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Abstract

We study the exponential utility indifference value h for a contingent
claim H in an incomplete market driven by two Brownian motions.
The claim H depends on a nontradable asset variably correlated with
the traded asset available for hedging. We provide an explicit se-
quence that converges to h, complementing the structural results for h
known from the literature. Our study is based on a convergence result
for quadratic backward stochastic differential equations. This conver-
gence result, which we prove in a general continuous filtration under
weak conditions, also yields that the indifference value in a setting with
trading constraints enjoys a continuity property in the constraints.

Running title: Convergence results for the indifference value
Key words: indifference valuation, exponential utility, correlated Brownian
motions, quadratic BSDE, stability of BSDEs, convergent constraints
MSC 2010 subject classification: 91G80, 60H10, 93E20
JEL classification numbers: G13, C60

1 Introduction

An important task of mathematical finance is the valuation of contingent
claims. In incomplete markets, this is often done via utility indifference. The
indifference value ht for a contingent claim H at time t makes an investor
indifferent, in terms of maximal expected utility, between not buying H
and buying H for the amount ht. We explain this definition in more detail
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in Sections 3 and 4.1, where we use an exponential utility function. An
overview of various aspects of indifference valuation with a long literature
list is provided by the recently published book [4] edited by Carmona.

In a basic model, the financial market consists of a risk-free bank account
and a stock S driven by a Brownian motion W . The contingent claim H to
be valued via exponential utility indifference depends on another Brownian
motion Y , which has instantaneous correlation ρ with W . If ρ is deterministic
and constant in time, an explicit formula for the indifference value ht is
available from Tehranchi [14] or Chapter 4 of Carmona [4]. However, the
situation is different for general ρ. With stochastic and/or time-dependent ρ,
one knows for ht only bounds and a structural formula where one parameter
is not explicitly determined; see Frei and Schweizer [5]. In view of this lack
of explicit results for ht, the goal of this paper is to give an explicit sequence
that converges to ht.

Our starting point to study this problem with general ρ is the known
characterisation of (ht)0≤t≤T via a backward stochastic differential equation
(BSDE), which we present in Lemma 4.1. We deduce that if ρ is piecewise
constant in time, we can obtain an explicit formula for ht in the same way as
for constant ρ, just by considering iteratively the BSDE on intervals where ρ is
constant. For general ρ, the idea is to approximate ρ pointwise by a sequence
(ρn)n∈N of piecewise constant processes and to replace ρ by ρn in the BSDE
so that the solutions have an explicit form. These solutions then converge to
(a transform of) ht by a convergence result for quadratic BSDEs, which we
prove in a general continuous filtration to guarantee a broad framework for
applications. We thus have an explicitly known sequence which converges
to ht. The only point left is whether we can approximate ρ pointwise by a
sequence (ρn)n∈N of piecewise constant processes. We show that the above
approximation of ρ and thus that of ht work in a general way for every
deterministic ρ except for “pathological examples”. For stochastic ρ, we
prove that the approximation of ht is possible if ρ has left-continuous paths.

The paper is structured as follows. Motivated by the above approxima-
tion problem, we state in Section 2 convergence results for quadratic BSDEs
in a general continuous filtration. Section 3 gives a first application of these
results. We show that the indifference value in a general continuous filtration
with trading constraints enjoys a continuity property in the constraints. The
results on the indifference valuation in a Brownian setting are contained in
Section 4. We lay out the model and prove some preliminary results in Sec-
tion 4.1. We then study in Section 4.2 the approximation of the indifference
value ht by applying the convergence results of Section 2. Section 4.3 shows a
continuity property of ht in the correlation ρ. Finally, the Appendix contains
the proofs of the convergence results of Section 2.
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2 Convergence results

The financial applications in the subsequent sections are based on conver-
gence results for quadratic BSDEs in the setting of Morlais [13]. We first
recall this framework and then state the main convergence theorem.

We work on a finite time interval [0, T ] for a fixed T > 0, and we
fix t ∈ [0, T ] throughout this section. Let

(
Ω,F ,F = (Fs)0≤s≤T , P

)
be a

filtered probability space satisfying the usual assumptions with F = FT .
We assume that F is continuous, i.e., all local martingales are continuous.
We fix an Rd-valued local martingale M = (Ms)0≤s≤T and take a nonde-

creasing and bounded process D
(
e.g., D = arctan

(∑d
j=1〈M j〉

) )
such that

d〈M〉 = mm′ dD for an Rd×d-valued predictable process m.
Let us consider, for 0 ≤ s ≤ T , the BSDE

Γs = H+

∫ T

s

f(r, Zr) dDr+
β

2

(
〈N〉T−〈N〉s

)
−
∫ T

s

Zr dMr−(NT−Ns), (2.1)

where f : Ω × [0, T ] × Rd → R is P × B(Rd)-measurable
(
P denotes the

σ-field of all predictable sets on Ω × [0, T ] and B(Rd) is the Borel σ-field
on Rd

)
, β ∈ R is a constant and H is a bounded random variable. A so-

lution of (2.1) is a triple (Γ, Z,N) satisfying (2.1), where Γ is a real-valued
bounded continuous semimartingale, Z is an Rd-valued predictable process
with E

[∫ T
0
|msZs|2 dDs

]
<∞ and N is a real-valued square-integrable mar-

tingale null at 0 and strongly orthogonal to M .

