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Abstract

In credit risk modelling, method-of-moment approaches are popular to estimate
latent asset return correlations within and between rating buckets. However, the auto-
correlation that is often present in time series of default rates leads to systematically
too low estimations. We propose a new estimator that adjusts for the problems of
this autocorrelation and the shortness of the time series, thus eliminating a significant
portion of the bias observed in classical estimators. The adjustment is based on con-
vergence and approximation results for general autocorrelated time series, and is easily
implementable and nonparametric.
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1 Introduction

In both practice and academia, the credit risk of a loan portfolio is frequently modelled
using a structural approach that generalizes Merton (1974) to multiple firms. Obligors in
the portfolio are grouped into homogeneous buckets according to their client segments and
ratings (thus the term, “rating buckets”). After Merton, the assumption is that the obligor’s
latent asset return process will determine their default: if the return over the model horizon
is below some threshold, the obligor defaults. This return process is driven by systematic
and idiosyncratic risk factors that thus introduce a dependence structure among the obligors’
returns and, in turn, among their defaults. The values of aggregate risk metrics, such as
Value-at-Risk, depend crucially on the latent asset return correlation between obligors of the
same bucket (intra-segment correlation) and different buckets (inter-segment correlation).
Since the correlation coefficients cannot be measured directly, they are typically estimated
via the method-of-moment approach or the maximum likelihood method, based on historical
default rates within each bucket.

In the classical literature (see Bluhm et al. (2010) or McNeil et al. (2015) for an overview),
these estimators are built on the assumption that the latent asset returns are serially inde-
pendent. This is in line with the theoretical property that if all obligors in a bucket have the
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same point-in-time rating, all available information on the state of the economy is reflected
in the current ratings. Therefore, default rates for a given rating bucket will be serially in-
dependent. In practice, however, the data exhibit autocorrelation in the default rates 1 and
thus in the latent asset returns. Two reasons account for this discrepancy. First, in practice,
the grouping in rating buckets is often done intentionally by through-the-cycle rather than
point-in-time ratings; default rates thus reflect the behaviour of economic factors over time,
which exhibit autocorrelation. Through-the-cycle parameters are typically chosen in these
instances because they improve the stability of credit risk measures across economic cycles.
For instance, Basel’s advanced internal rating-based approach includes the statement “Al-
though the time horizon used in PD [probability of default] estimation is one year . . . banks
must use a longer time horizon in assigning ratings.”2 A current proposal of the Basel
Committee explicitly suggests that “rating systems should be designed in such a way that
assignments to rating categories generally remain stable over time and throughout business
cycles. Migration from one category to another should generally be due to idiosyncratic or
industry-specific changes rather than due to business cycles.”3 Moreover, in 2011, Moody’s
Analytics introduced through-the-cycle expected default frequency (EDF) to complement its
point-in-time EDF, and thereby reduce short-term volatility from the credit cycle.4 The
risk management industry and academic literature have widely discussed the meaning and
(dis)advantages of ratings as point-in-time versus through-the-cycle credit indicators; see
Cantor and Mann (2006); Carey and Hrycay (2001); Gordy and Howells (2006); Heitfield
(2004); Löffler (2004).

Even when attempting to use point-in-time ratings that reflect the current economic sit-
uation, autocorrelation can still be present because changes in the credit quality of obligors
may not be immediately reflected in their ratings. This delay affects default rates for the
rating buckets, making them dependent on the economic situation, and subsequently auto-
correlated. Ratings that slowly adjust are a well documented and explained phenomenon; see
Altman and Rijken (2006), and Löffler (2005). Regardless of what accounts for the observed
autocorrelation in default rates, when these time series are inputs in credit risk estimators,
their autocorrelation must be considered.

The goal of this paper is twofold. First, we analyze how autocorrelation affects method-
of-moment estimators commonly used in industry to determine the latent asset return corre-
lation. While we find that the stationarity and summability of auto-co-moments are sufficient
for the estimator to converge to the true asset return correlation when the length of the time
series goes to infinity, we show that the convergence rate is much slower than in the case
of independent and identically distributed (i.i.d.) observations. Second, we propose a new
estimator that includes correction terms accounting for the autocorrelation and shortness of

1For example, global annual default rates for the ‘B’ rating category by Standard & Poor’s have lag-1
sample autocorrelation of 46.5% over the years 1981–2016, using data from the S&P 2016 Annual Global
Corporate Default Study available at http://www.spglobal.com.

2Paragraph 414 in Basel Committee on Banking Supervision. International convergence of capital mea-
sures and capital standards, 2006.

3Section 4.1 in Basel Committee on Banking Supervision. Consultative document: Reducing variation in
credit risk-weighted assets — constraints on the use of internal model approaches, 2016.

4For more information, please see http://www.moodysanalytics.com/webinars-on-demand/2011/through-
cycle-edf
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the observed time series. Our estimator, for which we also provide confidence intervals, has
a simple explicit form. Interestingly, the correction terms are positive when positive auto-
correlation is present. This shows that asset return correlation and therefore the values of
aggregate risk metrics are typically underestimated by classical estimators, which are based
on the method of moments and assume serial independence. Our proposed adjustment van-
ishes as the length of the time series goes to infinity; it becomes more dominant as the time
series shortens. For finite time series, the adjustment is present even when asset returns are
serially independent, but it is much smaller than in the case of positive autocorrelation.

Gordy and Heitfield (2010) have described the estimation bias in the asset return correla-
tion in cases of serially independent asset returns. In this paper, we allow for autocorrelation
and provide a remedy for the intrinsic bias that classical estimators have by proposing a new
estimator. We derive the form and properties of our estimator from asymptotic and distri-
butional properties of the sample mean of general autocorrelated time series. Under mild
assumptions, we show convergence results for the sample mean — in the forms of the law
of large numbers and a central limit theorem. For autocorrelated time series with finite
length, we analyze the difference and bound the error term between (1) expected value of
a functional of the sample mean and (2) the functional evaluated at the expected sample
mean. This yields an adjustment, from which we derive the correction terms included in our
new estimator.

Maximum likelihood estimators are an alternative to the method of moments that we
use. In the case of autocorrelation, however, they lead to highly convoluted integrals, which
are computationally not tractable. A sophisticated approximation was proposed by McNeil
and Wendin (2007); see also McNeil and Wendin (2006); Wendin (2006) for related results
and additional details. They proposed applying computational Bayesian estimation (Gibbs
sampling) to the maximum likelihood estimation of a class of generalized linear mixed models
(GLMMs) being used to model default rates. In their approach, computational Bayesian
estimation allows for a variety of model specifications and priors, so that different information
sources and model structures can be used. In contrast, our approach has the following
advantages:

1. Most importantly, it leads to an easily implementable, explicit formula that directly
shows the impact of autocorrelation on the estimation value. Thus, it is very suitable
for industrial applications.

2. Our method is stable, since it does not require any distributional properties of the
underlying time series. Gibbs sampling, on the other hand, does demand assumptions
about prior distribution and the dynamics of the time series (for example, an AR(1)
process).

