, the trading frequency is then
correspondingly increased. In summary, the new strategy is just the time
changed original strategy scaled by the derivative of the time change.

It is also sensible to expect that the value of the optimization problem
will not change because the algorithm performance (minimal slippage from
VWAP) should not change under a deterministic time change. Indeed we may
take the time change into consideration when choosing our strategy so that
there is no additional information present. Of course, these arguments use
that the time change is deterministic and hence known in advance, however
this is acceptable for most practical purposes.

Let us now make the above arguments rigorous by adapting the model
of Section 2. The time change is assumed to be given by a differentiable
deterministic function G : [0, T ] → [0, T ] with G(0) = 0, G(T ) = T and
G′(t) ≥ C for some constant C > 0 and all t ∈ [0, T ]. The relative volume
curve is modelled by η(t) = γ

(
G(t)

)
where

(
γ(t)

)
0≤t≤T is a gamma bridge

whose underlying gamma process has a general parameter m. The time
change means that trading frequency depends on the time of the day, e.g.,
higher at the beginning and closing of the day.

There is a well known link between traded volume and prices, we thus
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expect that the varying trading frequency will also affect the price process
so that the asset price at time t equals

P̃ (t) = P (0) + σW
(
G(t)

)
.

Observe that now we have that for two time points t0 and t1, the volatility
of returns is proportional to√

E
[(
P̃ (t1)− P̃ (t0)

)2]
= σ

√∫ t1

t0

G′(s)ds.

Assuming that the difference t1 − t0 is small and fixed, this can be approxi-
mated by σ

√
t1 − t0

√
G′(t0). Since G′ reflects the expected intraday trading

frequency, it is typically U -shaped and hence
√
G′ is also U -shaped (or V -

shaped). Indeed, a U -shaped G′ means that its derivative G′′ is negative at
the beginning and increases to become positive at the end, and this property
translates to d

dt

√
G′ = G′′

2
√
G′

as well. Therefore, we expect the instantaneous
volatility to be U -shaped. Apart from being a mathematical consequence of
making a time change to our model, this phenomenon is very well documented
in the empirical finance literature across many different stock markets, dating
back to Wood et al. [28] and Harris [17]. Also the link between the U -shaped
forms of intraday volume and volatility is well known and goes back, at least,
to Harris [18]. The common theoretical explanation is that the patterns of
both volume and volatility are related to the flow of information, which is not
constant over time. For example, in a market with asymmetrically informed
participants, trading volume itself conveys information so that a U -shaped
volume will lead to a U -shaped flow of information. This non-constant flow
of information is captured in our model by the time change.

Similarly, the coefficient of market impact at time t is now κ̃(t) = κ/G′(t)
because a decrease (or increase) in G′ means a slowdown (acceleration) in
overall market trading frequency so that the market impact of our trades is
increased (decreased).

Proceeding along the same lines as in Section 2 and additionally using
d〈W ◦ G〉s = dG(s) = G′(s) ds, we see that the new value function to the
optimization problem is given by

w(τ, x, γ) = inf
y
E

[ ∫ T

τ

κ̃(s)y2(s) ds+ λσ2

∫ T

τ

(
η(s)−Xy(s)

)2
G′(s) ds

]
,

where η(s) = γ
(
G(s)

)
for a gamma bridge

(
γ(s)

)
G(τ)≤s≤T with γ

(
G(τ)

)
= γ

and the integrable y is such that

dXy(s) = y(s) ds, Xy(τ) = x, Xy(T ) = 1

and y is adapted to the time-changed filtration (FG(s))0≤s≤T . We associate

such a y with a process u by u(s) = y(G−1(s))
G′(G−1(s))

, which is adapted to the original
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filtration (Fs)0≤s≤T . We then have

E

[ ∫ T

τ

κ̃(s)y2(s) ds+ λσ2

∫ T

τ

(
η(s)−Xy(s)

)2
G′(s) ds

]
= E

[ ∫ T

t

κu2(s) ds+ λσ2

∫ T

t

(
γ(s)−Xu(s)

)2
ds

]
for t = G(τ) and

Xy
(
G−1(s)

)
= x+

∫ G−1(s)

τ

y(r) dr = x+

∫ s

t

u(r) dr = Xu(s).

