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Abstract

While trading on a financial market, the agents we consider take the
performance of their peers into account. By maximizing individual
utility subject to investment constraints, the agents may ruin each
other even unintentionally so that no equilibrium can exist. How-
ever, when the agents are willing to waive little expected utility, an
approximated equilibrium can be established. The study of the asso-
ciated backward stochastic differential equation (BSDE) reveals the
mathematical reason for the absence of an equilibrium. Presenting an
illustrative counterexample, we explain why such multidimensional
quadratic BSDEs may not have solutions despite bounded terminal
conditions and in contrast to the one-dimensional case.
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1 Introduction

Assuming you have invested in a fund, are you satisfied with the fund man-
ager if she achieved a performance of 4 % in the last year? You may say
that the answer depends mainly on two factors: the risk the manager has
taken and the development of the markets in the last year. In mathematical
finance, the frequently used approach of maximizing expected utility from
terminal wealth incorporates simultaneously the performance and the risk
related to a trading strategy. However, the relative performance compared
to an index or other investors is typically not taken into account, although
benchmarking may even be part of human nature and is important for a fund
manager who needs to keep the fund competitive. The goal of this paper is
to study the impacts of integrating relative-performance considerations into
the framework of utility maximization.

The model we consider consists of n agents who can trade in the same
market subject to some individual restrictions. Each agent measures her
preferences by an exponential utility function and chooses a trading strategy
that maximizes the expected utility of a weighted sum consisting of three
components: an individual claim, the absolute performance and the relative
performance compared to the other n − 1 agents. The question is whether
there exists a Nash equilibrium in the sense that there are individual optimal
strategies simultaneously for all agents. We make the usual assumption that
the financial market is big enough so that the trading of our investors does
not affect the price of the assets.

A model similar to ours has been recently studied in the PhD thesis of
Espinosa [7] but in the absence of individual claims and with assets modeled
as Itô processes with deterministic coefficients. These assumptions crucially
simplify the analysis and enable Espinosa [7] to show a nice existence re-
sult for a Nash equilibrium, which will also be presented in the forthcoming
paper [8] by Espinosa and Touzi. Additionally, they study the form of a
Nash equilibrium, while our focus is on existence questions in a more gen-
eral setting and interpretations as well as possible alternatives in the absence
of a Nash equilibrium. We obtain existence and uniqueness in a stochastic
framework if all agents are faced with the same trading restrictions. Under
different investment constraints, however, an agent may ruin another one
by solely maximizing her individual utility. Different investment possibilities
may allow an agent to follow a risky and beneficial strategy, and thereby neg-
atively affect another agent who benchmarks her own strategy against the
less restricted one. The bankruptcy of the agents can be avoided if agents
with more investment possibilities are showing solidarity and willingness to
waive some expected utility. This leads to the existence of an approximated
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equilibrium, in the sense that there exists an ε-equilibrium for every ε > 0.
In an ε-equilibrium, every agent uses a strategy whose outcome is at most
ε away from that of the individual best response. Behind this well-known
concept stands the idea that agents may not care about very small improve-
ments. Our setting brings up the additional aspect of solidarity: by accepting
a small deduction from the optimum, an agent can help to save the others
from failure. Applying freely to our model Adam Smith’s most famous cita-
tion1, we could say that maximizing individual utilities sometimes leads to
an equilibrium. But when one agent can dominate another because of less
trading restrictions, the invisible hand of the market has to be accompanied
with solidarity to guarantee an acceptable outcome for every agent.

This financial interpretation goes along with an interesting mathematical
basis, which is due to the correspondence between an equilibrium of the in-
vestment problem and a solution of a certain backward stochastic differential
equation (BSDE). BSDEs provide a genuine stochastic approach to control
problems which typically find their analytic analogues in the convex duality
theory and the Hamilton-Jacobi-Bellman formalism. A BSDE is of the form

dYt = f(t, Yt, Zt) dt+ Zt dWt, 0 ≤ t ≤ T, YT = ξ,

where given are a d-dimensional Brownian motion W , an n-dimensional ran-
dom variable ξ and a generator function f . A solution (Y, Z) consists of an
n-dimensional semimartingale Y and an (n×d)-dimensional control process Z
predictable with respect to the filtration generated by W .

Existence and uniqueness results have first been shown for BSDEs with
generators f satisfying a Lipschitz condition; see for example Pardoux and
Peng [15]. However, BSDEs related to mathematical finance, as in our sit-
uation, typically involve generators f which are quadratic in the control
variable. For such cases, Kobylanski [14] proved existence, uniqueness and
comparison results when ξ is bounded and Y is one-dimensional (n = 1).
Her results were generalized by Briand and Hu [1] and Delbaen et al. [4] to
BSDEs with unbounded terminal conditions. While Kobylanski’s proof can-
not be generalized to n > 1, Tevzadze [20] presents an alternative derivation
of Kobylanski’s results via a fix point argument. This yields as a byproduct
an existence and uniqueness result also for n > 1 if the generator f is spe-
cific (purely quadratic) and ξ is sufficiently small (the L∞-norm of ξ needs
to be tiny). The result is in line with the mantra that partial differential
equations (PDEs) can often be solved for sufficiently small data or on a suf-
ficiently small time interval, although the known existence and uniqueness

1“By pursuing his own interest he frequently promotes that of the society more effectually
than when he really intends to promote it.” Adam Smith in The Wealth of Nations (1776).
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results cover only some types of PDEs. This idea is also reflected in the re-
cent paper by Žitković [21], who shows existence and uniqueness of stochastic
equilibria on a sufficiently small time interval, where each agent maximizes
the expected utility of her terminal wealth in a class of incomplete markets.
For a multidimensional quadratic BSDE (i.e., n > 1 and f is quadratic in the
control variable) like that related to our problem, no general existence and
uniqueness results are known, even when ξ is bounded. On the other hand,
no explicit counterexample is available so far to the best of our knowledge.

The paper is structured as follows. The short Section 2 presents an il-
lustrative counterexample which is easy to understand and shows that —
and why — general multidimensional quadratic BSDEs do not have solutions.
This gives a mathematical flavor for the absence of an equilibrium in the fi-
nancial model presented in Section 3, because we establish there a relation
between existence of equilibria under regularity conditions and solutions to
such a BSDE. Sections 4–6 group the arguments and results explained above
on the (non-)existence of an equilibrium based on different types of trading
restrictions for the agents. Finally, Section 7 concludes, and the Appendix
contains some proofs and auxiliary results.

2 An illustrative BSDE counterexample

After some preparation, we give a counterexample to the existence of solu-
tions of multidimensional quadratic BSDEs. Throughout the paper, we fix
T > 0 and d, n ∈ N and work on a canonical Wiener space (Ω,F ,P) carrying
a d-dimensional Brownian motion W = (W 1, . . . ,W d) restricted to the time
interval [0, T ]. We denote by F = (Ft)0≤t≤T its augmented natural filtration
and assume F = FT . For an equivalent probability measure Q, we define:

• the space S∞ of bounded predictable processes;

• the spaceH2
n,d(Q) of (n×d)-dimensional predictable processes (Zt)0≤t≤T

normed by ‖Z‖H2
n,d(Q) := EQ

[∫ T
0

trace(ZtZ
>
t ) dt

]1/2
;

• the space BMO(Q) of square-integrable martingales M with M0 = 0
and satisfying

‖M‖2BMO(Q) := sup
τ

∥∥EQ[〈M〉T − 〈M〉τ |Fτ ]
∥∥
L∞

<∞,

where the supremum is taken over all stopping times τ valued in [0, T ].

In the case Q = P, we usually omit the symbol P. A solution of a BSDE

dYt = f(t, Yt, Zt) dt+ Zt dWt, 0 ≤ t ≤ T, YT = ξ, (2.1)
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with given n-dimensional random variable ξ and generator function f is a
pair (Y, Z) satisfying (2.1) with a semimartingale Y and Z ∈ H2

n,d.
The counterexample, for which we take d = 1 (dimension of W ), consists

of the two-dimensional (n = 2) BSDE

dY 1
t = Z1

t dWt, 0 ≤ t ≤ T, Y 1
T = ξ, (2.2)

dY 2
t = −

(
|Z1

t |2 +
1

2
|Z2

t |2
)

dt+ Z2
t dWt, 0 ≤ t ≤ T, Y 2

T = 0, (2.3)

where the terminal condition ξ ∈ L∞ is given. There is an explicit solution
for the first component, which does not depend on the second. The generator
of the second component depends quadratically on the control variables of
both the first and the second dimension of the BSDE. For some choices of the
terminal condition, the second component explodes, leading to insolvability.