3. Our method provides confidence intervals in addition to the point estimates of the
latent asset return correlation. This is helpful in practice for sensitivity analyses.

The remainder of this paper is organized as follows. We first recall a Merton-based
credit risk model in Section 2 and explain why autocorrelation in default rates is an issue.
In Section 3, we study properties of the sample mean for a general autocorrelated time
series: We give convergence results in Section 3.1 and analyze in Section 3.2 how these
asymptotic results can be adjusted to apply them to finite time series. Section 4 deals with
the application of our results to the estimation of the latent asset return correlation in credit

3



risk modelling. We show in Section 4.1 how we obtain new estimators and confidence intervals
for the latent asset return correlation. These results are presented for a well diversified
portfolio while we explain in Section 4.2 how our approach can be adjusted to account for
obligor specific risk. In Sections 4.3 and 4.4, we compare our estimator with maximum
likelihood estimators, also considering the implications of both types of estimators on a
loss risk metrics. In Section 5, we conclude. In the appendix to this paper, we summarize
how the formula for our estimator can be applied in practice, and provide the proof of our
main result.

2 Revisiting a structural default model

In this section, we recall method-of-moment estimators for structural credit risk models of
the Merton type. Method-of-moment estimators were introduced in this context by Gordy
(2000) and Nagpal and Bahar (2001) and later refined by Frey and McNeil (2003), and
Bluhm and Overbeck (2003), among others. We refer to Bluhm et al. (2010) for an overview
of models for correlated defaults, which are typically based on historical default rates as in
this paper or proxy variables.

As is widely used in practice and academia, we model credit risk of a portfolio using
a structural approach generalizing Merton (1974) to multiple firms. We group obligors in
the portfolio into homogeneous buckets. We assume here that the portfolio is infinitely fine
grained in the sense that the idiosyncratic risk of obligors is negligible on the bucket level.
In Section 4.2, we will explain how the approach can be adjusted when idiosyncratic risk is
present. The normalized asset return of obligor i in bucket b is given by

Ri =
√
%b Yb +

√
1− %b εi

where %b ∈ [0, 1), Yb is a standard normally distributed random variable (the systematic
factor of bucket b) common to all obligors in bucket b and εi is a standard normally distributed
random variable (the obligor i’s idiosyncratic component) independent of the other εi and
Yb. For two obligors i and ĩ in different buckets b and b̃, we write

%b,b̃ = Corr(Ri, Rĩ) = Cov(Ri, Rĩ) =
√
%b%b̃ Cov(Yb, Yb̃) =

√
%b%b̃ Corr(Yb, Yb̃)

for the correlation of their latent asset returns. Obligor i defaults if their return is below
a threshold cb, which is the same for all obligors in bucket b. Hence, if the unconditional
default probability of obligors in bucket b is pb, we have

pb = P [Ri ≤ cb] = Φ(cb)

so that cb = Φ−1(pb). Using the independence of εi from Yb, the loss rate in bucket b
conditional on the systematic factor Yb is given by

pb(Yb) = Φ

(
Φ(−1)(pb)−

√
%b Yb√

1− %b

)
. (1)

In the following, we focus on the important question of how to estimate %b and %b,b̃
from historic time series of data. To this end, we consider two buckets b and b̃ with a
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sufficiently large number of obligors so that the idiosyncratic risk is diversified away at
the bucket level. We assume that we are given the default rate time series (pb(Yb,t))t=1,...,T

and (pb̃(Yb̃,t))t=1,...,T for the two buckets, which correspond to time series (Yb,t)t=1,...,T and
(Yb̃,t)t=1,...,T of systematic factors, reflecting economic conditions. We further assume that
(pb(Yb,t)

2)t=1,...,T and (pb(Yb,t)pb̃(Yb̃,t))t=1,...,T are stationary, but importantly, they do not need
to be serially independent so that they can exhibit autocorrelation, as we observe in practice.

Proposition 2.5.9 in Bluhm et al. (2010) shows that

E
[
(pb(Yb,t))

2
]

= Φ2

(
Φ(−1)(pb),Φ

(−1)(pb); %b
)
,

where Φ2(., .; %b) denotes the bivariate normal cumulative distribution function with corre-
lation %b. This implies

lim
T→∞

1

T

T∑
t=1

(pb(Yb,t))
2 = Φ2

(
Φ(−1)(pb),Φ

(−1)(pb); %b
)

a.s.

by Proposition 3.1 below so that we obtain the approximation

1

T

T∑
t=1

(pb(Yb,t))
2 ≈ Φ2

(
Φ(−1)

(
1

T

T∑
t=1

pb(Yb,t)

)
,Φ(−1)

(
1

T

T∑
t=1

pb(Yb,t)

)
; %b

)
, (2)

using here the assumption that the idiosyncratic risk is diversified away on the bucket level.
We consider the function

gb(%b) = Φ2

(
Φ(−1)

(
1

T

T∑
t=1

pb(yb,t)

)
,Φ(−1)

(
1

T

T∑
t=1

pb(yb,t)

)
; %b

)

for a fixed T and a realization 1
T

∑T
t=1 pb(yb,t) = 1

T

∑T
t=1 pb(Yb,t(ω)) in some scenario ω.

Restricting gb to nonnegative %b and fixing a scenario ω with yb,t = Yb,t(ω), it can be shown
that gb is invertible5 so that we obtain an estimator

%̂b,1 = g−1
b

(
1

T

T∑
t=1

(pb(yb,t))
2

)
. (3)

From Gordy and Heitfield (2010), it is known that %̂b,1 is a biased estimator of %b because
of the finite length of the time series (pb(Yb,t))t=1,...,T , even when it is serially independent.
In contrast, we allow for autocorrelated data, and will see in Section 4 that autocorrelation
crucially increases the bias, but there is also a way to correct a large part of the bias.

Similarly to (2) and as in Section 4.1 of Bluhm and Overbeck (2003), we can approximate

1

T

T∑
t=1

pb(Yb,t)pb̃(Yb̃,t) ≈ Φ2

(
Φ(−1)

(
1

T

T∑
t=1

pb(Yb,t)

)
,Φ(−1)

(
1

T

T∑
t=1

pb̃(Yb̃,t)

)
; %b,b̃

)
,

5gb is strictly increasing as it will follow later from (11) and gb(0) =
(
1
T

∑T
t=1 pb(yb,t)

)2 ≤ 1
T

∑T
t=1 pb(yb,t)

2

by Jensen’s inequality and gb(1) = 1
T

∑T
t=1 pb(yb,t) ≥

1
T

∑T
t=1 pb(yb,t)

2 since pb(yb,t) ∈ [0, 1].
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and thus obtain for %b,b̃, an estimator

%̂b,b̃,1 = g−1

b,b̃

(
1

T

T∑
t=1

pb(yb,t)pb̃(yb̃,t)

)
, (4)

where g−1

b,b̃
is the inverse function of

gb,b̃(%b,b̃) = Φ2

(
Φ(−1)

(
1

T

T∑
t=1

pb(yb,t)

)
,Φ(−1)

(
1

T

T∑
t=1

pb̃(yb̃,t)

)
; %b,b̃

)
restricted on nonnegative %b,b̃, with yb,t and yb̃,t realizations of Yb,t and Yb̃,t, respectively, in
some scenario ω.