Theorem 2.1. Let (fn, βn, Hn)n=1,2,...,∞ be a sequence of P × B(Rd)-meas-
urable real-valued mappings, constants, and random variables bounded uni-
formly in L∞, such that

(i) there exist a nonnegative predictable κ1 with
∥∥ ∫ T

0
κ1
s dDs

∥∥
L∞

<∞ and
a constant c1 such that

|fn(s, z)| ≤ κ1
s + c1|msz|2 for all s ∈ [0, T ], z ∈ Rd (2.2)

and n = 1, . . . ,∞;

(ii) there exist a nonnegative predictable κ2 with
∥∥ ∫ T

0
|κ2
s|2 dDs

∥∥
L∞

<∞
and a constant c2 such that∣∣fn(s, z1)− fn(s, z2)

∣∣ ≤ c2
(
κ2
s + |msz

1|+ |msz
2|
)∣∣ms(z

1 − z2)
∣∣

for all s ∈ [0, T ], z1, z2 ∈ Rd and n = 1, . . . ,∞;

(iii) limn→∞ β
n = β∞, limn→∞H

n = H∞ a.s. and for (P⊗D)-almost all
(ω, s) ∈ [[t, T ]], limn→∞ f

n(s, z)(ω) = f∞(s, z)(ω) for all z ∈ Rd.
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Then there are unique solutions (Γn, Zn, Nn) to the BSDE (2.1) with param-
eters (fn, βn, Hn) for n = 1, . . . ,∞, and Γnt converges to Γ∞t a.s. as n→∞,

lim
n→∞

E

[∫ T

t

|ms(Z
n
s −Z∞s )|2 dDs

]
= 0, lim

n→∞
E
[
〈Nn−N∞〉T−〈Nn−N∞〉t

]
= 0.

Moreover, sup
s∈[t,T ]

|Γns − Γ∞s | → 0 as n→∞ in probability and in Lp, p ∈ [1,∞).

In the above theorem, we assumed only weak conditions for the conver-
gence of the input data (fn, βn, Hn)n=1,...,∞. In particular, we imposed only
pointwise convergence of (fn)n=1,...,∞, which will be significant for the later
applications. The price to be paid is that the solutions of the BSDE converge
only in some weak sense. However, in the main application in Section 4, the
generators (fn)n=1,...,∞ of the BSDE have a specific form, and for this case,
the following result states stronger convergence properties. The proofs of
Theorem 2.1 and of the next corollary are presented in the Appendix.

Corollary 2.2. Suppose in addition to the assumptions of Theorem 2.1 that

(iv) Hn converges to H∞ in L∞ as n→∞;

(v) there exist sequences (an)n∈N and (an)n∈N of deterministic functions
which converge to 1 uniformly on [t, T ] (up to a (P⊗D)-nullset) such
that fn = anf + anf for every n = 1, . . . ,∞, where f , f satisfy (2.2)

with fn replaced by f , f .

Then we have sups∈[t,T ] |Γns − Γ∞s | → 0 in L∞ as n→∞ and there even exists
a constant K > 0 such that for all n ∈ N,∥∥∥∥ sup

s∈[t,T ]

|Γns − Γ∞s |
∥∥∥∥
L∞
≤ K

(
‖an − 1‖L∞(P⊗D) + ‖an − 1‖L∞(P⊗D)

+ |βn − β∞|+ ‖Hn −H∞‖L∞
)
. (2.3)

Further,
∫
Zn dM →

∫
Z∞ dM and Nn → N∞ on [[t, T ]] in BMO as n→∞.

In the literature on BSDEs, convergence results are also called stability
results. The main differences between Theorem 2.8 of Kobylanski [9] and
our Theorem 2.1 are the following: Kobylanski [9] works in a Brownian set-
ting and imposes locally uniform convergence on the generators, whereas our
Theorem 2.1 is stated in a general continuous filtration and for generators
(fn)n=1,...,∞ that converge only pointwise. Moreover, the generators in Koby-
lanski’s Theorem 2.8 can unlike ours also depend on Γn, and the a.s. conver-
gence of sups∈[t,T ] |Γns−Γ∞s | is proved. Another convergence result in a Brown-
ian setting is Proposition 7 of Briand and Hu [3], which gives convergence of
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the moments of exp
(
sups∈[t,T ] |Γns − Γ∞s |

)
and

(∫ T
t
|Zn

s − Z∞s |2 ds
)1/2

for un-
bounded terminal conditions if the generators are convex. (That result needs
a minor amendment as explained in Section 7 of Mocha and Westray [12].)