Theorem 2.1. For some ξ ∈ L∞, the BSDE (2.2), (2.3) has no solution.

Proof. From (2.2), it follows that Y 1 is explicitly given by Y 1
t = E[ξ|Ft] and

Z1 is uniquely defined via Itô’s representation theorem through

ξ = E[ξ] +

∫ T

0

Z1
t dWt, E

[∫ T

0

|Z1
t |2 dt

]
<∞.

We now use Z1 in (2.3), which implies

E
[
exp

(∫ T

0

|Z1
t |2 dt

)]
= exp

(
Y 2
0

)
E
[
E
(∫

Z2 dW

)
T

]
≤ exp

(
Y 2
0

)
since the stochastic exponential E(

∫
Z2 dW ) is a positive supermartingale.

This gives Y 2
0 = ∞ if E

[
exp
(∫ T

0
|Z1

t |2 dt
)]

= ∞, and the result follows by

setting ξ =
∫ T
0
ζt dWt ∈ L∞ for ζ given in Lemma A.1 in the Appendix.

The underlying mathematical reason presented in Lemma A.1 is that
there exists a bounded martingale whose quadratic variation has an infinite
exponential moment. Since the generator in (2.3) depends quadratically on
both Z1 and Z2, this leads to explosion. Economically speaking, if Y1 and
Y2 in (2.2) and (2.3) describe the wealth development of two agents, then
the first agent’s wealth remains bounded, but its fluctuation can destroy the
second agent’s wealth so that the second agent collapses. This rough idea
will be developed later in Section 5.

Remarks. 1) Our counterexample shows that dimensions matter in stochas-
tics. This issue of dimensionality has already been pointed out by Emery [6].
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While the stochastic exponential of any bounded continuous martingale is
a true martingale, he gave an example of a bounded continuous matrix-
valued martingale whose stochastic exponential is not a true martingale.
Both Emery [6] and our counterexample show that integrability properties
of stochastic processes may crucially depend on the dimension, although
Emery [6] and our counterexample are in completely different settings.

2) Because of the form of the terminal condition, our BSDE counterexam-
ple is not Markovian, and thus has no analogue in terms of PDEs. However,
its behavior is in some sense similar to the well-known phenomenon of finite-
time gradient blow-up in PDEs. Chang et al. [2] (also presented as Theorem
III.6.14 in Struwe’s book [19]) consider mappings u from the closed unit disk
in R2 into the unit sphere in R3 which satisfy

∂u

∂t
= 4u+ |∇u|2u, u(0, x) = u0(x), u(t, ·)

∣∣
∂D2 = u0

∣∣
∂D2 . (2.4)

They show that for some smooth and bounded boundary condition u0, the
solution of (2.4) blows up in finite time, i.e., the maximal existence interval
[0, T ) has a finite T . While both the setting and the form of this example
are different from ours, the underlying spirit is to some extent related: the
dimensionality and the appearance of |∇u|2

(
corresponding to |Z1

t |2 + 1
2
|Z2

t |2
in (2.3)

)
play crucial roles for the explosion. ♦

3 Model setup and preliminaries

After we have seen that multidimensional quadratic BSDEs need not have
solutions, we study a financial problem, its link to existence issues for such
BSDEs and how altering the problem can lead to solvability. We start
in this section by introducing the problem formulation and then group in
Sections 4–6 the results based on different types of trading restrictions for
the agents.

The financial market we consider consists of a risk-free bank account
yielding zero interest and m traded risky assets S = (Sj)j=1,...,m with dy-
namics

dSjt = Sjtµ
j
t dt+

d∑
k=1

Sjt σ
jk
t dW k

t , 0 ≤ t ≤ T, Sj0 > 0, j = 1, . . . ,m;

the drift vector µ = (µj)j=1,...,m as well as the lines of the volatility matrix
σ = (σjk)j=1,...,m,

k=1,...,d
are predictable and uniformly bounded. We assume that σ
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has full rank and that there exists a constant C such that

C|β|2 ≥ β>σσ>β ≥ 1

C
|β|2 a.e. on Ω× [0, T ] for all β ∈ Rm.

The market price of risk θ := σ>
(
σσ>

)−1
µ is then also uniformly bounded

and Ŵ := W +
∫
θ dt is a Brownian motion under the probability measure P̂

given by dP̂
dP := E

(
−
∫
θ dW

)
T

.
We consider n agents. Any agent i can trade in S subject to some per-

sonal restrictions and has to pay (or is endowed with) a claim Fi ∈ L∞ at
time T . This means that agent i uses some self-financing trading strategy
πi = (πi1, . . . , πim) valued in Ai, where Ai is a closed and convex subset of
Rm. We denote by P i

t the projection onto Aiσt, i.e., P i
t (x) := argmin

z ∈Aiσt
|x− z|

for x ∈ Rd. If agent i starts with zero initial capital, her wealth at time t
related to a strategy πi is given by

Xπi

t :=

∫ t

0

m∑
j=1

πijs
Sjs

dSjs =

∫ t

0

πisσs dŴs.

Any agent i measures her preferences by an exponential utility function
Ui(x) = − exp(−ηix), x ∈ R, for a fixed ηi > 0. Instead of maximizing
the classical expected utility E[Ui(X

πi

T − Fi)], agent i takes also the relative
performance into consideration and maximizes over πi the value

V π
i := E

[
Ui

(
(1− λi)Xπi

T + λi

(
Xπi

T −
1

n− 1

∑
j 6=i

Xπj

T

)
− Fi

)]
= E

[
Ui

(
Xπi

T −
λi

n− 1

∑
j 6=i

Xπj

T − Fi
)]

(3.1)

for a fixed λi ∈ [0, 1] and given the other agents j 6= i use strategies πj. The
set Ai of admissible strategies for agent i is given by

Ai :=
{
πi Rm-valued, predict.

∣∣ πi ∈ Ai a.e. on Ω× [0, T ], Xπi ∈ BMO
(
P̂
)}
.

We setA := A1×· · ·×An. Because we assume that each agent maximizes her
expected utility without cooperating with the other agents, we are interested
in Nash equilibria.

Definition 3.1. In this setting, a strategy π̂ ∈ A is a Nash equilibrium if

for every i, V π̂
i ≥ V πi,π̂j 6=i

i for all πi ∈ Ai.
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The classical problem of maximizing E[Ui(X
πi −Fi)] has been studied by

Hu et al. [12] in the same setting, but with not necessarily convex Ai. They
give in Theorem 7 a BSDE characterization for the optimal strategy and the
maximal expected utility. Although their definition of admissibility slightly
differs from ours (class (D)- instead of BMO-condition), their Theorem 7 still
holds under our definition in the case λi = 0 for all i, which can be seen from
its proof and which we later use several times. Our choice of admissibility
allows for both regaining the assertion of Hu et al. [12] in the case λi = 0 for
all i and deriving in Lemma 3.2 a BSDE characterization for general λi. By
Theorem 3.6 of Kazamaki [13], the condition Xπi ∈ BMO

(
P̂
)

is equivalent
to
∫
πiσ dW ∈ BMO(P) because θ is bounded.

In contrast to optimizing E[Ui(X
πi

T − Fi)], we maximize E[Ui(X
πi

T − F̃i)]
with F̃i := λi

n−1
∑

j 6=iX
πj

T + Fi. Since F̃i is unbounded and depends on the
other agents’ strategies, the study is more involved. This problem of agents
concerning the relative performance has also been considered in the PhD
thesis of Espinosa [7] and will be presented in Espinosa and Touzi [8]. In a
simpler setting where σ and θ are deterministic and without claims Fi, Es-
pinosa [7] proved the existence of a Nash equilibrium and gave a characteri-
zation of it in his Theorem 4.41. Its proof contains a BSDE characterization
similar to Lemma 3.2 below. In our stochastic model, a counterexample in
Section 5 will show that there need not exist a Nash equilibrium and only a
notion weaker than a Nash equilibrium might be satisfied.