Since this holds for any such y, we obtain

w(τ, x, γ) = v
(
G(τ), x, γ

)
,

where v is the original value function from (2), which is characterized in
Theorem 3.1. We can also see that the optimal control of the time changed
problem is given by

ŷ(τ, x, γ) = û
(
G(τ), x, γ

)
G′(τ)

= −2a(G(τ))x+ b(G(τ))γ + c(G(τ))

2κ
G′(τ)

= −2a(G(τ))x+ b(G(τ))γ + c(G(τ))

2κ̃(t)
,

again by using Theorem 3.1.

5 Proof of the Main Result

We split the proof of Theorem 3.1 into two parts: we first show some proper-
ties of the functions a, b, c, d, f, g and the candidate for the value function, and
then we verify that this candidate indeed gives rise to the value function v.
Finally, we will provide the proofs of Corollaries 3.3 and 3.4.

5.1 Properties of the Auxiliary Functions

Lemma 5.1. The functions a, b, c, d, f, g : [0, T ) → R are well defined and
there exist constants k1, k2, k3 such that

lim
s↗T

a(s)(T − s) = κ, (7)

|b(t)|+ |d(t)|+ |f(t)| ≤ k1(T − t), (8)∣∣∣ c(t)
a(t)

+ 2
∣∣∣ ≤ k2(T − t)2, (9)

|g(t)− a(t)| ≤ k3(T − t) (10)

for all t ∈ [0, T ).
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Proof. We consider a, . . . , g and their limiting behaviour sequentially.
1) The functions a, b, c. The functions a, b, c are well defined for t ∈ [0, T ),

and an application of L’Hôpital’s rule yields (7). To study the behaviour of
b, we use a series expansion

b(t) = −2a(t) +
2κ

T − t

= −2
√
κλσ2

e2(T−t)
√
λσ2/κ + 1∑∞

n=1 2n(T − t)n(λσ2/κ)n/2/n!
+

2κ

T − t

=
2κ

T − t

∑∞
n=0 2n+1(T − t)n(λσ2/κ)n/2/(n+ 1)!− e2(T−t)

√
λσ2/κ − 1∑∞

n=0 2n+1(T − t)n(λσ2/κ)n/2/(n+ 1)!

= 2κ(T − t)
∑∞

n=2 2n(T − t)n−2(λσ2/κ)n/2
(
2/(n+ 1)!− 1/n!

)∑∞
n=0 2n+1(T − t)n(λσ2/κ)n/2/(n+ 1)!

.

Using 2/(n+ 1)!− 1/n! ≤ 0 for all n, we see that

0 > b(t) ≥ −C(T − t) (11)

for all t < T and some constant C. For the function c, we obtain

c(t)

a(t)
+ 2 = −2

∑∞
n=0 2n+1(T − t)n(λσ2/κ)n/2/(n+ 1)!

e2(T−t)
√
λσ2/κ + 1

+ 2

= 2(T − t)2
∑∞

n=2 2n(T − t)n−2(λσ2/κ)n/2
(
1/n!− 2/(n+ 1)!

)
e2(T−t)

√
λσ2/κ + 1

,

which shows (9).

2) The function d. Since b is bounded by (11) and we have T+1/m−s
T+1/m−t ≤ 1

and T−s
T−t ≤ 1 for s ∈ [t, T ], the integrand in

d(t) =

∫ T

t

(
λσ2 − 1

4κ
b2(s)

) T − s
T − t

T + 1/m− s
T + 1/m− t

ds

is bounded so that d is well defined and we can deduce |d(t)| ≤ C(T − t) for
some constant C.

3) The function f . From (11) and the boundedness of d, we derive that∣∣∣b(s) + 2d(s)
T − s

T − s+ 1/m

∣∣∣ ≤ C(T − s)

for some constant C. Hence, f is well defined and

|f(t)| ≤ 1

T − t

∫ T

t

∣∣∣b(s) + 2d(s)
T − s

T − s+ 1/m

∣∣∣ds ≤ C

2
(T − t).

4) The function g. Thanks to (7), the function s 7→ a(s)(T − s) is
continuous and bounded on [0, T ). Together with (8), this yields∣∣∣∣b(s)2

(a(s)

κ
(T − s) + 1

)
− f(s)− d(s)/m

T − s+ 1/m

∣∣∣∣ ≤ C(T − s)
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for some constant C. Therefore, the function g is well defined and

|g(t)− a(t)|

=

∣∣∣∣ T − t+

∫ T

t

(
b(s)

2

(a(s)

κ
(T − s) + 1

)
− f(s)− d(s)/m

T − s+ 1/m

)
1

T − s
ds

∣∣∣∣
≤ k3(T − t)

for some constant k3, which shows (10).