3 Convergence results for autocorrelated time series

In this section, we analyze the behaviour of the sample mean 1
T

∑T
t=1 Zt of an autocorrelated

time series (Zt)
t=∞
t=−∞. We first show in Section 3.1 convergence results for the limit of the

sample mean as T → ∞ under weak assumptions and then derive in Section 3.2 results
for finite T . The results of this section can be generalized to multidimensional processes,
i.e., when Zt is multidimensional where the components of Zt can be correlated. However,
since this leads to cumbersome notation and does not give new insights, we restrict the
presentation to a one-dimensional Zt.

3.1 Asymptotic properties

We impose the following assumptions:

A1 Stationarity: any k subsequent random variables Zt+1, . . . , Zt+k have the same distri-
bution regardless of the starting point t.

A2 Absolute summability of autocovariances: there exists a constant c <∞ such that

∞∑
t=−∞

|γs,t| ≤ c for all s,

where the autocovariances γs,t are defined by

γs,t = E
[(
Zs − E[Zs]

)(
Zt − E[Zt]

)]
.

The next result follows from an application of the ergodic theorem; see, for example,
Theorem 19.1 in Greene (2008).

Proposition 3.1. Under assumptions A1 and A2, the sample mean of the time series
(Zt)

t=∞
t=−∞ converges almost surely:

lim
T→∞

1

T

T∑
t=1

Zt = E[Z1]
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We can invoke this result also for the convergence of the sample variances. For this
case to hold true, we presume that all of the three versions of the auto-co-kurtosis of Y are
summable, as we explain in the next example.

As an example, consider the AR(1) process

Xt = ρ Xt−1 + (1− ρ)µ+ σεt

for |ρ| < 1,6 µ ∈ R, σ > 0, and independent, standard normally distributed εt. This process
can be demeaned by subtracting the mean µ, i.e., the process Zt = Xt − µ has zero mean.
Note that for each t, Zt is normally distributed with zero mean and variance σ2

1−ρ2 , so that
Zt is identically distributed, but not independent, as the autocovariance satisfies

γs,t =
σ2

1− ρ2
ρ|s−t|.

Since thus assumptions A1 and A2 are satisfied, the strong law of large numbers from
Proposition 3.1 holds for AR(1) process.

Because Zs and Zt are normally distributed, all co-moments of Zs and Zt are finite. In
particular, if we define an auto-co-kurtosis κs,t = κ

(2,2)
s,t as 7

κs,t =
E[(Zs)

2(Zt)
2]

γs,sγt,t

then

κs,t =
3σ4

1− ρ4

ρ(2|s−t|)

σ4

(1−ρ2)2

=
3(1− ρ2)

1 + ρ2
ρ(2|s−t|)

for integers s and t. Similar (summable) expressions hold for the auto-co-kurtoses κ
(1,3)
s,t and

κ
(3,1)
s,t . This implies that we can invoke Proposition 3.1 for the almost sure convergence of

the second sample moment of an AR(1) process as well. We can generalize this application
to the situation where the innovations εt of the AR(1) process are not normally distributed,
provided that their kurtosis E[ε4t ] is finite. Indeed, the auto-co-kurtosis κs,t of the AR(1)
process is finite if and only if E[ε4t ] is finite. Thus, if E[ε4t ] is finite when εt is not necessarily
normally distributed, we can still apply Proposition 3.1 to obtain almost sure convergence
of the second sample moment of the AR(1) process.

Generalizing from AR(1) processes, almost sure convergence of all sample moments of
an ARMA(p, q) process holds if the stationarity condition (zeros of its AR(p) polynomial
lie outside the unit circle) is satisfied; compare Sections 3.A and 7.2 in Hamilton Hamilton
(1994).

For the later application, we mention also a central limit theorem that can be used in
our situation. In addition to the assumptions of stationarity and absolute summability of
the autocovariances, we assume that

6In this case, the AR(1) process is called wide-sense stationary.
7Note that in addition to this version of the auto-co-kurtosis with powers (2, 2), there are two other

versions with powers (1, 3) and (3, 1).
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A3 Asymptotic uncorrelatedness: E[Zt|Zt−k, Zt−k−1, . . . ] converges in mean square to zero
as k →∞.

A4 Asymptotic negligibility of innovations:
∑∞

k=0E[r2
t,k] is finite for fixed t, where

rt,k = E[Zt|Zt−k, Zt−k−1, . . . ]− E[Zt|Zt−k−1, Zt−k−2, . . . ].

An AR(1) process
Zt = ρZt−1 + εt

with mean zero and |ρ| < 1 satisfies assumptions A3 and A4. Indeed, we can use Wold’s
representation that

Zt =
∞∑
j=0

ρjεt−j,

where the convergence of the series is in mean square (and almost surely). It now follows
that

E[Zt|Zt−k, Zt−k−1, . . . ] =
∞∑
j=k

ρjεt−j

indeed converges to zero in mean square as the remainder of a converging series. Because

E[Zt|Zt−k, Zt−k−1, . . . ]− E[Zt|Zt−k−1, Zt−k−2, . . . ] = ρkεt−k,

A4 is satisfied with rt,k = ρkεt−k since

∞∑
k=0

E[r2
t,k] =

∞∑
k=0

ρ2kE[ε2t−k] =
1

1− ρ2
<∞.

Remark 3.2. By the convergence theorem for backward martingales (see, for example, Sec-
tion 5.6 in Durrett (2010)), we always have

E[Zt|Zt−k, Zt−k−1, . . . ]
k→∞→ E[Zt|F−∞] in L1 and almost surely,

with σ-algebra F−∞ :=
⋂∞
k=0 σ(Zt−k, Zt−k−1, . . . ). In particular, this implies rt,k → 0 in

L1 and almost surely as k → ∞. Assumptions A3 and A4 reinforce these general conver-
gence properties by imposing that the sequence E[Zt|Zt−k, Zt−k−1, . . . ] also converges in L2

as k →∞ and that
∑∞

k=0E[r2
t,k] is finite for fixed t.

Gordin’s central limit theorem (see Theorem 19.4 in Greene (2008)) says that under
assumptions A1–A4

1√
T

T∑
t=1

Zt
T→∞−−−→ N

(
0,

∞∑
t=−∞

γ0,t

)
in distribution, (5)

where N
(
0,
∑∞

t=−∞ γ0,t

)
is the normal distribution with mean zero and variance

∑∞
t=−∞ γ0,t.
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3.2 Adjusting for shortness and autocorrelation

We now restrict ourselves to the case where we have T < ∞ observations of the time
series. We consider a moment estimator of the form g(θ) = µ, where θ is a parameter to be
estimated, µ is the unknown mean of the stationary time series (Zt)t=1,...,T . We assume that
g is three times continuously differentiable and invertible with inverse g̃ = g−1.