The following result, which relates a Nash equilibrium to a BSDE, is an
analogue to Theorem 7 of Hu et al. [12]. However, one has here no uniqueness
and existence result for the BSDE. In fact, the counterexample in Section 5
shows that existence does not hold in general. Another difference to Hu et
al. [12] is that we have the BSDE characterization only for equilibria within
a certain regularity class. This regularity condition is needed to use the
powerful tool of BMO-martingales. On the other hand, it is not essential for
the counterexample, as we will see in the proof of Theorem 5.1. This means
that we have a non-existence result for Nash equilibria without imposing
an additional regularity condition. We recall the reverse Hölder inequality
Rp(Q). For p > 1, an equivalent probability measure Q and an adapted
positive process M , we say

M satisfies Rp(Q) ⇐⇒ ∃C s.t. ess sup
τ stop. time

EQ[(MT/Mτ )
p|Fτ ] ≤ C. (3.2)

Lemma 3.2. There is a one-to-one correspondence between the following:

(i) a Nash equilibrium π̂ ∈ A such that for any i, there exists p > 1 with

E
[
Ui

(
X π̂i

T −
λi

n− 1

∑
j 6=i

X π̂j

T

)∣∣∣F.] satisfies Rp(P); (3.3)
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(ii) a solution (Y, Z) with
∫
Z dW ∈ BMO of the multidimensional BSDE

dY i
t =

(
|θt|2

2ηi
− ηi

2

∣∣∣Zi
t +

1

ηi
θt − P i

t

(
Zi
t +

1

ηi
θt

)∣∣∣2) dt+ Zi
t dŴt,

Y i
T =

λi
n− 1

∑
j 6=i

∫ T

0

P j
t

(
Zj
t +

1

ηj
θt

)
dŴt + Fi, i = 1, . . . , n. (3.4)

The relation is given by π̂iσ = P i
(
Zi + 1

ηi
θ
)

and V π̂
i = − exp(ηiY

i
0 ).

Proof. Assume (i) holds and fix i. One can show by dynamic programming
similarly to Lemma 4.25 of Espinosa [7] that for any πi ∈ Ai, Mπi given by

Mπi

t := e−ηiX
πi

t ess sup
κ∈Ai

E
[
Ui

(
Xκ
T −Xκ

t −
λi

n− 1

∑
j 6=i

X π̂j

T − Fi
)∣∣∣∣Ft] (3.5)

has a continuous version which is a supermartingale and a martingale for
πi = π̂i. This uses that for any πi, π̃i ∈ A and stopping time τ , we have
πi1]]0,τ ]] + π̃i1]]τ,T ]] ∈ Ai. A variant of Itô’s representation theorem implies

M π̂i = M π̂i

0 E
(∫

Z̃i dW

)
for Z̃i with

∫ T

0

∣∣Z̃i
t

∣∣2 dt <∞ a.s. and M π̂i

0 < 0.

Theorem 3.3 of Kazamaki [13] yields
∫
Z̃i dW ∈ BMO because of (3.3)

and the boundedness of Fi. We set Zi := 1
η
Z̃i + π̂iσ, which again satisfies∫

Zi dW ∈ BMO because π̂i ∈ Ai. For any πi ∈ Ai, we obtain

Mπi = exp
(
ηiX

π̂i − ηiXπi
)
M π̂i = M π̂i

0 N
πiBπi , where

Nπi := E
(
ηi

∫
(Zi − πiσ) dW

)
,

Bπi := exp

(
η2i
2

∫ (∣∣∣Zi +
1

ηi
θ − πiσ

∣∣∣2 − ∣∣∣Zi +
1

ηi
θ − π̂iσ

∣∣∣2) dt

)
.

The P-supermartingale property of Mπi implies that Mπi
/
Nπi = M π̂i

0 B
πi is

a Qπi-supermartingale where dQπi

dP := Nπi

T , using that Nπi is a P-martingale

by Theorem 2.3 of Kazamaki [13]. Because Bπi is a continuous Qπi-sub-
martingale and of finite variation, it is nondecreasing, i.e., for any πi ∈ Ai
|Zi − 1

ηi
θ − πiσ| ≥ |Zi + 1

ηi
θ − π̂iσ| a.e. Hence, we get π̂iσ = P i

(
Zi + 1

ηi
θ
)
,

using that a strategy π̃i satisfying π̃iσ = P i
(
Zi + 1

ηi
θ
)

can be chosen pre-

dictable by Lemma 11 of Hu et al. [12]. We set Y i := 1
ηi

log
(
−M π̂i exp(ηiX

π̂i)
)

and obtain for dY i
t the expression in (3.4) after a straightforward calculation.
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Moreover, (3.5) implies Y i
T = λi

n−1
∑

j 6=i
∫ T
0
π̂jtσt dŴt+Fi. Since this holds for

any i, we have π̂iσ = P i
(
Zi + 1

ηi
θ
)

for all i and (3.4) follows.

Suppose (ii) holds, define π̂ by π̂jσ = P j
(
Zj+ 1

ηj
θ
)

for all j and fix i. Like

in Lemma 12 of Hu et al. [12], we obtain
∫
P i
(
Zi + 1

ηi
θ
)

dW ∈ BMO so that

π̂i ∈ Ai. For πi ∈ Ai, we set Ri,πi := − exp
(
−ηi(Xπi − Y i)

)
, which satisfies

Ri,πi = − exp(ηiY
i
0 ) E

(
ηi

∫
(Zi − πiσ) dW

)
× exp

(
η2i
2

∫ ∣∣∣Zi +
1

ηi
θ − πiσ

∣∣∣2 − ∣∣∣Zi +
1

ηi
θ − P i

(
Zi +

1

ηi
θ
)∣∣∣2dt).

We deduce that Ri,π̂i is a martingale and V π̂
i = − exp(ηiY

i
0 ). For any πi ∈ Ai,

Ri,πi is a supermartingale and we have V π̂
i = Ri,πi

0 ≥ E
[
Ri,πi

T

]
= V πi,π̂j 6=i

i .

In the specific case where all Fi = 0 and µ as well as σ are deterministic,
one can construct a solution to the BSDE (3.4) by choosing a deterministic Z

with Zi = λi
n−1

∑
j 6=i P

j
(
Zj + 1

ηj
θ
)

for all i if Πn
j=1λj < 1. This is possible

because for Πn
j=1λj < 1, the mapping ϕ defined by

z 7→ ϕit(z) := zi − λi
n− 1

∑
j 6=i

P j
t (zj) (3.6)

is invertible by Lemma 4.42 of Espinosa [7], who also shows that ϕ−1 is
Lipschitz-continuous uniformly in t. Since

∫
Z dW is in BMO for this deter-

ministic Z, the strategy π̂ satisfying π̂iσ = P i
(
Zi + 1

ηi
θ
)

is a Nash equilibrium

by Lemma 3.2, and even fulfills (3.2). Hence, we regain the form of a Nash
equilibrium stated in Theorem 4.41 of Espinosa [7], whose assumptions are
Fi = 0 and deterministic µ and σ. In the following, we give a brief alternative
derivation which does not use BSDEs.

Remark. In this remark, we fix i and assume Fi = 0 and that µ and σ are
deterministic. Supposing πj ∈ Aj for j 6= i are deterministic, we obtain from
(3.1) for any (possibly stochastic) πi ∈ Ai that

−V π
i = EP̂

[
exp

(∫ T

0

( ηiλi
n− 1

∑
j 6=i

πjtσt − ηiπitσt + θt

)
dŴt

)]
e−

1
2

∫ T
0 |θt|

2 dt

= EP̂

[
E
(∫ ( ηiλi

n− 1

∑
j 6=i

πjσ − ηiπiσ + θ
)

dŴ

)
T

× exp

(
1

2

∫ T

0

∣∣∣ ηiλi
n− 1

∑
j 6=i

πjtσt − ηiπitσt + θt

∣∣∣2 dt

)]
e−

1
2

∫ T
0 |θt|

2 dt
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and hence

−V π
i ≥ EP̂

[
E
(∫ ( ηiλi

n− 1

∑
j 6=i

πjσ − ηiπiσ + θ
)

dŴ

)
T

]

× exp

(
η2i
2

∫ T

0

∣∣∣ λi
n− 1

∑
j 6=i

πjtσt +
1

ηi
θt − π̂itσt

∣∣∣2 dt− 1

2

∫ T

0

|θt|2 dt

)
,

where π̂iσ = P i
(
λi
n−1

∑
j 6=i π

jσ + 1
ηi
θ
)
. Thus we have

sup
πi∈Ai

V π
i = − exp

(
η2i
2

∫ T

0

∣∣∣ λi
n− 1

∑
j 6=i

πjtσt +
1

ηi
θt − π̂itσt

∣∣∣2 dt− 1

2

∫ T

0

|θt|2 dt

)
.