Lemma 5.2. The function ϕ : [0, T )× R+× [0, 1]→ R defined by

ϕ(t, x, γ) = a(t)x2 + b(t)γx+ c(t)x+ d(t)γ2 + f(t)γ + g(t) (12)

satisfies

ϕt + λσ2(γ − x)2 − ϕ2
x

4κ
(13)

+m

∫ 1

0

(
ϕ
(
t, x, γ + (1− γ)z

)
− ϕ(t, x, γ)

)
(1− z)Tm−tm−1

1

z
dz = 0.

Proof. We can write

m

∫ 1

0

(
ϕ
(
t, x, γ + (1− γ)z

)
− ϕ(t, x, γ)

)
(1− z)Tm−tm−1

1

z
dz

=
(
b(t) + f(t) + 2γd(t)

)
(1− γ)ϕ0(t) + d(t)(1− γ)2ϕ1(t), (14)

where

ϕ0(t) = m

∫ 1

0

(1− z)Tm−tm−1 dz =
1

T − t
,

ϕ1(t) = m

∫ 1

0

z(1− z)Tm−tm−1 dz =
1

T − t
− 1

T − t+ 1/m
.

We also have

− ϕ2
x

4κ
=

1

κ
(−a2x2 − abxγ − acx)− 1

4κ
(b2γ2 + 2bcγ + c2), (15)

where we write a for a(t), etc. By means of a straightforward calculation, we
can check that

at =
1

κ
a2 − λσ2, dt = 2dϕ0 − dϕ1 +

1

4κ
b2 − λσ2,

bt =
1

κ
ab+ 2λσ2 + bϕ0, ft =

1

2κ
bc− 2dϕ0 + fϕ0 + 2dϕ1,

ct =
1

κ
ac− bϕ0, gt =

1

4κ
c2 − fϕ0 − dϕ1.

Using this in calculating ϕt together with (14) and (15), we derive (13).
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5.2 Verification

We next relate the candidate ϕ to the value function v by using the properties
(7)–(10). We start with two auxiliary results.

Lemma 5.3. The candidate optimal process X̂ given by

dX̂(t) = − 1

2κ

(
2a(t)X̂(t) + b(t)γ(t) + c(t)

)
dt, X̂(0) = x (16)

is bounded.

Proof. Solving (16) for X̂ yields

X̂(t) = xe−
1
κ

∫ t
0 a(r) dr +

1

2κ

∫ t

0

(
− b(s)γ(s)− c(s)

)
exp

(
− 1

κ

∫ t

s

a(r) dr

)
ds.

Recalling that b is bounded by (8), a > 0 and γ is a gamma bridge, we see
that it is enough to show that∫ t

0

|c(s)| exp

(
− 1

κ

∫ t

s

a(r) dr

)
ds is bounded uniformly in t.

Because of a > 0 and |c(s)| ≤ a(s)
(
k2(T − s)2 + 2

)
by (9), this follows from∫ t

0

a(s) exp

(
− 1

κ

∫ t

s

a(r) dr

)
ds = κ exp

(
− 1

κ

∫ t

s

a(r) dr

)∣∣∣∣s=t
s=0

= κ− κ exp

(
− 1

κ

∫ t

0

a(r) dr

)
≤ κ.

We next establish some apriori estimates for ϕ.

Lemma 5.4. There exists a constant K such that

−K(T − t)(x+ 1) ≤ ϕ(t, x, γ)− a(t)(x− 1)2 ≤ K(T − t)(x+ 1)

for all t ∈ [0, T ), x ≥ 0 and γ ∈ [0, 1]. In particular, for every compact set
M ⊂ R+, there exists a constant K such that

−K(T − t) ≤ ϕ(t, x, γ)− a(t)(x− 1)2 ≤ K(T − t)

for all t ∈ [0, T ), x ∈M and γ ∈ [0, 1].

Lemma 5.4 shows that ϕ(t, x, γ)− a(t)(x− 1)2 loses the x-dependence in
the limit behaviour t ↗ T . This can be interpreted as cancelling the term

n
(
Xu(T )−1

)2
in the auxiliary optimization problem (4) in the limit n→∞.
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Proof. We deduce from (8)–(10) that∣∣ϕ(t, x, γ)− a(t)(x− 1)2
∣∣

=
∣∣b(t)γx+ d(t)γ2 + f(t)γ + x

(
c(t) + 2a(t)

)
+ g(t)− a(t)

∣∣
≤ (T − t)

(
k1(x+ 1) + k3 + k2a(t)(T − t)

)
.

