Appendices to "Moment Estimators for Autocorrelated Time Series and their Application to Default Correlations"
by Christoph Frei (University of Alberta) and Marcus Wunsch (UBS AG)

A Formula for new estimator of return correlation

For practical purposes, we summarize our estimator for latent intra-segment asset return correlation in the case of a first-order correction term, which typically captures a big part of the bias of the classical estimator; compare Figure 1. Formulas for higher-order correction terms and inter-segment correlation can be found in Section 4.1.

Input:

default rate times series $\left(p_{t}\right)_{t=1, \ldots, T}$ for a bucket in a Merton model (see Section 2)
Estimator:

$$
\hat{\varrho}_{2}=\hat{\varrho}_{1}+\frac{g^{\prime \prime}\left(\hat{\varrho}_{1}\right)}{T\left(g^{\prime}\left(\widehat{\varrho}_{1}\right)\right)^{3}}\left(\alpha_{0} / 2+(1-1 / T) \alpha_{1}\right)
$$

Components in estimator:

- classical estimator:

$$
\hat{\varrho}_{1}=g^{-1}\left(\frac{1}{T} \sum_{t=1}^{T} p_{t}^{2}\right)
$$

where

$$
g(\varrho)=\Phi_{2}\left(\Phi^{(-1)}\left(\frac{1}{T} \sum_{t=1}^{T} p_{t}\right), \Phi^{(-1)}\left(\frac{1}{T} \sum_{t=1}^{T} p_{t}\right) ; \varrho\right)
$$

with $\Phi_{2}(., . ; \varrho)$ denoting the bivariate normal cumulative distribution function with correlation ϱ,

- derivatives appearing in correction term:

$$
\begin{aligned}
g^{\prime}\left(\hat{\varrho}_{1}\right) & =\frac{1}{2 \pi \sqrt{1-\hat{\varrho}_{1}^{2}}} \exp \left(-\frac{s^{2}}{1+\hat{\varrho}_{1}}\right), \\
g^{\prime \prime}\left(\hat{\varrho}_{1}\right) & =\frac{s^{2}+\hat{\varrho}_{1}\left(1-2 s^{2}\right)+s^{2} \hat{\varrho}_{1}^{2}-\hat{\varrho}_{1}^{3}}{2 \pi\left(1-\hat{\varrho}_{1}^{2}\right)^{5 / 2}} \exp \left(-\frac{s^{2}}{1+\hat{\varrho}_{1}}\right)
\end{aligned}
$$

with $s=\Phi^{(-1)}\left(\frac{1}{T} \sum_{t=1}^{T} p_{t}\right)$,

- sample variance and lag-1 sample autocovariance:

$$
\alpha_{0}=\frac{1}{T} \sum_{t=1}^{T}\left(p_{t}^{2}-\bar{\mu}\right)^{2}, \quad \alpha_{1}=\frac{1}{T} \sum_{t=2}^{T}\left(p_{t}^{2}-\bar{\mu}\right)\left(p_{t-1}^{2}-\bar{\mu}\right),
$$

where $\bar{\mu}=\frac{1}{T} \sum_{t=1}^{T} p_{t}^{2}$.

B Proof of Theorem 3.3

By Taylor's theorem, we can write

$$
\begin{aligned}
\tilde{g}\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t}\right)= & \tilde{g}(\mu)+\tilde{g}^{\prime}(\mu)\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t}-\mu\right)+\frac{\tilde{g}^{\prime \prime}(\mu)}{2}\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t}-\mu\right)^{2} \\
& +\frac{\tilde{g}^{\prime \prime \prime}(\xi)}{6}\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t}-\mu\right)^{3}
\end{aligned}
$$

for some ξ between μ and $\frac{1}{T} \sum_{t=1}^{T} Z_{t}$. Taking expectations and rearranging terms yield

$$
\begin{equation*}
\tilde{g}(\mu)-E\left[\tilde{g}\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t}\right)\right]+\frac{\tilde{g}^{\prime \prime}(\mu)}{2} \operatorname{Var}\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t}\right)=-E\left[\frac{\tilde{g}^{\prime \prime \prime}(\xi)}{6}\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t}-\mu\right)^{3}\right] \tag{A.1}
\end{equation*}
$$

using that $E\left[Z_{t}\right]=\mu$ for all t by stationarity. We now analyze the different terms in (A.1). First, we note $\tilde{g}(\mu)=\theta$ and compute

$$
\begin{equation*}
\tilde{g}^{\prime \prime}(\mu)=\left(\frac{1}{g^{\prime}\left(g^{-1}(\mu)\right)}\right)^{\prime}=-\frac{g^{\prime \prime}\left(g^{-1}(\mu)\right)\left(g^{-1}\right)^{\prime}(\mu)}{\left(g^{\prime}\left(g^{-1}(\mu)\right)\right)^{2}}=-\frac{g^{\prime \prime}\left(g^{-1}(\mu)\right)}{\left(g^{\prime}\left(g^{-1}(\mu)\right)\right)^{3}}=-\frac{g^{\prime \prime}(\theta)}{\left(g^{\prime}(\theta)\right)^{3}} . \tag{A.2}
\end{equation*}
$$

Similarly to (9), we can write the variance term as

$$
\begin{equation*}
\operatorname{Var}\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t}\right)=\frac{1}{T} \operatorname{Var}\left(Z_{1}\right)+\frac{2}{T^{2}} \sum_{\ell=1}^{T-1}(T-\ell) \operatorname{Cov}\left(Z_{1}, Z_{1+\ell}\right) \tag{A.3}
\end{equation*}
$$

Finally, we apply Hölder's inequality with $p=4 / 3$ and $q=4$ (which satisfy $1 / p+1 / q=1$) to obtain

$$
\begin{aligned}
E\left[\left|\tilde{g}^{\prime \prime \prime}(\xi)\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t}-\mu\right)^{3}\right|\right] & \leq E\left[\left|\tilde{g}^{\prime \prime \prime}(\xi)\right|^{q}\right]^{1 / q} E\left[\left.\left|\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t}-\mu\right)^{3}\right|^{p}\right|^{1 / p}\right. \\
& =E\left[\left(\tilde{g}^{\prime \prime \prime}(\xi)\right)^{4}\right]^{1 / 4} E\left[\left(\frac{1}{T} \sum_{t=1}^{T} Z_{t}-\mu\right)^{4}\right]^{3 / 4}
\end{aligned}
$$

which concludes the proof in light of (A.1)-(A.3).