This shows the existence of a Nash equilibrium π̂ ∈ A given by

π̂iσ := P i
(
ϕ−1,i

( 1

η1
θ, . . . ,

1

ηn
θ
))

= P i

(
λi

n− 1

∑
j 6=i

P j

(
ϕ−1,j

( 1

η1
θ, . . . ,

1

ηn
θ
))

+
1

ηi
θ

)
= P i

(
λi

n− 1

∑
j 6=i

π̂jσ +
1

ηi
θ

)
, i = 1, . . . , n,

where ϕ−1,i denotes the i-th component of the inverse of ϕ given in (3.6). ♦

While we do not need the BSDE formulation in the presence of deter-
ministic parameters, it is helpful in the general case. The multidimensional
BSDE (3.4) is coupled via its terminal condition. By using the mapping ϕ
defined in (3.6), we can rewrite (3.4) as

dΓit = −ηi
2

∣∣ϕ−1,it (ζt)− P i
t

(
ϕ−1,it (ζt)

)∣∣2 dt+ ζ it dŴt, 0 ≤ t ≤ T,

ΓiT = Fi +
1

ηi

∫ T

0

θs dŴs −
1

2ηi

∫ T

0

|θs|2 ds, i = 1, . . . , n, (3.7)

where ζ i := ϕi
(
Z1 + 1

η1
θ, . . . , Zn + 1

ηn
θ
)

and

Γit := Y i
t −

λi
n− 1

∑
j 6=i

∫ t

0

P j
s

(
Zj
s +

1

ηj
θs

)
dŴs +

1

ηi

∫ t

0

θs dŴs −
1

2ηi

∫ t

0

|θs|2 ds.

(3.8)
Because ϕ−1 is Lipschitz-continuous, (3.7) shows that we are dealing with a
multidimensional quadratic BSDE.
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In the following remark, we briefly mention two articles related to other
financial applications of multidimensional quadratic BSDEs.

Remark. El Karoui and Hamadène [5] consider certain games with two
players. In a Markovian framework, they give a characterization for an equi-
librium in terms of a solution of a multidimensional quadratic BSDE. For
their setting, the coupling of that BSDE is weak, namely it is assumed that
the i-th entry of the driver f is dominated by C(1 + |zi|2) for some positive
constant C. However, no existence result for such a BSDE is provided.

Cheridito et al. [3] follow in the footsteps of Horst et al. [11] to solve
a problem of valuing a derivative in an incomplete market by equilibrium
considerations. In Horst et al. [11], the problem can be solved in a one-
dimensional framework, since the derivative is assumed to complete the mar-
ket. Cheridito et al. [3] do not impose this condition, which makes the
analysis much more involved. The authors solve the problem in a discrete
framework, but close their work with considerations on the continuous case.
The latter leads to a fully coupled multidimensional quadratic BSDE, whose
solvability is unknown. ♦

4 Agents having the same trading constraints

In a situation where all agents are faced with the same trading constraints
given by a linear subspace of Rd, there exists a unique Nash equilibrium π̂
and we can give a BSDE characterization for π̂ similarly to Hu et al. [12].

Proposition 4.1. Assume that Ai = A are the same linear subspace for all
i = 1, . . . , n and Πn

i=1λi < 1, and set P = P i. Then for i = 1, . . . , n, the
decoupled BSDEs

dΓit =

(
|θt|2

2ηi
− ηi

2

∣∣∣ζ it +
1

ηi
θt−Pt

(
ζ it +

1

ηi
θt

)∣∣∣2) dt+ ζ it dŴt, ΓiT = Fi (4.1)

have a unique solution (Γ, ζ) ∈ S∞×H2
1,d. There is a unique Nash equilibrium

π̂ ∈ A. It is given by ψi(π̂t)σt = Pt
(
ζ it + 1

ηi
θt
)
, where the linear mapping ψ

is defined by z 7→ ψi(z) := zi − λi
n−1

∑
j 6=i z

j. Moreover, V π̂
i = − exp(ηiΓ

i
0).

Proposition 4.1 shows that the agents’ maximal expected utility is the
same as in the case without interaction. However, the optimal strategies are
different. Since all agents have the same constraints, an agent can completely
hedge against the others agents’ behavior. This implies that the optimal
strategy accounts for the others agents’ behavior, while the maximal expected
utility is unaltered compared to the situation without interdependencies.

12



Proof of Proposition 4.1. Because Ai = A is a linear space and ψ is invert-
ible due to Πn

i=1λi < 1, we have π ∈ A ⇐⇒ ψ(π) ∈ A. This implies

supπi∈Ai V
πi,π̂j 6=i

i = supp∈Ai E
[
Ui
(
Xp
T − Fi

)]
for all π̂j ∈ Aj. Applying Theo-

rem 7 of Hu et al. [12] to the latter optimization problem yields the result.

Remarks. 1) The proof shows as well that there exists no π ∈ A with

V π
i > V π̂

i for some i and V π
j ≥ V π̂

j for all j,

which means that π̂ from Proposition 4.1 is also a Pareto optimum.
2) The BSDEs (4.1) correspond to (3.4). Indeed, define (Y, Z) by(

ζ1t +
1

η1
θt, . . . , ζ

n
t +

1

ηn
θt

)
= ϕt

(
Z1
t +

1

η1
θt, . . . , Z

n
t +

1

ηn
θt

)
,

Y = Γ +
λi

n− 1

∑
j 6=i

∫
P
(
Zj +

1

ηj
θ
)

dŴ ,

with the invertible linear mapping ϕt given by (3.6). Because of Ai = A for
all i, 1

n−1
∑

j 6=i Pt
(
Zj
t + 1

ηj
θt
)

is in σtA, and we obtain

∣∣∣ζ it +
1

ηi
θt − Pt

(
ζ it +

1

ηi
θt

)∣∣∣ =

∣∣∣∣ζ it +
1

ηi
θt +

λi
n− 1

∑
j 6=i

Pt

(
Zj
t +

1

ηj
θt

)
− Pt

(
ζ it +

1

ηi
θt +

λi
n− 1

∑
j 6=i

Pt

(
Zj
t +

1

ηj
θt

))∣∣∣∣
=
∣∣∣Zi

t +
1

ηi
θt − Pt

(
Zi
t +

1

ηi
θt

)∣∣∣.
Therefore, the BSDEs (4.1) are equivalent to (3.4). ♦

We now give an easy counterexample for the case λi = 1 where the BSDE
(3.4) has no solution. We take n = 2 (number of agents), d = 1 (dimension
of W ), σ = 1, θ = 1, A1 = A2 = R (no constraints), η1 = η2 = 1 and
λ1 = λ2 = 1 (only the relative performance matters). The BSDE (3.4) equals

dY 1
t =

1

2
dt+ Z1

t dŴt, Y 1
T =

∫ T

0

(Z2
s + 1) dŴs,

dY 2
t =

1

2
dt+ Z2

t dŴt, Y 2
T =

∫ T

0

(Z1
s + 1) dŴs.

13



By combining these equations, we obtain

T

2
+

∫ T

0

Z1
t dŴt =

∫ T

0

(Z2
t + 1) dŴt − Y 1

0

= ŴT − Y 1
0 −

T

2
+

∫ T

0

(Z1
t + 1) dŴt − Y 2

0 .

This implies
2ŴT = T + Y 1

0 + Y 2
0 ,

which is a contradiction, because the right-hand side is stochastic while the
left-hand side is deterministic. One can interpret this example as follows:
Both agents care only about the relative wealth. Since the market price of
risk θ is nonzero, there is some risk inherent in the model and each agent
wants to hedge against this risk. For any given strategy π2 ∈ A2 of agent 2,
the optimal strategy of agent 1 is π̂1 = π2 + θ = π2 + 1 ∈ A1. Analogously,
π̂2 = π1 + 1 ∈ A2 is the best response of agent 2 to any given strategy
π1 ∈ A1 of agent 1. By trying to hedge, the first agent transfers the risk to
the second agent, who then transfers it back to the first. Because of λi = 1,
no agent reduces the risk, but instead each agent iteratively passes the buck
to the other. In the end, both agents break down so that there is no Nash
equilibrium. This counterexample can also be interpreted in the context of
copycat hedge funds, which try to imitate the strategy of a successful hedge
fund. If a hedge fund copies the strategy of another fund which itself mimics
the former fund, then no equilibrium can exist because the interdependence
mutually amplifies the strategies.