From (7), it follows that a(t)(T − t) is bounded, which implies the first claim.
For the second part, it is enough to set K := K supx∈M(1 + x).

We are now in position to prove Theorem 3.1.

Proof of Theorem 3.1. We first show that ϕ ≤ v, where ϕ is defined in (12)
and v is the value function. This claim is equivalent to

ϕ(t, x, γ) ≤ E

[ ∫ T

t

κu2(s) ds+ λσ2

∫ T

t

(
Xu(s)− γ(s)

)2
ds

]
(17)

for all controls u such that Xu(t) = x and Xu(T ) = 1 a.s., γ(t) = γ, where
t ∈ [0, T ], x ≥ 0, γ ∈ [0, 1]. Without loss of generality, we can assume that

E
[ ∫ T

t
κu2(s) ds

]
<∞ since otherwise, the result holds trivially. Using Itô’s

formula, we have, for any stopping time τ` valued in [t, T ],

ϕ
(
τ` ∧ T,Xu(τ` ∧ T ), γ(τ` ∧ T )

)
− ϕ(t, x, γ)

=

∫ τ`∧T

t

(ϕt + uϕx)
(
s,Xu(s), γ(s)

)
ds

+
∑

s∈(t,τ`∧T ]

(
ϕ
(
s,Xu(s), γ(s)

)
− ϕ

(
s,Xu(s), γ(s−)

))
.

Applying Proposition 4 of Émery and Yor [12] separately to ψ+ and ψ−,
where

ψ(sm, ω, y) := ϕ
(
s,Xu(s)(ω), y + γ(s−)(ω)

)
− ϕ

(
s,Xu(s)(ω), γ(s−)(ω)

)
,

we deduce that the process∑
s∈(tm,mτ`∧.]

ψ
(
s, ω,∆γ

( s
m

)
(ω)
)

−
∫ .

tm

∫ 1

0

ψ
(
s, ω,

(
1− γ

(s−
m

)
(ω)
)
z
)(1− z)Tm−s−1

z
dzds

is a local martingale on the interval [tm, Tm] in the time-changed filtration
(F s

m
)tm≤s≤Tm to which

(
γ( s

m
)
)
tm≤s≤Tm is adapted. Equivalently, the process∑

s∈(t,τ`∧.]

ψ
(
sm, ω,∆γ(s)(ω)

)
−m

∫ .

t

∫ 1

0

ψ
(
sm, ω,

(
1− γ(s−)(ω)

)
z
)(1− z)Tm−sm−1

z
dzds

(18)
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is a local martingale on [t, T ] in the standard filtration (Fs)t≤s≤T
(
to which(

γ(s)
)
t≤s≤T is adapted

)
. Using Lemma 5.2 together with −ϕ2

x

4κ
≤ ϕxu + κu2

for all u ∈ R, we derive

ϕt + λσ2(γ − x)2 + ϕxu+ κu2

+m

∫ 1

0

(
ϕ
(
t, x, γ + (1− γ)z

)
− ϕ(t, x, γ)

)
(1− z)Tm−tm−1

1

z
dz ≥ 0.

In particular, choosing a sequence (τ`)`∈N of stopping times such that τ` ↗ T
and the stopped process (18) is a true martingale, we obtain

ϕ(t, x, γ) ≤ E

[ ∫ τ`∧T

t

κu2(s) ds+ λσ2

∫ τ`∧T

t

(
Xu(s)− γ(s)

)2
ds

]
+ E

[
ϕ
(
τ` ∧ T,Xu(τ` ∧ T ), γ(τ` ∧ T )

)]
.

(19)

Monotone convergence implies

lim
`→∞

E

[ ∫ τ`∧T

t

κu2(s) ds+ λσ2

∫ τ`∧T

t

(
Xu(s)− γ(s)

)2
ds

]
= E

[ ∫ T

t

κu2(s) ds+ λσ2

∫ T

t

(
Xu(s)− γ(s)

)2
ds

]
.

Applying Lemma 5.4, we have

E
[
ϕ
(
τ` ∧ T,Xu(τ` ∧ T ), γ(τ` ∧ T )

)]
≤KE

[
(T − τ` ∧ T )

(
sup
s∈[t,T ]

Xu(s) + 1
)]

+E
[
a(τ` ∧ T )

(
Xu(τ` ∧ T )− 1

)2]
.