For a general continuous filtration, a convergence result for an exponen-
tial transformation of the BSDE (2.1) is available from Lemma 3.3 and Re-
mark 3.4 of Morlais [13]. Lemma 3.3 serves in [13] as an auxiliary result
to show existence of a solution to (2.1) with a more general generator f
which can also depend on Γ. The proof of the existence result first estab-
lishes a one-to-one correspondence between solutions to (2.1) and those to
a simpler BSDE which results from an exponential transformation of the
original BSDE. Lemma 3.3 is then used in proving existence of a solution to
the simpler BSDE. Due to the one-to-one correspondence between solutions
to the original and to the simpler BSDEs, Lemma 3.3 gives also a conver-
gence result for the original BSDE, as Morlais remarks. In particular, its
application to (2.1) needs that exp(βnHn) and a certain transform of fn are
nondecreasing in n, and it yields E

[
sups∈[t,T ] |eβ

nΓns − eβ
∞Γ∞s |

]
→ 0, which is

equivalent to sups∈[t,T ] |Γns − Γ∞s | → 0 in L1 for β∞ 6= 0; the equivalence can
be shown using

min{ex, ey}|x− y| ≤ |ex − ey| ≤ max{ex, ey}|x− y|, x, y ∈ R,

and that Γn is uniformly bounded in n = 1, . . . ,∞ by Lemma 3.1 of Mor-
lais [13]. In contrast to Morlais [13], who proves existence and uniqueness
of solutions to (2.1), we focus on convergence questions and work in the
proof of Theorem 2.1 directly with the BSDE (2.1) instead of doing first an
exponential transformation.

For the applications, three ingredients of our stability result are essential:

• fn are not necessarily monotonic in n;

• fn converge only pointwise;

• we obtain a.s.-convergence of Γnt .

These three crucial points are also the reason why we cannot apply the sta-
bility results of the recent papers by Barrieu and El Karoui [2] or Mocha and
Westray [12], who give existence and uniqueness results in a continuous fil-
tration and with unbounded terminal conditions. Theorem 3.6 of [2] imposes
that fn are monotonic in n and converge locally uniformly, whereas Theorem
2.7 of [12] uses different types of convergence for fn and Γn

(
convergence in

probability of the integral
∫ T
t
|fn(s, Z∞s )− f∞(s, Z∞s )| dDs and convergence

of exponential moments of sups∈[t,T ] |Γns − Γ∞s |
)
. While our technique does

not allow for Γn-dependence of the generators as in [2] and [12], it is the
only one which meets the above three points and hence is suitable for the
applications in mathematical finance presented in Sections 3 and 4.
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3 Indifference valuation with convergent con-

straints

We apply the convergence results in two different financial contexts. While
both applications deal with indifference valuation, the underlying settings are
different. In this section, we consider an investor facing trading constraints
in the same fairly general framework as in the previous section. For the main
application of Theorem 2.1, we restrict in Section 4 our study to a Brownian
model and derive there results independently from this section.

We now work within the framework of Section 2 with a continuous fil-
tration F. Recall that M is a local martingale and d〈M〉 = mm′ dD. We
suppose that almost surely, the matrix ms is invertible for every s ∈ [0, T ].
The financial market consists of a risk-free bank account yielding zero interest
and d risky assets whose price process S = (Ss)0≤s≤T is given by

dSjs
Sjs

= dM j
s +

d∑
i=1

λis d〈M j,M i〉s, 0 ≤ s ≤ T, Sj0 > 0 for j = 1, . . . , d,

where λ is a predictable process which satisfies
∥∥ ∫ T

0
|msλs|2 dDs

∥∥
L∞

<∞,
i.e., the mean-variance tradeoff process is bounded. Let H be a bounded
random variable, interpreted as a contingent claim or payoff due at time T ,
and let C ⊆ Rd be a closed set with 0 ∈ C. We assume that our investor has
an exponential utility function U(x) = − exp(−γx), x ∈ R, for a fixed γ > 0.
Starting at time t with bounded Ft-measurable capital xt, she runs a self-
financing strategy π = (πs)t≤s≤T valued in C such that her wealth at time

s ∈ [t, T ] is Xxt,π
s = xt +

∫ s
t

∑d
j=1

πjr
Sjr

dSjr , where πj represents the amount

invested in Sj, j = 1, . . . , d. The set ACt of C-admissible strategies on [t, T ]
consists of all predictable Rd-valued processes π = (πs)t≤s≤T which satisfy

a.s., πs ∈ C for all s ∈ [t, T ], E
[ ∫ T

t
|msπs|2 dDs

]
<∞ and are such that

exp(−γXxt,π
s ), t ≤ s ≤ T , is of class (D). We define V H,C

t (xt) by

V H,C
t (xt) := ess sup

π∈ACt
E
[
U(Xxt,π

T +H)
∣∣Ft]