A natural estimator for θ is the moment estimator

θ̂1 = g̃

(
1

T

T∑
t=1

Zt

)
. (6)

By continuity of g̃ and the law of large numbers (see Proposition 3.1), θ̂1 converges almost
surely to θ as T →∞. However, for finite T , there is an estimation bias because

E[θ̂1] = E

[
g̃

(
1

T

T∑
t=1

Zt

)]
6= g̃

(
E

[
1

T

T∑
t=1

Zt

])
= g̃(µ) = θ.

Equality would hold only if g̃ were linear. The next theorem, whose proof is in the appendix
to this paper, allows us to improve the estimation.

Theorem 3.3. Under assumption A1, there exists a random variable ξ with values between
µ and 1

T

∑T
t=1 Zt such that∣∣∣∣θ − E[g̃( 1

T

T∑
t=1

Zt

)]
− g′′(θ)

2T (g′(θ))3
Var(Z1)− g′′(θ)

T 2(g′(θ))3

T−1∑
`=1

(T − `)Cov(Z1, Z1+`)

∣∣∣∣
≤ 1

6
E
[
(g̃′′′(ξ))4

]1/4
E

[(
1

T

T∑
t=1

Zt − µ
)4]3/4

.

The theorem says that θ can be approximated by

E

[
g̃

(
1

T

T∑
t=1

Zt

)]
+

g′′(θ)

2T (g′(θ))3
Var(Z1) +

g′′(θ)

T 2(g′(θ))3

T−1∑
`=1

(T − `)Cov(Z1, Z1+`), (7)

and there is an explicit upper bound for the resulting estimation error. To make use of
this result, we choose a smaller number k of terms in the sum in (7) and make the fol-
lowing replacements: θ is replaced by the estimator θ̂1 = g̃

(
1
T

∑T
t=1 Zt

)
, and Var(Z1) and

Cov(Z1, Z1+`) are replaced by sample variance and sample autocovariances. This gives us a
new estimator

θ̂2 = g̃(µ̄) +
g′′(g̃(µ̄))

2T (g′(g̃(µ̄)))3
α0 +

g′′(g̃(µ̄))

T (g′(g̃(µ̄)))3

k∑
`=1

(1− `/T )α`, (8)

where µ̄ = 1
T

∑T
t=1 Zt is the sample mean and

α` =
1

T

T∑
t=1+`

(Zt − µ̄)
(
Zt−` − µ̄

)
, ` = 0, 1, . . . , k
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is the lag-` sample autocovariance. As usual in time series analysis, we divide in the definition
of the sample autocovariance by T and not T − `; compare, for instance, Section 1.6 in
Shumway and Stoffer (2017).

In addition to the bounds for the point estimates, we can also find approximate confidence
intervals. For this, we note that

Var

(
1√
T

T∑
t=1

Zt

)
=

1

T
Var

( T∑
t=1

Zt

)
=

1

T

T∑
i,j=1

Cov(Zi, Zj)

=
1

T

T∑
t=1

Var(Zt) +
2

T

T−1∑
`=1

T−∑̀
t=1

Cov(Zt, Zt+`)

= Var(Z1) +
2

T

T−1∑
`=1

(T − `)Cov(Z1, Z1+`) (9)

≈ α0 +
2

T

k∑
`=1

(T − `)α`.

Applying Gordin’s central limit theorem (5) and using the delta method, we can approximate
a p% confidence interval for θ̂2 byθ̂2 −

q|g̃′(µ̄)|√
T

√√√√α0 + 2
k∑
`=1

(1− `/T )α`, θ̂2 +
q|g̃′(µ̄)|√

T

√√√√α0 + 2
k∑
`=1

(1− `/T )α`

 (10)

where q = t−1
T−1(1 − (1 − p/100)/2) with t−1

T−1 denoting the inverse of the cumulative dis-
tribution function of the t-distribution with T − 1 degrees of freedom. The approximate
confidence interval (10) can be easily implemented and is suitable for our purposes. An
alternative could be derived by using blockwise bootstrap as in Götze and Künsch (1996),
who show that their methods lead to gains in asymptotic accuracy.

Remark 3.4. In (8) and (10), one could use the idea of tapering by replacing the terms
1− `/T by weights w` which decay smoothly from 1 for ` = 0 to 0 for ` = k + 1. This would
reduce the jump in the weight 1−k/T for αk to the weight 0 for αk+1 in the sums in (8) and
(10). For a statistical method on how to select the number k of terms in the sums in (8) and
(10), we refer to Bühlmann (1996), who proposes an iterative plug-in scheme for the locally
optimal window width in nonparametric estimations.

4 Application to credit risk

We show in Section 4.1 how the accuracy of the method-of-moment estimators from Sec-
tion 2 can be improved by using the results of Section 3.2. In Section 4.2, we explain how
an additional adjustment can be made to the estimator in the presence of idiosyncratic risk
on the bucket level. In Section 4.3, we give a performance comparison of the original and
adjusted method-of-moment estimators with a maximum likelihood estimator (MLE). Sec-
tion 4.4 gives an example of how the estimated parameter can be used in the computation
of a loss risk metrics and compares the metrics for the different estimators.

10



4.1 New estimators for the latent asset return correlation

Let us consider the setting of Section 2 with two rating buckets b and b̃ that have a sufficiently
large number of obligors so that the idiosyncratic risk is diversified away on the bucket level.
To apply the results of Section 3.2, we note that the estimators (3) and (4) are of the form

%̂1 = g̃

(
1

T

T∑
t=1

Zt(ω)

)

as realizations of (6) with g̃ = g
(−1)
b , %̂1 = %̂b,1, Zt = (pb(Yb,t))

2 and g̃ = g
(−1)

b,b̃
, %̂1 = %̂b,b̃,1,

Zt = pb(Yb,t)pb̃(Yb̃,t), respectively. Since, in either case, the inverse of g̃ is g(%1) = Φ2(s, t; %1),
we calculate the derivatives

∂

∂%1

Φ2(s, t; %1) = φ2(s, t; %1) =
1

2π
√

1− %2
1

exp

(
− s2/2− %1st+ t2/2

1− %2
1

)
, (11)

∂2

(∂%1)2
Φ2(s, t; %1) =

st+ %1(1− s2 − t2) + st%2
1 − %3

1

2π(1− %2
1)5/2

exp

(
− s2/2− %1st+ t2/2

1− %2
1

)
. (12)

From Section 3.2, we can find estimated correlations %̂b,2 and %̂b,b̃,2, taking the short length
and autocorrelation of the time series into account, by

%̂b,2 = %̂b,1 +
g′′(%̂b,1)

T (g′(%̂b,1))3

(
αb,0/2 +

k∑
`=1

(1− `/T )αb,`

)
,

%̂b,b̃,2 = %̂b,b̃,1 +
g′′(%̂b,b̃,1)

T (g′(%̂b,b̃,1))3

(
αb,b̃,0/2 +

k∑
`=1

(1− `/T )αb,b̃,`

)
,

where

• %̂b,1 and %̂b,b̃,1 are the estimations from (3) and (4);

• g′(%̂b,1) and g′′(%̂b,1) equal to (11) and (12) with %1 = %̂b,1 and evaluated at s = t =