The first integrand converges to zero by dominated convergence, using

sup
s∈[t,T ]

|Xu(s)| ≤ x+

∫ T

t

|u(s)| ds ≤ x+ T − t+

∫ T

t

u2(s) ds ∈ L1.

For the second term, we observe that

(
Xu(τ` ∧ T )− 1

)2
=
(
Xu(τ` ∧ T )−Xu(T )

)2 ≤ (∫ T

τ`∧T
|u(s)| ds

)2

≤ (T − τ` ∧ T )

∫ T

τ`∧T
u2(s) ds

by Hölder’s inequality. Using that a(τ`∧T )(T −τ`∧T ) is uniformly bounded
by (7), we obtain, for some constant C,

E
[
a(τ` ∧ T )

(
Xu(τ` ∧ T )− 1

)2] ≤ CE

[ ∫ T

τ`∧T
u2(s) ds

]
→ 0
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as m→∞ by dominated convergence. Together this shows that

ϕ(t, x, γ) ≤ E

[ ∫ T

t

κu2(s) ds+ λσ2

∫ T

t

(
Xu(s)− γ(s)

)2
ds

]
and concludes the proof of (17). To prove the reverse inequality ϕ ≥ v, we
deduce similarly to (19) that

ϕ(t, x, γ) = E

[ ∫ τ`∧T

t

κû2(s) ds+ λσ2

∫ τ`∧T

t

(
X̂(s)− γ(s)

)2
ds

]
+ E

[
ϕ
(
τ` ∧ T, X̂(τ` ∧ T ), γ(τ` ∧ T )

)] (20)

for the candidate optimal control û corresponding to X̂ given in (16) — this
time we have an equality from Lemma 5.2 using û(s) = −ϕx

2κ

(
s, X̂(s), γ(s)

)
.

By Lemma 5.3, X û is bounded and hence we obtain from Lemma 5.4 that

E
[
ϕ
(
τ` ∧ T, X̂(τ` ∧ T ), γ(τ` ∧ T )

)]
≥ E

[
a(τ` ∧ T )

(
X̂(τ` ∧ T )− 1

)2]−KE[T − τ` ∧ T ]. (21)

Since the first term in (21) is nonnegative and the second converges to zero,
monotone convergence yields

ϕ(t, x, γ) ≥ E

[ ∫ T

t

κû2(s) ds+ λσ2

∫ T

t

(
X̂(s)− γ(s)

)2
ds

]
.

Using the admissible control ū(s) = 1−x
T−t , one can see that

ϕ(t, x, γ) ≤ v(t, x, γ) ≤ κ
(1− x)2

T − t
+M ′ <∞ (22)

for some constant M ′. We conclude the proof by showing X̂T = 1 a.s. Using
(20), (21) and (22), we deduce

κ
(1− x)2

T − t
+M ′ ≥ E

[
a(τ` ∧ T )

(
X̂(τ` ∧ T )− 1

)2]−KE[T − τ` ∧ T ].

Since a is increasing, it follows, for every t0 ∈ [t, T ), that

κ
(1− x)2

T − t
+M ′ ≥ a(t0)E

[(
X̂(τ` ∧ T )− 1

)2
1{τ`≥t0}

]
−KE[T − τ` ∧ T ].

Using that X̂ is bounded, dominated convergence yields

κ
(1− x)2

T − t
+M ′ ≥ a(t0)E

[(
X̂(T )− 1

)2]
for all t0 ∈ [t, T ), and hence

κ
(1− x)2

T − t
+M ′ ≥ lim

t0↗T
a(t0)E

[(
X̂(T )− 1

)2]
.

Since limt0↗T a(t0) = ∞, this can only hold if E
[(
X̂(T ) − 1

)2]
= 0, which

means X̂(T ) = 1 a.s. The uniqueness of the optimal control is a consequence
of the linearity ofXu in u and the strict convexity of the optimization problem
in the control.

27



5.3 Proofs of Corollaries 3.3 and 3.4

We conclude by proving Corollaries 3.3 and 3.4.

Proof of Corollary 3.3. From b(t) < 0 for t < T by (11) and a(t) > 0, it

follows ζγ(t, γ) = −b(t)
2a(t)

> 0 for all t < T . We next write

ζ(t, γ) =
−b(t)γ − c(t)

2a(t)
= γ + κ(1− γ)

1

(T − t)a(t)
.