5 Agents with ordered trading constraints

This section deals with a situation where some agents have more trading
possibilities than others. Throughout this section, we assume Πn

i=1λi < 1
and that Ai are linear subspaces of Rd satisfying

A1 ⊇ A2 ⊇ · · · ⊇ An.

We start with a counterexample for the case where two agents have different
constraints. The first agent copes with a bounded claim F1 by choosing a
suitable hedging strategy. However, the second agent is affected by the first
agent’s hedging strategy, which makes the second agent break down.

Theorem 5.1. There exists a counterexample with n = 2, linear spaces
A1 ) A2 and λ1λ2 < 1 where there is no Nash equilibrium.
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Proof. We take d = 2 (dimension of W ), σ = (2× 2)-identity matrix, θ = 0,
A1 = {(x, x)|x ∈ R}, A2 = {(0, 0)}, η1 = 2/(π2 + 1) (this choice will later
simplify computations; π denotes here the number 3.141 . . . and not a strat-
egy), η2 = 1, F2 = 0, F1 to be chosen later and λ1 = λ2 = 1/2. We obtain
for the corresponding BSDE (3.4) that

dY 1
t = − 1

2(π2 + 1)
|Z1,1

t − Z
1,2
t |2 dt+ Z1

t dWt, Y 1
T = F1, (5.1)

dY 2
t = −1

2
|Z2

t |2 dt+ Z2
t dWt, Y 2

T =
1

4

∫ T

0

(Z1,1
s + Z1,2

s ) d(W 1
s +W 2

s ). (5.2)

The first component (5.1) does not depend on the second, and has for any
bounded F1 a unique solution (Y 1, Z1) with

∫
Z1 dW ∈ BMO. This so-

lution is plugged in (5.2) to solve for the second component. Similarly to
the counterexample presented in Section 2, we construct an F1 such that
Y 2 explodes. The difference to the first counterexample is that (5.1) has a
quadratic generator and (5.2) depends on Z1 via a dW - and not a dt-integral.

We set F1 := (π2 + 1) log E
(∫

ζ dW 1
)
T

for ζ from Lemma A.2 with

log E
(∫

ζ dW 1

)
∈ S∞ and E

[
exp

(
π2 + 1

4

∫ T

0

ζt dW 1
t

)]
=∞. (5.3)

The BSDE (5.1) has the explicit solution

Y 1 = (π2 + 1) log E
(∫

ζ dW 1

)
, Z1,1 = (π2 + 1)ζ, Z1,2 = 0.

From (5.2) and (5.3), it follows that

eY
2
0 = E

[
exp

(
1

4

∫ T

0

Z1,1
t d(W 1

t +W 2
t )

)]
≥ E

[
exp

(
π2 + 1

4

∫ T

0

ζt dW 1
t

)]
=∞

(5.4)
by conditioning on the σ-field generated by W 1 and using Jensen’s inequality.
Therefore, the coupled BSDE (5.1), (5.2) has no solution and there is no
Nash equilibrium satisfying (3.3) by Lemma 3.2. To see that there exists no
Nash equilibrium at all

(
even without (3.3)

)
, we note that a candidate Nash

equilibrium π̂ ∈ A must satisfy π̂2 = 0 (trading constraints of agent 2) and
π̂1 = Z1,1+Z1,2

2
(1, 1) (optimality for agent 1, using π̂2 = 0 and Theorem 7 of

[12]). But this gives V π̂
2 = E

[
U2

(
−λ2

∫ T
0

1
2
(Z1,1

t + Z1,2
t ) d(W 1

t +W 2
t )
)]

= −∞
by (5.4).

The trading constraints in the counterexample might look restrictive,
but it is possible to generalize the counterexample to higher-dimensional W ,
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while giving the agents more trading possibilities. For d > 2, one can de-
duce an analogous counterexample with A1 = {(x, x, y1, . . . , yd−3)|x, yi ∈ R},
A2 = {(0, 0, y1, . . . , yd−3)|yi ∈ R}; in that case, Y 2 satisfies

dY 2
t = −1

2

(∣∣Z2,1
t

∣∣2 +
∣∣Z2,2

t

∣∣2) dt+ Z2
t dWt,

eY
2
0 = E

[
exp

(
Y 2
T −

d∑
i=3

∫ T

0

Z2,i
t dW i

t

)]
≥ E

[
exp
(
E[Y 2

T |G]
)]
,

where G denotes the σ-field generated by W 1 and W 2.
Theorem 5.1 shows that having Ai as ordered linear spaces is not enough

to guarantee the existence of a Nash equilibrium. Even if the first agent does
not concern the relative performance, her choice of a hedging strategy for F1

may bankrupt the other agents. While the first agent can hedge against all
other strategies, her strategy may negatively influence the other agents and
ruin them. Assuming that the first agent wants to avoid the ruin of the other
agents, she might be willing to reduce her wealth a little bit. Continuing this
idea for the other agents, we come to the following relaxation of a Nash
equilibrium.

Definition 5.2. We say that there exists an additively approximated equi-
librium if for every ε > 0, there is (π̂ε,1, . . . , π̂ε,n) ∈ A such that for any i,

V π̂ε

i + ε ≥ V πi,π̂ε,j 6=i

i for all πi ∈ Ai. (5.5)

A multiplicatively approximated equilibrium exists if for every ε > 0, there
is (π̂ε,1, . . . , π̂ε,n) ∈ A such that for any i,

(1− ε)V π̂ε

i ≥ V πi,π̂ε,j 6=i

i for all πi ∈ Ai. (5.6)

Note that we use (1−ε) and not (1+ε) in (5.6), because Vi is negative. In
the literature, there exists the notion of ε-equilibrium, which corresponds to
the situation where (5.5) holds for a fixed ε > 0, instead of all ε > 0. Given
the existence of a Nash equilibrium, calculating such a fixed ε-approximation
instead of the true Nash equilibrium can be more efficient and easier to
implement; see for example Hémon et al. [10]. However, an ε-equilibrium
need not be close to a Nash equilibrium; see Section 3.4.7 of Shoham and
Leyton-Brown [18]. In our case, there may not even exist a Nash equilibrium
as shown in Theorem 5.1, while there is always an approximated equilibrium
by the next result. This seeming weakness of the notion of ε-equilibrium is in
fact an advantage in our situation, because we aim here to find approximated
equilibria themselves, rather than a convergence to Nash equilibria. There are
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several reasons why agents can be satisfied with a less-than-optimal strategy.
Radner [16], who has popularized the notion of ε-equilibrium, mentions that
a nearly optimal strategy can be less costly than a best response.

To see the reasons in our setting, let us briefly come back to the counterex-
ample of Theorem 5.1. The wealth process corresponding to a best strategy
is generally unbounded, which may ruin another agent. If each agent re-
stricts her strategies to those with bounded wealth processes, this problem
does not occur, and we will see that such bounded wealth processes can be
used to construct an approximated equilibrium. So motivating the notion
of an approximated Nash equilibrium can be done by justifying why agents
may restrict themselves to bounded wealth processes. Apart from individ-
ual reasons and legal restrictions (public attempt to stabilize the system by
introducing bounds), we can relate the notion of approximated equilibrium
to the aspect of solidarity. If the more powerful agents are willing to deviate
little from the expected utility associated to the best response, then the other
agents do not break down and they can even find themselves nearly optimal
strategies in the sense of Definition 5.2. The motive can be either “true” soli-
darity or the hidden agenda to keep a weak agent in the competition enabling
an easy benchmarking in future periods. Because Definition 5.2 imposes on
(5.5) and (5.6) to hold for every ε > 0, the agents do not need to agree on a
particular ε and each agent can choose individually a (sequence of) ε.

Theorem 5.3. There exists an additively as well as multiplicatively approx-
imated equilibrium.