= e−γxtess sup
π∈ACt

E
[
− exp

(
−γX0,π

T − γH
)∣∣Ft] (3.1)

so that V H,C
t (xt) is the maximal expected utility the investor can achieve by

starting at time t with initial capital xt, using some C-admissible strategy π,
and receiving H at time T . For ease of notation, we write

V H,C
t (xt) = e−γxtV H,C

t (0) =: e−γxtV H,C
t . (3.2)
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Viewed over time t, V H,C is then the dynamic value process for the stochastic
control problem associated to exponential utility maximisation.

The time t indifference (buyer) value hH,Ct (xt) for H is implicitly de-
fined by

V 0,C
t (xt) = V H,C

t

(
xt − hH,Ct (xt)

)
. (3.3)

This says that the investor is indifferent between solely trading with initial
capital xt, versus trading with initial capital xt − hH,Ct (xt) but receiving H
at T . By (3.2),

hH,Ct (xt) = hH,Ct =
1

γ
log

V 0,C
t

V H,C
t

(3.4)

does not depend on xt.
The following proposition can be seen as a kind of continuity result for

V H,C
t and hH,Ct in (H,C). Its proof is based on Theorem 2.1.

Proposition 3.1. Let Hn, n = 1, 2, . . . ,∞, be uniformly bounded random
variables with limn→∞H

n = H∞ a.s., and let Cn, n = 1, 2, . . . ,∞, be closed
subsets of Rd which contain zero and are such that (P⊗D)-a.e.,

lim
n→∞

inf
y∈Cn
|m(y − z)| = inf

y∈C∞
|m(y − z)| for all z ∈ Rd. (3.5)

Then limn→∞ V
Hn,Cn

t = V H∞,C∞

t and limn→∞ h
Hn,Cn

t = hH
∞,C∞

t a.s., and
there exist continuous versions V Hn,Cn and hH

n,Cn, n = 1, . . . ,∞, such that

lim
n→∞

sup
s∈[t,T ]

∣∣V Hn,Cn

s − V H∞,C∞

s

∣∣ = 0 in probab. and in Lp, 1 ≤ p <∞,

lim
n→∞

sup
s∈[t,T ]

∣∣hHn,Cn

s − hH∞,C∞s

∣∣ = 0 in probab. and in Lp, 1 ≤ p <∞. (3.6)

Proof. Fix n ∈ {1, . . . ,∞}. By Theorem 4.1 of Morlais [13], there is a version
V Hn,Cn such that V Hn,Cn = − exp(γΓn), where (Γn, Zn) is the solution of
(2.1) with β := γ, H replaced by −Hn and with generator fn given by

fn(s, z) := inf
y∈Cn

(
γ

2

∣∣∣ms

(
y − z − 1

γ
λs

)∣∣∣2)− (msz)′(msλs)−
1

2γ
|msλs|2

for s ∈ [0, T ] and z ∈ Rd. Remarks 2.3 and 2.4 of Morlais [13] and (3.5) imply
that the assumptions (i)–(iii) of Theorem 2.1 are satisfied, which yields

lim
n→∞

Γnt = Γ∞t a.s. and lim
n→∞

sup
s∈[t,T ]

|Γns−Γ∞s | = 0 in probab. and in Lp. (3.7)
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Therefore, we obtain limn→∞ V
Hn,Cn

t = limn→∞−eγΓnt = −eγΓ∞t = V H∞,C∞

t

a.s. and analogously limn→∞ V
0,Cn

t = V 0,C∞

t a.s., so limn→∞ h
Hn,Cn

t = hH
∞,C∞

t

a.s. by (3.4). Because we have

sup
s∈[t,T ]

∣∣hHn,Cn

s − hH∞,C∞s

∣∣ =
1

γ
sup
s∈[t,T ]

∣∣∣∣ log
V 0,Cn

s

V 0,C∞
s

− log
V Hn,Cn

s

V H∞,C∞
s

∣∣∣∣
≤ 1

γ
sup
s∈[t,T ]

∣∣∣∣ log
V 0,Cn

s

V 0,C∞
s

∣∣∣∣+ sup
s∈[t,T ]

|Γns − Γ∞s |,

we obtain (3.6) from (3.7) and its analogue with (Hn, Cn) replaced by (0, Cn).
We also have limn→∞ sups∈[t,T ]

∣∣eγΓns − eγΓ∞s
∣∣ = 0 in probab. and in Lp, since

sup
s∈[t,T ]

∣∣eγΓns−eγΓ∞s
∣∣ ≤ γ exp

(
γ
∥∥∥ sup
n=1,...,∞

sup
s∈[t,T ]

|Γns |
∥∥∥
L∞

)
sup
s∈[t,T ]

|Γns−Γ∞s | (3.8)

and Γn is uniformly bounded by Lemma 3.1 of Morlais [13]. This concludes
the proof because V Hn,Cn = − exp(γΓn) for a version V Hn,Cn .