Φ(−1)
(

1
T

∑T
t=1 pb(yb,t)

)
; analogously, g′(%̂b,b̃,1) and g′′(%̂b,b̃,1) equal to (11) and (12) with

%1 = %̂b,b̃,1 and evaluated at s = Φ(−1)
(

1
T

∑T
t=1 pb(yb,t)

)
and t = Φ(−1)

(
1
T

∑T
t=1 pb̃(yb̃,t)

)
;

• αb,` and αb,b̃,` are the lag-` sample autocovariances of the time series
(
(pb(yb,t))

2
)
t=1,...,T

and (pb(yb,t)pb̃(yb̃,t))t=1,...,T , respectively, i.e.,

αb,` =
1

T

T∑
t=1+`

(
(pb(yb,t))

2 − µ̄b
)(

(pb(yb,t−`))
2 − µ̄b

)
, (13)

αb,b̃,` =
1

T

T∑
t=1+`

(
pb(yb,t)pb̃(yb̃,t)− µ̄b,b̃

)(
pb(yb,t−`)pb̃(yb̃,t−`)− µ̄b,b̃

)
,

where µ̄b = 1
T

∑T
t=1(pb(yb,t))

2 and µ̄b,b̃ = 1
T

∑T
t=1 pb(yb,t)pb̃(yb̃,t).

11



Figures 1 and 2 illustrate how the adjustment affects the estimations in the cases where
the underlying factor is modelled by independent observations or an AR(1) process. For
the AR(1) process, the bias of the original estimator %̂b,1 is much larger than in the case
of independent observations. Therefore, our proposed adjustments yield a particularly big
improvement for autocorrelated time series, but still improve the classical estimator in the
case of independent observations. We display here plots for the correlation estimation within
a bucket and an underlying true correlation coefficient of %b = 0.05, which is typical for a
large, well diversified credit portfolio, but we made similar observations when considering
the correlation between two buckets or when choosing different correlation coefficients.

To improve the estimator %̂b,1, we focused on the approximation error coming from
1
T

∑T
t=1(pb(yb,t))

2 which appears to be crucial while there is another approximation error

from replacing pb by 1
T

∑T
t=1 pb(yb,t) in (2), which however has a smaller impact on the es-

timation %̂b,1 because of its appearance as argument in Φ2 compared to the more sensitive

dependence of g−1 on 1
T

∑T
t=1(pb(yb,t))

2. A multidimensional generalization of our results
would build an estimator that simultaneously improves the approximation error from both
1
T

∑T
t=1 pb(yb,t) and 1

T

∑T
t=1(pb(yb,t))

2. We refrain from using such an estimator because we
observe that the additionally gained precision is small for the estimation, the notation is
cumbersome and there is no explicit expression for derivatives analogous to (11) and (12).
However, we used such an idea to get good approximated confidence intervals in Figure 2.
Indeed, we use confidence intervals [%̂b,2 − sb, %̂b,2 + sb] where we choose sb differently than
q|g̃′(µ̄)|√

T

√
α0 + 2

∑k
`=1(1− `/T )α` in (10). From

1

T

T∑
t=1

(pb(yb,t))
2 = Φ2

(
Φ(−1)

(
1

T

T∑
t=1

pb(yb,t)

)
,Φ(−1)

(
1

T

T∑
t=1

pb(yb,t)

)
; %̂b

)
and Footnote 5, there exists a function h with h

(
1
T

∑T
t=1(pb(yb,t))

2, 1
T

∑T
t=1 pb(yb,t)

)
= %̂b.

While h is not explicitly given, we can numerically calculate its partial derivatives ∂h
∂x

and
∂h
∂y

. For the approximate confidence intervals in Figure 2, we set sb equal to the nonnegative
square root of

s2
b =

q2

T

((∂h
∂x

)2
(
αb,0 + 2

k∑
`=1

(1− `/T )αb,`

)
+
(∂h
∂y

)2
(
βb,0 + 2

k∑
`=1

(1− `/T )βb,`

)

+ 2
∂h

∂x

∂h

∂y

(
γb,0 + 2

k∑
`=1

(1− `/T )γb,`

))
,

where

βb,` =
1

T − 1− `

T∑
t=1+`

(
pb(yb,t)− ν̄b

)(
pb(yb,t−`)− ν̄b

)
,

γb,` =
1

T − 1− `

T∑
t=1+`

(
pb(yb,t)− ν̄b

)(
pb(yb,t−`)

2 − µ̄b
)

with ν̄b = 1
T

∑T
t=1 pb(yb,t) are defined similarly to (13). Taking changes in both arguments of

h into consideration helps us get more precise approximate confidence intervals in Figure 2.
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Figure 1: Comparison of distributions of the original correlation estimation and the adjusted
correlation estimation of different orders k = 1, . . . , 5. The underlying factors are simulated
based on an AR(1) process with coefficient 0.7 (upper panel) and i.i.d. observations (lower
panel). The solid curves are density estimations and the dotted lines give sample means.
The adjustments remove a big part of the bias so that the adjusted means are much closer to
the true value of %b = 0.05, for both the AR(1) process and the i.i.d. observations. The time
series have length 80 (reflecting 20 years of data, assuming that each time step corresponds
to a quarter), the quarterly probability of default is set equal to 0.2%, and the plots are
based on 50,000 simulations for each AR(1) and i.i.d. time series.
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Figure 2: Comparison of the original correlation estimation and the adjusted correlation
estimation of orders k = 5 for different lengths of the time series. The underlying factors are
simulated based on an AR(1) process with coefficient 0.7 (upper panel) and i.i.d. observations
(lower panel). The solid curves are correlation estimations. Again, the adjustment removes
a big part of the bias so that the adjusted mean is much closer to the true value of %b = 0.05,
for both the AR(1) process and the i.i.d. observations. An additional advantage of our
method is that it allows us to compute an approximate 95% confidence intervals, showed by
the dashed lines. The quarterly probability of default is set equal to 0.2%, and the plots are
based on 1,000 simulations for each AR(1) and i.i.d. time series.
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Remark 4.1. We used the classical setting that obligors are grouped into homogeneous buck-
ets according to their ratings and client segments, and modelled the asset return correlation
of each bucket independently. In applications, it can be useful to impose that the buckets in a
client segment across different rating classes have the same correlation. We briefly mention
how this can be addressed in our approach. Since in this case one cannot find a correlation
parameter individually for each bucket, a natural approach is to introduce weights wb ≥ 0 with∑

b∈B wb = 1 for the different buckets according to their importance (for example, according
to the total exposure at default per bucket) and to minimize over %1 the sum of squared errors∑

b∈B

wb

[
%1 − g−1

b

(
1

T

T∑
t=1

(pb(yb,t))
2

)]2

.

The optimal %1 is given by the first-order condition
∑

b∈B wb
[
%1−g−1

b

(
1
T

∑T
t=1(pb(yb,t))

2
)]

= 0,

hence %1 =
∑

b∈B wb g
−1
b

(
1
T

∑T
t=1(pb(yb,t))

2
)
. Because this is of the same form as (3), just with

a linear combination
∑

b∈B wb g
−1
b instead of a single g−1

b , we can argue similarly as above to
obtain estimators taking the short length and autocorrelation of the time series into account.
Since this does not offer new insights, we do not spell out the details here.