Because of its length, we present the constructive proof of Theorem 5.3
in the Appendix, but give here a brief outline. The main idea is that for
agent i, only the strategies of agents 1, . . . , i−1 really matter because she can
hedge the other strategies. Therefore, one starts to consider the first agent’s
optimization problem when the strategies of all other agents are zero, and
constructs an auxiliary strategy which leads to a deviation of at most ε > 0
from the optimum and whose wealth process is bounded. Then one builds an
auxiliary strategy for the second agent taking into account the first agent’s
strategy. To keep “almost” optimality for the first agent, her strategy has to
be updated. One iteratively continues with the third until the n-th agent.
One could slightly adapt the proof to show the existence of an approximated
equilibrium such that additionally the strategy for agent n is optimal, i.e.,
(5.5) and (5.6) hold for i = n also with ε = 0. The underlying reason is
that agent n cannot negatively affect the other agents because her strategy
is hedgeable by the others. The following result says more about convergence
of approximated equilibria in the case of two agents.
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Corollary 5.4. Assume n = 2 and let (εk)k∈N be a strictly positive se-
quence with limk→∞ εk = 0, and let for each k, π̂εk ∈ A be an approxi-
mated equilibrium constructed as in the Appendix (proof of Theorem 5.3 with
ε replaced by εk). Suppose that there exists a Nash equilibrium π̂? ∈ A with∥∥X π̂?,1

∥∥
BMO1(P̂)

< 1
4η2λ2

, where

∥∥X π̂?,1
∥∥
BMO1(P̂)

:= sup
τ

∥∥∥EP̂

[∣∣X π̂?,1

T −X π̂?,1

τ

∣∣∣∣∣Fτ]∥∥∥
L∞

with the supremum taken over all stopping times τ valued in [0, T ]. Then we
have limk→∞ V

π̂εk
i = V π̂?

i for i = 1, 2.

The proof of Corollary 5.4, which is based on the convergence of the
BSDEs related to V π̂εk

i , is contained in the Appendix.

6 A glimpse of general trading constraints

We conclude by some results for general closed, convex sets Ai without impos-
ing any restrictions on the relations of the Ai. For this very general situation,
we give in Section 6.1 another relaxation of a Nash equilibrium and discuss in
Section 6.2 briefly the situation where the risky assets S are, in some sense,
close to being martingales.

6.1 Sequentially delayed equilibria

We first introduce a further relaxation of a Nash equilibrium.

Definition 6.1. We say that there exists a sequentially delayed equilibrium
if for any strictly positive sequence (εk)k∈N with limk→∞ εk = 0, there is
(π̂k)k∈N ⊂ A such that for any k ∈ N and i = 1, . . . , n,

V π̂k,i,π̂k−1,j 6=i

i + εk ≥ V πi,π̂k−1,j 6=i

i for all πi ∈ Ai, (6.1)

where we set π̂0 = 0.

Roughly speaking, (6.1) says that π̂k,i is “almost” optimal (up to εk) for
agent i when the other agents use the delayed strategies π̂k−1,j 6=i. Defini-
tion 5.2 would correspond to (6.1) if π̂k−1,j 6=i were replaced by π̂k,j 6=i. In
a way, the concept of sequentially delayed equilibria is opposed to that of
trembling-hand perfect equilibria. That notion, which has been introduced
by Selten [17], is a refinement of a Nash equilibrium. Roughly speaking, a
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trembling-hand perfect equilibrium is robust against small deviations (“trem-
bling hand”). In contrast, a sequentially delayed equilibrium is a weaker no-
tion than that of a Nash equilibrium and gives a way of approaching a status
which can be acceptable for all agents. The idea behind Definition 6.1 is that
the delay makes the problem easier to handle and in the limit k → ∞, it
does not matter whether one has π̂k−1,j 6=i or π̂k,j 6=i in (6.1). Before making
this statement precise in Corollary 6.3, we give an existence result.

Proposition 6.2. For any family (Ai)i=1,...,n of closed sets, there exists a
sequentially delayed equilibrium.

Proof. Let (εk)k∈N be a strictly positive sequence with limk→∞ εk = 0. We
construct iteratively a sequence (π̂k)k∈N ⊂ A satisfying (6.1). Fix k ∈ N and
i ∈ {1, . . . , n}, set π̂0 = 0 and assume that for any j ∈ {1, . . . , n}, X π̂k−1,j

T is
bounded. By Theorem 7 of Hu et al. [12], there exists p̂ ∈ Ai such that

sup
πi∈Ai

V πi,π̂k−1,j 6=i

i = V p̂,π̂k−1,j 6=i

i .

We define a sequence of stopping times by

τ` := inf
{
t ∈ [0, T ] such that

∣∣X p̂
t

∣∣ ≥ `
}
∧ T, ` ∈ N

and set p(`) := p̂1]]0,τ`]] ∈ Ai such that Xp(`)

T = X p̂
τ`

. Using that the ran-

dom variable Fi + λi
n−1

∑
j 6=iX

π̂k−1,j

T is bounded, the a.s.-converging sequence(
Ui
(
X p̂
τj
− Fi − λi

n−1
∑

j 6=iX
π̂k−1,j

T

))
j∈N is uniformly integrable by the same ar-

gument as above (A.2). Therefore, we have

lim
`→∞

V p(`),π̂k−1,j 6=i

i = lim
`→∞

E
[
Ui

(
Xp(`)

T − Fi −
λi

n− 1

∑
j 6=i

X π̂k−1,j

T

)]
= V p̂,π̂k−1,j 6=i

i .

Choose L ∈ N such that

V p(L),π̂k−1,j 6=i

i ≥ V p̂,π̂k−1,j 6=i

i − εk,

and set π̂k,i := p(L). By construction, (6.1) is satisfied and X π̂k,i

T is bounded.
The proof follows from iteratively using the above procedure.

Corollary 6.3. Let (π̂k)k∈N ⊂ A satisfy (6.1). Fix i and assume that

there exists π̂∞ ∈ A with
∫ T
0
π̂k,it dŴt →

∫ T
0
π̂∞,it dŴt a.s., and that both

Ui
(
X π̂k+1,i

T − λi
n−1

∑
j 6=iX

π̂k,j

T

)
and Ui

(
− λi
n−1

∑
j 6=iX

π̂k,j

T

)
, k ∈ N, are uniformly

integrable. Then V π̂∞
i ≥ V πi,π̂∞,j 6=i

i for all πi ∈ Ai with bounded Xπi

T .

Proof. Fix πi ∈ Ai with bounded Xπi

T . Using the uniform integrability, we

obtain both limk→∞ V
πi,π̂k,j 6=i

i = V πi,π̂∞,j 6=i

i and limk→∞ V
π̂k+1,iπ̂k,j 6=i
i = V π̂∞

i .
The assertion follows from (6.1).
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6.2 Models close to the martingale case

In the martingale case, where S is a P-martingale, θ is zero. Then the strategy
π̂ = 0 is a Nash equilibrium by Jensen’s inequality if Fi = 0 for all i. The
idea behind the following result is that we still can find a Nash equilibrium
if we are not exactly in the martingale case, but in some sense, close to it.

Proposition 6.4. Assume Πn
i=1λi < 1, that every Ai contains zero and that

for any i there exists a constant ci such that∥∥∥∥(Fi +
1

ηi

∫ T

0

θt dŴt −
1

2ηi

∫ T

0

|θt|2 dt

)
− ci

∥∥∥∥
L∞
≤ εi (6.2)

for some sufficiently small εi > 0 depending on (ηj)j=1,...,n, (λj)j=1,...,n and
n. Then the BSDE (3.7) has a unique solution (Γ, ζ) with sufficiently small
supt ‖Γt − c‖L∞ and

∥∥ ∫ ζ dŴ
∥∥
BMO(P̂). Defining π̂itσt = P i

t

(
ϕ−1,it (ζt)

)
for ϕ

given in (3.6), π̂ is a Nash equilibrium.

Proof. We first show existence and uniqueness of a solution of (3.7) by apply-
ing Proposition 1 of Tevzadze [20]. To this end, we verify that the generator
is purely quadratic, i.e., there exists C such that for all a, b ∈ Rn×d,∣∣∣∣∣ϕ−1,it (a)− P i

t

(
ϕ−1,it (a)

)∣∣2 − ∣∣ϕ−1,it (b)− P i
t

(
ϕ−1,it (b)

)∣∣2∣∣∣ ≤ C
(
|a|+ |b|

)
|a− b|.