Remark 3.2. 1) The condition (3.5) can be rephrased as follows: Define a
time-dependent random inner product 〈·, ·〉m by 〈x, y〉m := x′m′my for x, y
in Rd and denote by dm the induced metric, i.e., dm(x, y) := 〈x− y, x− y〉m
for x, y ∈ Rd. Then 〈·, ·〉m is the standard scalar product on Rd after a basis
transformation by m−1. Defining dm(x,C) := infy∈C dm(x, y) for a closed set
C ⊆ Rd, the condition (3.5) is equivalent to limn→∞ dm(x,Cn) = dm(x,C∞)
for all x ∈ Rd. This means that the sets (Cn)n∈N are Wijsman convergent to
C∞ with respect to the metric dm. Beer [1] gives a survey on Wijsman con-
vergence, which is a weaker notion than convergence in the Hausdorff metric.

2) We have used an exponential utility function U(x) = − exp(−γx),
x ∈ R, for a fixed γ > 0. By applying Theorems 4.4 and 4.7 of Mor-
lais [13], analogous results can be derived for the value process related to
power utility U(x) = xγ/γ, x > 0, for a fixed γ ∈ ]0, 1[, and to logarithmic
utility U(x) = log x, x > 0, when there is no claim, i.e., H = 0. 3

4 Indifference valuation in a Brownian set-

ting

We now apply the convergence Theorem 2.1 to the indifference valuation in a
Brownian setting with variable correlation. We first introduce in Section 4.1
the model and explain the problem. We then apply Theorem 2.1 in Sections
4.2 and 4.3 to give convergence results for the indifference value and the
dynamic value process.
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4.1 Model setup and preliminary results

We work on a finite time interval [0, T ] for a fixed T > 0, and we fix
t ∈ [0, T ] throughout this section. On a complete filtered probability space(
Ω,G,G = (Gs)0≤s≤T , P

)
, we have two independent one-dimensional (G, P )-

Brownian motions Y and Y ⊥. We denote by Y = (Ys)0≤s≤T the P -augmented
filtration generated by Y . Let W be a (G, P )-Brownian motion with instan-
taneous correlation ρ to Y so that

dWs = ρs dYs +
√

1− ρ2
s dY ⊥s , 0 ≤ s ≤ T. (4.1)

Our financial market consists of a risk-free bank account yielding zero
interest and a traded risky asset S with dynamics

dSs = Ssµs ds+ Ssσs dWs, 0 ≤ s ≤ T, S0 > 0;

the drift µ and the (positive) volatility σ are G-predictable. We set λ := µ
σ

and assume that
∫ T

0
λ2
s ds is bounded. The processes

Ŵ := W +

∫
λ ds and Ŷ := Y +

∫
ρλ ds

are Brownian motions under the minimal martingale measure P̂ given by

dP̂

dP
:= E

(
−
∫
λ dW

)
T

:= exp

(
−
∫ T

0

λs dWs −
1

2

∫ T

0

λ2
s ds

)
. (4.2)

In contrast to Section 3, the investor here can trade in S without constraints.
He starts at time t with bounded Gt-measurable capital xt and runs a self-
financing strategy π = (πs)t≤s≤T so that his wealth at time s ∈ [t, T ] is

Xxt,π
s = xt +

∫ s

t

πr
Sr

dSr = xt +

∫ s

t

πrσr dŴr, (4.3)

where π represents the amount invested in S. For a bounded random vari-
able H, we define V H

t (xt) like V H,C
t (xt) in (3.1) with Gt instead of Ft and

ACt replaced by At which consists of all G-predictable real-valued processes

π = (πs)t≤s≤T which satisfy
∫ T
t
π2
sσ

2
s ds <∞ a.s. and are such that

exp(−γXxt,π
s ), t ≤ s ≤ T, is of class (D) on (Ω,GT ,G, P ). (4.4)

The dynamic value process V H and the indifference value hHt are defined
analogously to (3.2) and (3.3). From (3.4), we see that once we can calculate
V H
t and V 0

t , we also know hHt . So our focus lies on studying V H
t .
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We always impose without further mention the standing assumption that

H ∈ L∞(YT , P ) and λ, ρ are Y-predictable. (4.5)

This reflects a situation where the payoff H is driven by Y , whereas hedging
can only be done in S which is in general imperfectly correlated with Y .
We refer to Sections 4.1 and 4.2 of Frei and Schweizer [5] for an overview of
the related literature and a thorough explanation of the standing assump-
tion (4.5), which corresponds to case (I) in [5].