4.2 Accounting for idiosyncratic risk

As mentioned earlier, the simulations in this section are done for a bucket with a sufficiently
large number of obligors. When there is a smaller number of obligors, the estimators can
still be applied, but lead to an additional error because of the idiosyncratic risk. In this
section, we analyze this error and discuss how it can be partially corrected.

When applying the estimators to the latent asset return correlation in a bucket in the
presence of idiosyncratic risk, the estimated values will typically be conservative, i.e., too high
on average compared to the limiting case of infinitely many obligors. The intuition behind
this is as follows. Let x1, . . . , xT be a default rate time series, reflecting both idiosyncratic
and systematic risks. Recall from (3) that the moment estimator %̂b is defined by

Φ2

(
Φ(−1)

(
1

T

T∑
t=1

xt

)
,Φ(−1)

(
1

T

T∑
t=1

xt

)
; %̂b

)
=

1

T

T∑
t=1

x2
t . (14)

Assuming that the idiosyncratic risk for different periods is independent, it will average out
to a large extent in the first moment 1

T

∑T
t=1 xt, particularly, for larger values of T . Therefore,

1
T

∑T
t=1 xt is similar to its analogue in a model with infinitely many obligors. In contrast,

the idiosyncratic risk contributes to the second moment 1
T

∑T
t=1 x

2
t . Compared to the case

without idiosyncratic risk, 1
T

∑T
t=1 xt on the left-hand side of (14) is essentially unchanged

while the right-hand side of (14) is increased on average. Since the function Φ2 is increasing
in %̂b (compare (11)), this will typically lead to a larger estimation %̂b.

This additional bias resulting from the finite number N of obligors can be partially
corrected. Indeed, writing Xt = 1

N

∑N
i=1 1

√
%b Yb,t+

√
1−%b εi,t≤Φ−1(pb) in the notation of Section 2,

the squared default rate X2
t conditional on the systematic factor Yb,t can be computed as

E[X2
t |Yb,t] =

(
1− 1

N

)(
pb(Yb,t)

)2
+ pb(Yb,t)

1

N
for pb(Yb,t) = Φ

(
Φ(−1)(pb)−

√
%b Yb,t√

1− %b

)
,
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hence the squared default rate for infinitely many obligors satisfies

(
pb(Yb,t)

)2
=

1

1− 1/N
E[X2

t |Yb,t]−
1/N

1− 1/N
pb(Yb,t) ≈ E[X2

t |Yb,t]−
1

N
E[Xt|Yb,t]. (15)

Therefore, to take the influence of a small number of obligors into account, we can replace
1
T

∑T
t=1 x

2
t in (14) by 1

T

∑T
t=1(x2

t − xt/N).
The plots in Figure 3 show that this additional adjustment works well: without the

adjustment the latent asset return correlation is overestimated when the number of obligors
is not sufficiently large. The additional adjustment brings the estimates closer to those in
the limiting case of an infinite number of obligors. Note that we need a sufficiently large
T (80 in Figure 3) for the additional adjustment to work well. Moreover, this adjustment
applies only to the latent asset return correlation within a bucket, but not across buckets.

The difference between original value 1
T

∑T
t=1 x

2
t of the right-hand side of (14) and its

adjusted value 1
T

∑T
t=1(x2

t − xt/N) is inversely proportional to the bucket size N . Since
the bivariate normal cumulative distribution function Φ2 and its inverse with respect to
the correlation are continuous, the convergence of the adjustment implies that the adjusted
estimator converges to the original estimator whenN tends to infinity. While the convergence
rate of the adjustment itself is 1/N , the convergence speed of the estimator depends on the
relation between 1

T

∑T
t=1 x

2
t and 1

T

∑T
t=1 xt: when default rates are high, making the relative

difference between x2
t and xt small, the estimator converges faster than when default rates

are low.
For the correlation estimation between two buckets, 1

T

∑T
t=1 x

2
t in (14) is replaced by

1
T

∑T
t=1 xtx̃t where x̃1, . . . , x̃T is the default rate time series of the other bucket. Because a

large part of the idiosyncratic risk in 1
T

∑T
t=1 xtx̃t averages out thanks to its independence

across buckets and time periods, the estimation for the latent asset return correlation between
two buckets is much less affected by idiosyncratic risk than that within a bucket.

This section and Section 4.1 demonstrate how method-of-moment estimators can be
adjusted for idiosyncratic risk and autocorrelation in the underlying data. In contrast,
such adjustments are not easily doable for MLE, which is an alternative to method-of-
moment estimators. We give a detailed comparison with MLE in the next section when the
idiosyncratic risk of obligors is negligible on the bucket level. We already note here that an
MLE with AR(1) specification is not computationally feasible by standard methods when
idiosyncratic risk is present. This is the reason why we did not include such a comparison
in the current section.

4.3 A performance comparison with an MLE

Let us briefly recall how an MLE can be used in the current setting. If we consider a single
bucket, an MLE for the pairwise asset return correlations consists in finding the argument
%∗b ∈ [0, 1) that maximizes the likelihood function

L(%b) =

∫
RT

pb(yt)
Dt (1− pb(yt))Nt−Dt dF (y1, . . . , yT ) (16)
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Figure 3: Influence of the idiosyncratic risk on the correlation estimations, as a function
of the number of obligors in the bucket. For a finite number of obligors, idiosyncratic risk
is present in the default rate time series, leading typically to higher correlation estimates
(dashed curves, which are based on (14)) than for an infinite number of obligors. The solid
curves are additionally corrected for finite bucket size, as discussed after (15). They are
stable regarding the number of obligors, and the means of the adjusted estimators are close
to the true value %b = 0.05. As in Figure 1, the underlying factors are simulated based on
an AR(1) process with coefficient 0.7 (upper panel) and i.i.d. observations (lower panel), the
time series have length 80, and the quarterly probability of default is 0.2%. The plots are
based on 5,000 simulations for each AR(1) and i.i.d. time series. The chosen low values for
quarterly default probability (0.2%) and %b = 0.05 mean that the idiosyncratic risk has a big
influence on the correlation estimation when the number of obligors is not sufficiently large.
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where Dt is the number of obligor defaults at time t, Nt is the total number of obligors at
time t, pb(yt) is the conditional loss rate given in (1), and F is the cumulative distribution
function of the joint distribution of (Y1, . . . , YT ).

Since (16) requires us to specify the joint distribution function F , the MLE fundamentally
rests upon distributional assumptions on the systematic factor (Y1, . . . , YT ). Let us next
consider two examples.

Example I: Independent Gaussian systematic returns. If we assume that the latent
asset returns (Yt)t=1,...,T are i.i.d. Gaussian, then the likelihood function (16) simplifies to

L(%b) =
T∏
t=1

[∫ ∞
−∞

p(yt)
Dt (1− p(yt))Nt−Dt dΦ(yt)

]
,

where Φ(.) is the cumulative distribution function of the standard normal distribution.