(6.3)
Setting ã = ϕ−1,it (a) and b̃ = ϕ−1,it (b) and using 0 ∈ Ai, we have that∣∣∣|ã− P i

t (ã)|2 −
∣∣b̃− P i

t

(
b̃
)∣∣2∣∣∣

=
(
|ã− P i

t (ã)|+
∣∣b̃− P i

t

(
b̃
)∣∣)∣∣∣|ã− P i

t (ã)| −
∣∣b̃− P i

t

(
b̃
)∣∣∣∣∣

≤
(
|ã|+

∣∣b̃∣∣)∣∣ã− b̃+ P i
t (ã)− P i

t

(
b̃
)∣∣

≤ 2
(
|ã|+

∣∣b̃∣∣)∣∣ã− b̃∣∣.
By Lemma 4.42 of Espinosa [7], ϕ is invertible and ϕ−1 is Lipschitz-continuous
with a constant L depending on (λj)j=1,...,n and n. Therefore, we obtain∣∣ã − b̃

∣∣ ≤ L|a − b| as well as |ã| ≤ L|a| and
∣∣b̃∣∣ ≤ L|b| using ϕ−1(0) = 0.

This yields (6.3) with C := 2L2. Proposition 1 of Tevzadze [20] now gives
existence and uniqueness of a solution (Γ, ζ) of (3.7) under the assumption
(6.2). Setting Zi = ϕ−1,i(ζ) − 1

ηi
θ and defining Y via (3.8), the pair (Y, Z)

solves the BSDE (3.4). Since
∫
ζ dŴ ∈ BMO

(
P̂
)

and θ is bounded,
∫
ζ dW

is in BMO(P) and so is
∫
Z dW because ϕ−1 is Lipschitz-continuous. Hence,

the assertion follows from Lemma 3.2.
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7 Conclusion

This paper introduces a model for a financial market where agents maximize
expected utility by considering both the absolute and the relative perfor-
mance compared to their peers. In the case where all agents have the same
trading restrictions or in a model with deterministic coefficients, the existence
of an equilibrium is guaranteed. However, when some agents have more in-
vestment possibilities than others, their trading strategies may negatively
affect the weaker agents and thus only a relaxation of a Nash equilibrium
can be established. This reveals that relative-performance considerations in
a financial market may lead the system to collapse, which can be avoided if
the stronger agents show solidarity.

The results are based on the study of the related multidimensional BSDE,
making the message twofold. In addition to the financial meaning, the BSDE
counterexample shows boundaries of BSDE theory in a multidimensional
framework. This dual message also exemplifies the close relationship and
interplay between mathematics and financial economics.
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Appendix

A.1 Auxiliary results

Lemma A.1. There exists ζ ∈ H2
1,1 with∫

ζ dW 1 ∈ S∞ and E
[
exp

(∫ T

0

|ζt|2 dt

)]
=∞.

Proof. The following construction is inspired by the proof of Lemma 2.7 of
Kazamaki [13]. Define

Mt :=

∫ t

0

1√
T − s

dW 1
s , t ∈ [0, T ) (A.1)
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so that (Mt)0≤t≤u is a continuous martingale on [0, u] for every u < T . We
set τ := inf{t ≥ 0 : |Mt| > 1} and ζt := π

2
√
2
√
T−t1[[0,τ ]](t) so that

∣∣∫ ζ dW 1
∣∣ is

bounded by π
2
√
2
. It remains to show that E

[
exp
(∫ T

0
|ζt|2 dt

)]
=∞. For this,

we define an auxiliary function h : [0,∞) → [0, T ) by h(t) := T (1 − e−t),
which fulfills ∫ h(t)

0

1

T − s
ds = log

T

T − h(t)
= t, t ∈ [0,∞).

We set Bt := Mh(t), 0 ≤ t <∞, implying that (Bt)0≤t<∞ is an (Fh(t))0≤t<∞-
Brownian motion. The random variable h−1(τ) is the (Fh(t))0≤t<∞-stopping
time when B first leaves [−1, 1]. From Lemma 1.3 of Kazamaki [13], it follows
that E

[
exp
(
α2

2
h−1(τ)

)]
= 1

cos(α)
for all α ∈ [0, π/2). Therefore, we obtain

E
[
exp

(∫ T

0

|ζt|2 dt

)]
= E

[
exp

(
π2

8

∫ τ

0

1

T − t
dt

)]
= E

[
exp
(π2

8
h−1(τ)

)]
= lim

α↗π/2
E
[
exp
(α2

2
h−1(τ)

)]
= lim

α↗π/2

1

cos(α)
=∞.

The result is unchanged if one replaces in the definition (A.1) of M the
function s 7→ 1√

T−s by another continuous function g : [0, T ) → R which

satisfies
∫ T
0
|g(s)|2 ds = ∞ and

∫ t
0
|g(s)|2 ds < ∞ for every t ∈ [0, T ). For

any given ζ ∈ H2
1,d with

∫
ζ dW 1 ∈ S∞, there exists a constant c such that

E
[
exp
(
c
∫ T
0
|ζt|2 dt

)]
<∞ by the John-Nirenberg inequality (Theorem 2.2 of

Kazamaki [13]). Lemma A.1 shows conversely that for any fixed constant c,

there exists ζ ∈ H2
1,d with

∫
ζ dW 1 ∈ S∞ and E

[
exp
(
c
∫ T
0
|ζt|2 dt

)]
=∞.

Lemma A.2. There exists ζ ∈ H2
1,1 with

log E
(∫

ζ dW 1

)
∈ S∞ and E

[
exp

(
π2 + 1

4

∫ T

0

ζt dW 1
t

)]
=∞.

Proof. Similarly to (A.1), we define Mt :=
∫ t
0

1√
T−s dW 1

s for t ∈ [0, T ) and

set τ := inf
{
t ≥ 0 :

∣∣Mt − 1
2

log T
T−t

∣∣ > 1
}

and ζt := 1√
T−t1[[0,τ ]](t). Be-

cause we have 〈M〉t =
∫ t
0

1
T−s ds = log T

T−t for t ∈ [0, T ), log E
(∫

ζ dW 1
)

is
bounded, and τ is the first time that E(M) leaves [1/e, e]. We recall the
function h : [0,∞) → [0, T ) given by h(t) := T (1 − e−t), which is the in-
verse of t 7→ log T

T−t . We set Bt := Mh(t), 0 ≤ t < ∞, so that (Bt)0≤t<∞
is an (Fh(t))0≤t<∞-Brownian motion. The random variable h−1(τ) is the
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(Fh(t))0≤t<∞-stopping time when the drifted (Fh(t))0≤t<∞-Brownian motion
(Bt − t/2)0≤t<∞ first leaves [−1, 1]. Lemma 1.3 of Kazamaki [13] implies

EQ

[
exp

(
α2

2
h−1(τ)

)]
=

1

cos(α)
for all α ∈ [0, π/2),

where dQ
dP := E

(
1
2
B
)
h−1(τ)

= E
(
1
2
M
)
τ
. For β ≥ (π2 + 1)/8, we obtain

EP

[
exp

(
β

∫ τ

0

1

T − t
dt

)]
= EQ

[
1

E(1
2
M)τ

exp
(
βh−1(τ)

)]
= EQ

[
1

E(M)
1/2
τ

exp

(
βh−1(τ)− 1

8
〈M〉τ

)]
≥ e−1/2EQ

[
exp

((
β − 1

8

)
h−1(τ)

)]
=∞

and hence

EP[exp(2βMτ )] = EP

[
E(M)2βτ exp

(
β

∫ τ

0

1

T − t
dt

)]
≥ e−2βEP

[
exp

(
β

∫ τ

0

1

T − t
dt

)]
=∞

so that EP
[
exp
(
π2+1
4

∫ T
0
ζt dW 1

t

)]
= EP

[
exp
(
π2+1
4
Mτ

)]
=∞.

A.2 Proofs of Theorem 5.3 and Corollary 5.4

Proof of Theorem 5.3. Fix ε > 0 to show (5.5) and (5.6). We assume ε < 1
without loss of generality.
1. Step: Construction of an auxiliary strategy for agent 1.
We start by looking at an auxiliary problem for the first agent. By Theorem 7
of Hu et al. [12], there exists p̂ ∈ A1 such that

sup
p∈A1

E
[
U1

(
Xp
T − F1

)]
= E

[
U1

(
X p̂
T − F1

)]
.