(
For case (II) in [5], results

analogous to those in Section 4.2 can be derived if ρ is predictable for the
filtration generated by Ŷ .

)
The standing assumption (4.5) allows us to give a BSDE characterisation

for V H in the Y-filtration. This BSDE is a special case of the BSDE (2.1).

Lemma 4.1. The BSDE

Γs = H −
∫ T

s

(1

2
γ(1− ρ2

r)Z
2
r − Zrρrλr −

λ2
r

2γ

)
dr +

∫ T

s

Zr dYr (4.6)

for 0 ≤ s ≤ T has a unique solution (Γ, Z) where Γ is a real-valued bounded
continuous (Y, P )-semimartingale and Z is a Y-predictable process such that

EP
[∫ T

0
Z2
s ds

]
<∞. Moreover, there exists a continuous version V H (which

we always use in the sequel) such that V H = − exp(−γΓ), and its optimal
strategy denoted by π? is given by π? = ρ

σ
Z + λ

γσ
.

Lemma 4.1 is essentially known. In particular, Proposition 5.5 of Frei
et al. [6] gives a multidimensional version. However, two assumptions of
that proposition are not satisfied in our setting; firstly, G is not necessarily
generated by W and a Brownian motion orthogonal to W , and secondly, |ρ|
is not bounded away from 1. Instead of adapting the proof of Proposition 5.5
of Frei et al. [6], we give the complete argument in the following.

Proof of Lemma 4.1. Existence and uniqueness of a solution (Γ, Z) of (4.6)
follow from Theorem 2.1 with F := Y, M := −Y and

f(s, z) := −1

2
γ(1− ρ2

s)z
2 + zρsλs +

λ2
s

2γ
for s ∈ [0, T ] and z ∈ R.

(
Since any Y-martingale orthogonal to Y is constant, we can choose in (2.1)
β ∈ R arbitrarily.

)
Moreover, Proposition 7 of Mania and Schweizer [11] and

its proof yield that
∫
Z dY is in both BMO(Y, P ) and BMO(G, P ).

10



To establish the result, it remains to show V H
t = − exp(−γΓt). A simple

calculation based on (4.3) and (4.6) yields for π ∈ At that

exp
(
−γX0,π

s

)
= exp(γΓs − γΓt)

E
(∫

γZ dY −
∫
γπσ dW

)
s

E
(∫

γZ dY −
∫
γπσ dW

)
t

× exp

(
1

2

∫ s

t

(γρrZr + λr − γπrσr)2 dr

)
(4.7)

≥ exp(γΓs − γΓt)
E
(∫

γZ dY −
∫
γπσ dW

)
s

E
(∫

γZ dY −
∫
γπσ dW

)
t

, t ≤ s ≤ T.

Therefore, if
∫
πσ dW ∈ BMO(G, P ), we obtain

EP
[
exp
(
−γX0,π

T − γH
)∣∣Gt] ≥ exp(−γΓt), (4.8)

since the stochastic exponential of a continuous BMO-martingale is a true
martingale by Theorem 2.3 of Kazamaki [7]. By a localisation argument
and (4.4), we have (4.8) for every π ∈ At, which implies V H

t ≤ − exp(−γΓt).
Equality in (4.8) holds for π = π? := ρ

σ
Z+ λ

γσ
. Since exp

(
−γX0,π?

)
is by (4.7)

the product of a bounded process and a (G, P )-martingale, it is of class (D)
on (Ω,GT ,G, P ); hence π? ∈ At and V H

t = − exp(−γΓt).

Although V H is given in terms of the solution of (4.6), there is no fully ex-
plicit formula available for V H

t unless ρ is deterministic and constant in time.
While the methods in Frei and Schweizer [5] and Frei et al. [6] give bounds
for V H

t , we approximate in the subsequent sections V H
t by approaching ρ by

piecewise constant processes.

Definition 4.2. We denote by Ξ the set of all processes q of the form

q = q11{τ0} +
n∑
j=1

qj1]]τj−1,τj ]], for t = τ0 ≤ τ1 ≤ · · · ≤ τn = T,

where τj is a Y-stopping time and qj is a Yτj−1
-measurable random variable

valued in ]−1, 1[. We call (qj, τj)j=1,...,n a characterising sequence of q.