Example II: AR(1) systematic returns. On the other hand, under the assumption that
(Yt)t=1,...,T is governed by AR(1) dynamics, i.e.,

X
(k)
t =

√
%b Yt +

√
1− %b Ξ

(k)
t k = 1, . . . , Nt,

Yt = ρ Yt−1 +
√

1− ρ2 Υt, Yt−1 ⊥ Υt, t = 2, . . . , T,

the likelihood function takes the form

L(%b, ρ, µ) =

∫
RT

p(yt)
Dt (1− p(yt))Nt−Dt dΦT ((y1, . . . , yT )′;µ,ΣT ), (17)

where ΦT (.;µ,Σ) is the cumulative distribution function of the T -dimensional Gaussian
distribution with mean µ and covariance matrix Σ. Observe that ΣT in (17) is given by

ΣT =


1 ρ · · · ρT

ρ 1 · · · ρT−1

...
...

. . .
...

ρT ρT−1 · · · 1.

 (18)

as (Y1, . . . , YT ) ∼ N (0,ΣT ).

In general, the MLE for the estimation of latent asset returns involves as likelihood func-
tion a T -dimensional integral. In the case of an AR(1) process and when the idiosyncratic
risk is diversified away because of a large number of obligors in the rating bucket, the com-
putation can be simplified, as mentioned in Section III of Miu and Ozdemir (2009). In this
case, we can apply a transformation of probability density to (1) and (Y1, . . . , YT ) ∼ N (0,ΣT )
with ΣT given in (18) to write the joint probability density function of

(
p(Y1), . . . , p(YT )

)
as

ϕT
(
h(x1), . . . , h(xT ); 0,ΣT

)
%
T/2
b

(1−%b)T/2

∏T
j=1 ϕ

(
Φ(−1)(pb)−√%b h(xj)√

1−%b

) with h(x) =
Φ(−1)(pb)− Φ(−1)(x)

√
1− %b√

%b
, (19)
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where ϕ(x) is the standard normal probability density function and ϕT (x1, . . . , xT ; 0,ΣT ) is
the multivariate normal probability density function with mean 0 and covariance matrix ΣT .
Formula (19) yields the likelihood function as a product that can be used to numerically find
the MLE. Note, however, that this needs the knowledge or assumption that the systematic
returns follow an AR(1) process, in addition to the assumption that the idiosyncratic risk
is diversified away on the bucket level. In general, MLE for dependent processes is compu-
tationally very demanding and can only be approximated by using sophisticated numerical
techniques (see McNeil and Wendin (2007), and Wendin (2006)). Moreover, these methods
require assumptions on the prior distribution and the dynamics of the time series, which
typically is unknown in practice. In contrast, our adjusted estimator is nonparametric in the
sense that it does not require knowledge of the dynamics of the underlying time series.

We next give in Figure 4 a performance comparison of method of moments (MoMs) and
MLE for an AR(1) process and i.i.d. observations. For both AR(1) and i.i.d. cases, we
choose the MLE (16), assuming serial independence since we suppose that the underlying
autocorrelation is not known. In the case of the AR(1) process, we additionally use an MLE
based on the AR(1) specification from (19) although this estimator needs the knowledge or
assumption that the systematic returns follow an AR(1) process, which is difficult to check
in reality given the short time series and which is not used by the other estimators.

For i.i.d. observations, we find that all three estimators (original and adjusted MoM
estimators, and MLE) perform well and similarly. Indeed, the MLE has slightly smaller
standard deviation than the MoM estimators. The bias of MLE is between that of the
original and adjusted MoM estimators, but in all three cases, the bias is small (less than
3.5%) for i.i.d. observations. For the AR(1) process, however, the adjusted MoM estimator
has a much smaller bias (2.2%) than the original MoM estimator (bias: 11.5%) and the MLE
with i.i.d. specification (bias: 9.2%). The bias (6.8%) of the MLE with AR(1) specification is
smaller than those of the original MoM estimator and the MLE with i.i.d. specification, but
still much larger than that of the adjusted MoM estimator. In the upper panel of Figure 4,
we see particularly that the MLE with i.i.d. specification has a higher risk of extremely
underestimating the true correlation value, compared to the MoM estimators. Standard
deviations across the estimators are similar, with original MoM and MLEs on roughly the
same level, and the adjusted MoM on a slightly higher level.

In summary, our adjusted estimator is easy to implement and shows a clear performance
improvement in terms of reduced bias, compared to both original MoM estimator and MLEs
when the dynamics of the underlying time series is not explicitly known.

4.4 Application to loss risk metrics

Estimators for the latent asset return correlation are often used to compute risk metrics on
loan portfolios. In this section, we first recall how this can be done and then analyze in an
example how the choice of the estimator affects the values of a risk metrics.

To compute a risk metrics, we position ourselves in the situation where we are given a
default time series over the last 80 quarters. As is often used in practice and in line with the
Basel II capital accord for banking-book transactions8, we compute the Value-at-Risk (VaR)

8Paragraph 178 in Basel Committee on Banking Supervision. International convergence of capital mea-
sures and capital standards, 2006.
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Figure 4: Comparison of distributions of the original method-of-moment (MoM) estimator,
the 5th-order adjusted MoM estimator and MLEs with AR(1) and i.i.d. specifications. The
underlying factors are simulated based on an AR(1) process with coefficient 0.7 (upper panel)
and i.i.d. observations (lower panel). The solid curves are density estimations and the dotted
lines give sample means. In the case of i.i.d. observations, the estimators perform similarly.
For the AR(1) process, the bias of the MLE with i.i.d. specification (bias = 9.2%, std. dev. =
0.0135) is similar to that of the original MoM estimator (bias = 11.5%, std. dev. = 0.0135)
while the bias of MLE with AR(1) specification (bias = 6.8%, std. dev. = 0.0118) is smaller,
but still much larger than that of the adjusted MoM estimator (bias = 2.2%, std. dev. =
0.0165). The time series have length 80 (reflecting 20 years of data, assuming that each
time step corresponds to a quarter), the true latent asset return correlation is %b = 0.05,
the quarterly probability of default is set equal to 0.2%, and the plots are based on 50,000
simulations for each AR(1) and i.i.d. time series.
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over a forward-looking one-year period. To this end, we estimate the latent asset return
correlation using one of the previously discussed estimators as well as the autocorrelation
based on data over the last 80 quarters. The autocorrelation is estimated in the standard way,
after transforming the default time series to realizations of the systematic factor by applying
the inverse of (1). We then use the estimated parameters for a Monte Carlo simulation with
50,000 paths of the default time series over the next four quarters. For this example, we
consider a bucket with a total loan volume of $1 billion with a sufficiently large number of
obligors so that the idiosyncratic risk is diversified away. We further assume that loss given
default is 50% so that we can compute the VaR over the 50,000 simulated paths of 4-quarter
default time series conditional on the given history of the last 80 quarters of default time
series. We then compute the unconditional VaR on different levels for each of the previously
discussed estimators. The results are displayed in Table 1 for AR(1) underlying dynamics.9

true MoM MoM MLE MLE
value unadjusted adjusted (k = 5) i.i.d. specific. AR(1) specific.

