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A Formula for new estimator of return correlation

For practical purposes, we summarize our estimator for latent intra-segment asset return
correlation in the case of a first-order correction term, which typically captures a big part of
the bias of the classical estimator; compare Figure 1. Formulas for higher-order correction
terms and inter-segment correlation can be found in Section 4.1.
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with �2(., .; %) denoting the bivariate normal cumulative distribution function with
correlation %,

• derivatives appearing in correction term:
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• sample variance and lag-1 sample autocovariance:
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B Proof of Theorem 3.3

By Taylor’s theorem, we can write
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using that E[Z
t

] = µ for all t by stationarity. We now analyze the di↵erent terms in (A.1).
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Similarly to (9), we can write the variance term as

Var

✓
1

T

TX

t=1

Z

t

◆
=

1

T

Var(Z1) +
2

T

2

T�1X

`=1

(T � `)Cov(Z1, Z1+`

). (A.3)

Finally, we apply Hölder’s inequality with p = 4/3 and q = 4 (which satisfy 1/p + 1/q = 1)
to obtain
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which concludes the proof in light of (A.1)–(A.3).
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