Proposition 4.3. Let q be a bounded Y-predictable process. The BSDE

Γqs = H −
∫ T

s

(1

2
γ(1− q2

r)|Zq
r |2 − Zq

rρrλr −
λ2
r

2γ

)
dr +

∫ T

s

Zq
r dYr (4.9)

for 0 ≤ s ≤ T has a unique solution (Γq, Zq) (in the sense of Lemma 4.1).
1) If q ∈ Ξ with characterising sequence (qj, τj)j=1,...,n, then

e−γΓqt = EP̂

[
· · ·EP̂

[
EP̂

[
eĤ(1−|qn|2)

∣∣∣Yτn−1

]1−|qn−1|2

1−|qn|2
∣∣∣∣Yτn−2

]1−|qn−2|2

1−|qn−1|2

· · ·

∣∣∣∣∣Yt
] 1

1−|q1|2

,

(4.10)

11



where Ĥ := −γH − 1
2

∫ T
t
λ2
s ds.

2) If |q| ≥ |ρ| (P⊗Leb)-almost everywhere, then V H ≤ − exp(−γΓq).
3) If |q| ≤ |ρ| (P⊗Leb)-almost everywhere, then V H ≥ − exp(−γΓq).

If ρ itself is in Ξ, Proposition 4.3 gives explicit formulas for V H
t and hHt by

choosing q = ρ and using (3.4). For general ρ, the idea is to find a sequence
(qn)n∈N in Ξ which converges pointwise to ρ. The solutions Γq

n

t of (4.9) with
q = qn have the explicit form (4.10) and converge a.s. to the solution Γt = Γρt
of (4.6) by Theorem 2.1. We thus obtain an explicitly known sequence con-
verging a.s. to V H

t . The only open point, which we treat in Section 4.2, is
whether we can find a sequence (qn)n∈N in Ξ which converges pointwise to ρ.

Note that the right-hand side of (4.10) is not the value of V H
t in a model

with correlation q instead of ρ. Comparing (4.9) with (4.6), we see that only
the ρ in front of |Z|2 is replaced by q; the ρ in the term linear in Z is kept.
This implies that the measure used in the iterated expectations in (4.10)
is P̂ , defined in (4.2). It does not depend on q— a property desired for the
above-mentioned approximation of V H

t , since we prefer to take always the
same explicitly known measure in calculating the conditional expectations.
If we replace ρ in (4.9) by q, the solution of the BSDE is linked to the value of
V H
t when ρ is replaced by q. In Section 4.3, we deduce from this a continuity

property of V H
t in ρ.

Parts 2) and 3) of Proposition 4.3 can be seen as a monotonicity property
of V H

t . However, since ρ still appears in (4.9), we cannot simply say that V H
t

is monotonic in |ρ|. This has already been pointed out in Section 5 of Frei and
Schweizer [5] by saying that V H

t is monotonic in |ρ| only when the measure P̂
from (4.2), which depends via W on ρ, is kept fixed. Proposition 3 of Frei and
Schweizer [5] gives a result analogous to parts 2) and 3) of Proposition 4.3
when |q| and |ρ| can be separated by a constant. Proposition 4.3 shows that
this additional assumption is superfluous and generalises Proposition 3 of [5].

Proof of Proposition 4.3. Like in the proof of Lemma 4.1, (4.9) has a unique
solution (Γq, Zq) and

∫
Zq dY ∈ BMO(Y, P ). Theorem 3.6 of Kazamaki [7]

yields
∫
Z dŶ ,

∫
Zq dŶ ∈ BMO

(
Y, P̂

)
for the solution (Γ, Z) of (4.6), and

as a consequence, their stochastic exponentials are true martingales.
To prove 1), we fix j ∈ {1, . . . , n} and write (4.9), for τj−1 ≤ s ≤ τj as

Γqs = Γqτj +
1

2γ

∫ τj

s

λ2
r dr − 1

2
γ(1− |qj|2)

∫ τj

s

|Zq
r |2 dr +

∫ τj

s

Zq
r dŶr,

12



which implies

e−γ(1−|qj |2)Γqτj−1 exp

(
γ(1− |qj|2)

∫ τj

τj−1

Zq
r dŶr −

1

2
γ2(1− |qj|2)2

∫ τj

τj−1

|Zq
r |2 dr

)
= exp

(
−γ(1− |qj|2)Γqτj −

1− |qj|2

2

∫ τj

τj−1

λ2
r dr

)
.

Taking
(
Yτj−1

, P̂
)
-conditional expectations and logarithms yields

Γqτj−1
= − 1

γ(1− |qj|2)
logEP̂

[
exp

(
−γΓqτj −

1

2

∫ τj

τj−1

λ2
r dr

)1−|qj |2∣∣∣∣Yτj−1

]
.