%
b

=
0.

05

EL 3.99 3.99 (+0.05%) 3.99 (+0.09%) 4.00 (+0.10%) 3.99 (+0.07%)
VaR0.95 6.98 6.82 (−2.33%) 6.99 (+0.14%) 6.87 (−1.70%) 6.90 (−1.16%)
VaR0.99 9.26 8.94 (−3.44%) 9.31 (+0.54%) 9.03 (−2.47%) 9.11 (−1.59%)
VaR0.999 12.71 12.15 (−4.45%) 12.87 (+1.21%) 12.31 (−3.13%) 12.46 (−1.91%)
VaR0.9995 13.80 13.15 (−4.68%) 13.99 (+1.41%) 13.34 (−3.26%) 13.53 (−1.97%)

%
b

=
0.

10

EL 3.99 4.00 (+0.33%) 4.01 (+0.49%) 4.00 (+0.14%) 4.00 (+0.25%)
VaR0.95 8.49 8.17 (−3.76%) 8.45 (−0.40%) 8.35 (−1.63%) 8.38 (−1.21%)
VaR0.99 12.75 11.98 (−6.04%) 12.69 (−0.46%) 12.40 (−2.74%) 12.51 (−1.90%)
VaR0.999 20.00 18.37 (−8.13%) 19.94 (−0.27%) 19.24 (−3.78%) 19.51 (−2.45%)
VaR0.9995 22.43 20.50 (−8.61%) 22.38 (−0.22%) 21.53 (−4.00%) 21.86 (−2.56%)

Table 1: Expected loss (EL) and Value-at-Risk (VaR) in an example of a diversified $1 bn
loan portfolio. The true values are computed using the true latent asset return correlation
%b = 0.05 (upper half) or %b = 0.10 (lower half) and parameter 0.7 of the AR(1) process. All
numbers are in million $, with percentage deviations compared to the true value. As in the
example of Figure 4, the quarterly probability of default is set equal to 0.2%.

In line with our expectations, we find that estimated VaRα numbers are closer to their
true values for lower levels α and lower asset return correlation %b. Generally, our adjusted
estimator (adjustment of order k = 5) leads to estimated VaR closest to the true values,
better than the MLEs and better than the unadjusted moment estimator. Interestingly, we
find that VaR estimations are slightly too high when using our adjusted estimator in the case
of %b = 0.05. This is because both the latent asset return correlation and the coefficient of
the AR(1) process are estimated. If one chooses the correct coefficient for the AR(1) process
instead of estimating it, we obtain for VaR0.999 when %b = 0.05, the values $11.95m (−5.96%
compared to the true value) for the unadjusted MoM, $12.65m (−0.48%) for the adjusted

9We also analyzed underlying dynamics driven by i.i.d. observations, rather than an AR(1) process, and
found, as expected, that the deviations in VaR from the different estimators are typically small (less than
2%) because the bias from autocorrelation is not present in this case.
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MoM, $12.12m (−4.68%) for the MLE with i.i.d. specification, and $12.27m (−3.49%) for
the MLE with AR(1) specification.

Additionally to the through-the-cycle VaR estimates displayed in Table 1, our method
provides an efficient means of computing point-in-time VaR. Figure 5 shows such point-in-
time VaR estimates when the underlying asset returns are simulated by an AR(1) process
over 80 quarters and the VaR is computed conditional on the last observation of the AR(1)
process. We observe that the impact of our adjustment is pronounced for VaR at high levels
and when current asset returns are low, corresponding to contraction periods in the credit
cycle. The reason for this pronounced impact is that the autocorrelation, which is disregarded
in the classical MoM estimator, strongly affects VaR at high levels and in downturn scenarios.
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Figure 5: Point-in-time estimations of EL and VaR in an example of a diversified $1 bn loan
portfolio. EL and VaR at different levels (on vertical axis) over a 4-quarter horizon with
50,000 simulated paths are displayed conditional on different possibilities of the currently ob-
served asset returns (on horizontal axis). The solid curves are done using our adjusted MoM
estimator (adjustment of order k = 5) while the dashed curves are based on an unadjusted
MoM estimator. The underlying factors are simulated based on an AR(1) process with coef-
ficient 0.7, with asset return correlation %b = 0.1, and quarterly probability of default equal
to 0.2%. Taking the averages of the EL and VaR estimates weighted by the distribution of
asset returns results in the values in Table 1.

In this example, we observe that, for VaR risk metrics, the estimation of the autocorre-
lation mitigates parts of the bias issues of the latent asset return estimators, but still VaR
numbers estimated by MLEs and MoM are too low and improved when our proposed adjust-
ment is applied to MoM. The low default probability (0.2% per quarter) means that VaRα

numbers and the impact on misestimated correlation are relatively small, but even under
these choices, the adjusted MoM performs clearly better than the other estimators. The
adjustment is particularly beneficial for higher levels of asset return correlation: already for
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%b = 0.10, VaR0.999 is underestimated by around 8% and 3% by unadjusted MoM and MLEs,
respectively, while our adjusted MoM estimator provides essentially unbiased VaR numbers.

5 Conclusion

Starting with the observation that time series of default rates often exhibit autocorrelation,
we examined how to relax the assumption of serial independence in classical estimators used
in credit risk modelling. This led us to study convergence and distributional properties of
the sample mean of general autocorrelated time series. Under mild assumptions, the sample
mean still converges, but more slowly than in the case of serial independence. For a finite
time series, when autocorrelation is present, the slower convergence leads to a larger bias
of classical estimators. To ameliorate this shortcoming, we constructed an estimator that
includes correction terms that take into account the autocorrelation and shortness of the
observed time series. Applied to credit risk modelling, we found that our estimator elimi-
nates much of the downward bias occurring in classical estimators of the latent asset return
correlation. The explicit formula of our estimator, which does not depend on distributional
assumptions, makes the estimator easily tractable and readily available for industrial appli-
cations. Its implementation helps determine more accurate values of aggregate risk metrics,
such as Value-at-Risk, which crucially depend on good estimations for the latent asset return
correlation.
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Jonathan Wendin and two anonymous referees as well as participants of a seminar at
ETH Zurich for helpful comments. Christoph Frei gratefully acknowledges support for re-
search projects by the Natural Sciences and Engineering Council of Canada under grant
RGPIN/402585-2011.

References

Altman, E., and Rijken, H. (2006). A point-in-time perspective on through-the-cycle ratings.
Financial Analysts Journal 62(1), 54–70

23



Bluhm, C., and Overbeck, L. (2003). Systematic risk in homogeneous credit portfolios. In:
Bol, G., Nakhaeizadeh, G., Rachev, S., Ridder, T. and Vollmer, K.-H. (eds.): Credit Risk:
Measurement, Evaluation and Management (Contributions to Economics), Springer

Bluhm, C., Overbeck, L., and Wagner, C. (2010). An Introduction to Credit Risk Modeling.
Chapman & Hall/CRC, 2nd edition
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