To prove ζt(t, γ) > 0, it is enough to show that 1
(T−t)a(t) is increasing or,

equivalently, that (T − t)a(t) is decreasing. Hence, we consider

d

dt
(T − t)a(t) = −a(t) + (T − t)at(t)

= −
√
κλσ2

e2T
√
λσ2/κ + e2t

√
λσ2/κ

e2T
√
λσ2/κ − e2t

√
λσ2/κ

+ (T − t) 4λσ2e2(T+t)
√
λσ2/κ

(e2T
√
λσ2/κ − e2t

√
λσ2/κ)2

=
e2(T+t)

√
λσ2/κ

(
−
√
κλσ2

(
e2(T−t)

√
λσ2/κ − e−2(T−t)

√
λσ2/κ

)
+ 4λσ2(T − t)

)
(e2T
√
λσ2/κ − e2t

√
λσ2/κ)2

<
e2(T+t)

√
λσ2/κ

(
−
√
κλσ2 4(T − t)

√
λσ2/κ+ 4λσ2(T − t)

)
(e2T
√
λσ2/κ − e2t

√
λσ2/κ)2

= 0,

using ex − e−x = 2 sinh(x) = 2
∑∞

n=0
x2n+1

(2n+1)!
> 2x for all x > 0. This proves

ζt(t, γ) > 0. Moreover, we have

ζ(0, 0) = κ
ϕ0(0)

2a(0)
=
√
κ

e2T/
√
κ − 1

2T (e2T/
√
κ + 1)

> 0.

For the second part of the lemma, we define a process ξ(t) = ζ
(
t, γ(t)

)
−

X̂(t), which satisfies ξ(0) = ζ
(
0, γ(0)

)
= ζ(0, 0) > 0. We have ξ(t) ≥ 0

a.s. for all t by the following reason. Fix t and consider the event ξ(t) < 0.
Since X̂ is continuous and ζγ > 0 and γ has only positive jumps, there needs
to exist a random τ < t such that ξ(τ) = 0 and ξ(s) ≤ 0 for all s ∈ [τ, t].
However, we have

ξ(t) = ξ(τ)︸︷︷︸
=0

+ ζ
(
t, γ(t)

)
− ζ
(
τ, γ(τ)

)︸ ︷︷ ︸
≥0

−
∫ t

τ

û(s)︸︷︷︸
≤0

ds ≥ 0

since ζ
(
s, γ(s)

)
is increasing and û(s) ≤ 0 if ξ(s) ≤ 0. Therefore, ξ(t) cannot

become negative and û(t) will be nonnegative for all t.
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Proof of Corollary 3.4. Let X̂2, û2 be defined as in the corollary and set
û1(s) = X̂ ′1(s) and

X̂1(s) =
t

T
e−

1
κ

∫ s
t a(r) dr +

1

2κ

∫ s

t

(
− b(z)

z

T
− c(z)

)
exp

(
− 1

κ

∫ s

z

a(r) dr

)
dz

so that (6) is satisfied by construction; compare with (16). By definition, we
have

−b(z)
z

T
− c(z) = a(z)

2z

T
− 2zκ

(T − z)T
+

2κ

T − z
= a(z)

2z

T
+

2κ

T

so that

X̂1(s) =
t

T
e−

1
κ

∫ s
t a(r) dr +

1

2κ

∫ s

t

(
a(z)

2z

T
+

2κ

T

)
exp

(
− 1

κ

∫ s

z

a(r) dr

)
dz

=
t

T
e−

1
κ

∫ s
t a(r) dr +

s

T
− t

T
e−

1
κ

∫ s
t a(r) dr =

s

T

by integration by parts. Finally, we check that û1(t) = X̂ ′1(t) = 1
T

is the
optimizer to (5). To this end, we calculate

κ

∫ T

t

u2(s) ds+ λσ2

∫ T

t

( s
T
−Xu(s)

)2
dt ≥ κ

∫ T

t

u2(s) ds

≥ κ

T − t

(∫ T

t

u(s) ds

)2

=
κ

T − t

(
1− t

T

)2
= κ

T − t
T 2

by Jensen’s inequality using the probability measure 1
T−t ds. Equality holds

for the choice u = û1 = 1
T

with corresponding Xu(s) = X̂1(s) = s
T

. This
shows that û1 is indeed the minimizer of (5).
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