We define a sequence of stopping times by

τk := inf
{
t ∈ [0, T ] such that

∣∣X p̂
t

∣∣ ≥ k
}
∧ T, k ∈ N

and set p(k) := p̂1]]0,τk]] ∈ A1 such that Xp(k)

T = X p̂
τk

. Because F1 is bounded

and
(
U1

(
X p̂
t

))
0≤t≤T can be written as the product of a martingale and a

bounded process (see the proof of Theorem 7 of Hu et al. [12]), the process
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(
U1

(
X p̂
t − F1

))
0≤t≤T is of class (D). Hence, the sequence

(
U1

(
X p̂
τk
− F1

))
k∈N

converging almost surely is uniformly integrable and thus, we have

lim
k→∞

E
[
U1

(
Xp(k)

T − F1

)]
= E

[
U1

(
X p̂
T − F1

)]
. (A.2)

Choose K ∈ N such that

E
[
U1

(
Xp(K)

T − F1

)]
≥ max

{
E
[
U1

(
X p̂
T − F1

)]
− ε, 1

1− ε
E
[
U1

(
X p̂
T − F1

)]}
.

For notational convenience, we set π(1,1) := p(K), where π(i,j) stands for the
auxiliary strategy of agent i in the j-th iteration.
2. Step: Construction of an auxiliary strategy for agent 2 and adaptation of
the first agent’s auxiliary strategy.
We now construct an auxiliary strategy π(2,1) for agent 2 in a similar way;
we simply replace η1 by η2, U1 by U2, and F1 by F2 + λ2

n−1X
π(1,1)

T , which is
bounded by construction. Because there is interdependence between agents
1 and 2, we need to adapt the strategies by setting

π(2,2) :=
1

1− λ1λ2/(n− 1)2
π(2,1), π(1,2) := π(1,1) +

λ1
n− 1

π(2,2)

to achieve that

π(2,2) − λ2
n− 1

π(1,2) = π(2,1) − λ2
n− 1

π(1,1), π(1,2) − λ1
n− 1

π(2,2) = π(1,1).

Since A1, A2 are linear subspaces with A1 ⊇ A2, we have π(2,2) ∈ A2 and
π(1,2) ∈ A1.
3. Step: Construction of an auxiliary strategy for agent i and adaptation of
the auxiliary strategy of agents 1, . . . , i− 1.
Like above, we construct an auxiliary strategy π(3,1) for the third agent,
replacing η1 by η3, U1 by U3, and F1 by F3 + λ3

n−1

(
Xπ(1,2)

T +Xπ(2,2)

T

)
. To

account for the interdependence, we set λn1,2 :=
λ1
n−1(1+ λ2

n−1)
1− λ1λ2

(n−1)2

and define

π(3,3) :=
1

1− (λn1,2 + λn2,1)λ3/(n− 1)
π(3,1),

π(2,3) := π(2,2) + λn1,2π
(3,3), π(1,3) := π(1,2) + λn2,1π

(3,3),

achieving that

π(3,3) − λ3
n− 1

(
π(1,3) + π(2,3)

)
= π(3,1) − λ3

n− 1

(
π(1,2) + π(2,2)

)
,

π(2,3) − λ2
n− 1

(
π(1,3) + π(3,3)

)
= π(2,2) − λ2

n− 1
π(1,2),

π(1,3) − λ1
n− 1

(
π(2,3) + π(3,3)

)
= π(1,2) − λ1

n− 1
π(2,2).

24



Continuing iteratively like this, we finally obtain strategies π(1,n), . . . , π(n,n).
(The procedure works since we can solve in each step a system of linear
equations with non-zero determinant because of the assumption Πn

i=1λi < 1.)
4. Step: Definition of π̂ε and verification of (5.5) and (5.6).
We set π̂ε,j := π(j,n) ∈ Aj for all j. For fixed i, we have by construction that

V π̂ε

i = E
[
Ui

(
Xπ(1,i)

T − λi
n− 1

i−1∑
j=1

Xπ(j,i−1)

T − Fi
)]
≥ max

{
ai − ε,

1

1− ε
ai

}
,

where ai := sup
p∈Ai

E
[
Ui

(
Xp
T −

λi
n− 1

i−1∑
j=1

Xπ(j,i−1)

T − Fi
)]

= sup
p∈Ai

E
[
Ui

(
Xp
T −

λi
n− 1

∑
j 6=i

X π̂ε,j

T − Fi
)]

= sup
πi∈Ai

V πi,π̂ε,j 6=i

i .

Therefore, both (5.5) and (5.6) are satisfied by this (π̂ε,1, . . . , π̂ε,n).

Proof of Corollary 5.4. From (A.2), we obtain limk→∞ V
π̂εk
1 = V π̂?

1 , where
π̂εk,1 = π̂?,11]]0,τk]] for some stopping time τ k. We study the BSDEs related to
V π̂εk
2 . By construction and Theorem 7 of Hu et al. [12], we have

− exp
(
η2Y

(k)
0

)
− εk ≤ V π̂εk

2 ≤ − exp
(
η2Y

(k)
0

)
,

where
(
Y (k), Z(k)

)
is the unique solution in (S∞,H2

1,d) of the BSDE

dY
(k)
t =

(
|θt|2

2η2
− η2

2

∣∣∣Z(k)
t +

1

η2
θt − P 2

t

(
Z

(k)
t +

1

η2
θt

)∣∣∣2) dt+ Z
(k)
t dŴt,

Y
(k)
T = λ2X

π̂εk,1

T + F2 = λ2X
π̂?,1

τk
+ F2.

Because F2 and θ are bounded, there exist constants c1 and c2 (not depending

on k) such that for any stopping time ν, Y
(k)
ν ≥ λ2EP̂

[
X π̂?,1

τk

∣∣Fν]+ c1 and

E
(∫ (

η2Z
(k) + θ

)
dŴ

)
T

E
(∫ (

η2Z(k) + θ
)

dŴ
)
ν

≤ exp

(∫ T

ν

θt dŴt+η2λ2
(
X π̂?,1

τk
−EP̂

[
X π̂?,1

τk

∣∣Fν])+c2)
so that Hölder’s inequality implies for any p, q > 1 and some c3 > 0 (depend-
ing on p and q but not on k or ν)

EP̂

[
E
(∫ (

η2Z
(k) + θ

)
dŴ

)p
T

E
(∫ (

η2Z(k) + θ
)

dŴ
)p
ν

∣∣∣∣∣Fν
]

≤ c3EP̂

[
exp

(
qpη2λ2

(
X π̂?,1

τk
− EP̂

[
X π̂?,1

τk

∣∣Fν]))∣∣∣∣Fν]1/q.
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The assumption
∥∥X π̂?,1

∥∥
BMO1(P̂)

< 1
4η2λ2

enables us to choose p, q > 1 with

qp
∥∥X π̂?,1

∥∥
BMO1(P̂)

< 1
4η2λ2

. Using
∥∥X π̂?,1

τk∧.
∥∥
BMO1(P̂)

≤
∥∥X π̂?,1

∥∥
BMO1(P̂)

, we ob-

tain from the variant of the John-Nirenberg inequality stated in Theorem 2.1
of Kazamaki [13] that

EP̂

[
exp

(
qpη2λ2

(
X π̂?,1

τk
−EP̂

[
X π̂?,1

τk

∣∣Fν]))∣∣∣∣Fν] ≤ 1

1− 4qpη2λ2‖X π̂?,1‖BMO1(P̂)
,

which shows that there exists p > 1 such that E
(∫

(η2Z
(k) + θ) dŴ

)
sat-

isfies the reverse Hölder inequality Rp

(
P̂
)

uniformly in k; compare (3.2).

This implies by Theorem 3.3 of Kazamaki [13] that the BMO
(
P̂
)
-norm of∫

Z(k) dŴ is bounded uniformly in k. One can now show similarly to the

proof of Theorem 2.1 of Frei [9] that one has limk→∞ Y
(k)
0 = Y

(∞)
0 , where(

Y (∞), Z(∞)
)

is the solution of the BSDE related to V π̂?

2 . Therefore, we

obtain limk→∞ V
π̂εk
2 = − limk→∞ exp

(
η2Y

(k)
0

)
= − exp

(
η2Y

(∞)
0

)
= V π̂?

2 .
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Probabilités XVIII. Lect. Notes Math., 1059:500, 1982.

[7] G.-E. Espinosa. Stochastic control methods for optimal portfolio invest-
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[21] G. Žitković. An example of a stochastic equilibrium with incomplete
markets. Preprint, June 2010. Available at arXiv:0906.0208v2.

27


	Introduction
	An illustrative BSDE counterexample
	Model setup and preliminaries
	Agents having the same trading constraints
	Agents with ordered trading constraints
	A glimpse of general trading constraints
	Sequentially delayed equilibria
	Models close to the martingale case

	Conclusion
	Auxiliary results
	Proofs of Theorem 5.3 and Corollary 5.4