Using this argument iteratively for j = n, . . . , 1 results in (4.10).
To prove 2), we subtract (4.6) from (4.9), which gives

Γqs − Γs =
1

2
γ

∫ T

s

(
(1− ρ2

r)|Zr|2 − (1− q2
r)|Zq

r |2
)

dr +

∫ T

s

(Zq
r − Zr) dŶr

≥ 1

2
γ

∫ T

s

(1− ρ2
r)
(
|Zr|2 − |Zq

r |2
)

dr +

∫ T

s

(Zq
r − Zr) dŶr

=

∫ T

s

(Zq
r − Zr)

(
dŶr − κr dr

)
, 0 ≤ s ≤ T, (4.11)

with κ := 1
2
γ(1 − ρ2)(Zq + Z). The BMO

(
Y, P̂

)
-property of

∫
Z dŶ and∫

Zq dŶ implies that
∫
κ dŶ is in BMO

(
Y, P̂

)
, and by Theorem 3.6 of Kaza-

maki [7], the process
∫

(Zq − Z)
(
dŶ − κ dr

)
is thus also a BMO

(
Y, P̂ ′

)
-

martingale for the probability measure P̂ ′ given by dP̂ ′

dP̂
:= E

(∫
κ dŶ

)
T

.

Taking
(
Ys, P̂ ′

)
-conditional expectations in (4.11) yields Γqs ≥ Γs for any

s ∈ [0, T ], which gives V H = − exp(−γΓ) ≤ − exp(−γΓq) by Lemma 4.1 and
the continuity of Γ and Γq. The proof of 3) goes analogously to 2).

4.2 Approximating the indifference value

As explained after Proposition 4.3, the question whether V H
t is the a.s. limit

of an explicitly known sequence boils down to whether it is possible to find
a sequence (qn)n∈N in Ξ which converges pointwise to ρ. In Section 4.2.1, we
show that this is possible in a general way for every deterministic ρ except for
“pathological examples”. We then give in Section 4.2.2 such a counterexam-
ple where the approximation of V H

t indeed fails. Section 4.2.3 presents the
approximation of V H

t for general (stochastic) ρ with left-continuous paths.
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4.2.1 Deterministic correlation

The approximation of ρ with piecewise constant processes is reminiscent of
the construction of the Riemann integral. We recall that a bounded function
g : [t, T ]→ R is called Riemann integrable if there exists J ∈ R such that for
every ε > 0, there exists δ > 0 such that∣∣∣∣J − n∑

j=1

g(sj)(tj − tj−1)

∣∣∣∣ < ε

for every partition (t0, . . . , tn) of [t, T ] with max1≤j≤n(tj−tj−1) < δ and every
choice of sj ∈ [tj−1, tj].

The following result, which is shown on page 29 of Lebesgue [10], is known
as Lebesgue’s theorem.

Lemma 4.4. A bounded function g : [t, T ]→ R is Riemann integrable if and
only if it is Lebesgue-almost everywhere continuous on [t, T ].

We now come to the convergence result for V H
t and its optimal strategy π?

when ρ is deterministic.

Theorem 4.5. Assume that ρ is deterministic, Riemann integrable and val-
ued in ]−1, 1[, and recall Ĥ = −γH − 1

2

∫ T
t
λ2
s ds. Then for every sequence

(tn0 , . . . , t
n
`n

)n∈N of partitions of [t, T ] with limn→∞
(
max1≤j≤`n(tnj − tnj−1)

)
= 0

and every choice of sj ∈ [tnj−1, t
n
j ] (the dependence of sj on n is omitted for

notational reasons),

− EP̂

[
· · ·EP̂

[
EP̂

[
eĤ(1−ρ2

s`n
)
∣∣∣Ytn`n−1

]1−ρ2s`n−1

1−ρ2
s`n

∣∣∣∣Ytn`n−2

]1−ρ2s`n−2

1−ρ2
s`n−1 · · ·

∣∣∣∣∣Yt
] 1

1−ρ2
s1

(4.12)

converges to V H
t a.s. Suppose σ is uniformly bounded away from zero, and

denote by
(
Γq

n
, Zqn

)
the solution of (4.9) with q = qn :=

∑`n
j=1 ρsj1]tnj−1,t

n
j ]

for any n ∈ N. Then lim
n→∞

EP

[∫ T
t

∣∣ ρs
σs
Zqn

s + λs
γσs
−π?s

∣∣2 ds
]

= 0, where π? is the

optimiser for V H
t . If (νn)n∈N = (tn0 , . . . , t

n
`n

)n∈N is a sequence of partitions of
[t, T ] with νn ⊆ νn+1, n ∈ N, and limn→∞

(
max1≤j≤`n(tnj − tnj−1)

)
= 0, then

−EP̂

[
· · ·EP̂

[
EP̂

[
eĤ(1−ρ2n,`n )

∣∣∣Ytn`n−1

]1−ρ2n,`n−1

1−ρ2
n,`n

∣∣∣∣Ytn`n−2

]1−ρ2n,`n−2

1−ρ2
n,`n−1 · · ·

∣∣∣∣∣Yt
] 1

1−ρ2n,1

with ρn,j := infs∈[tnj−1,t
n
j ] |ρs| (or ρn,j := sups∈[tnj−1,t

n
j ] |ρs|) is a nondecreasing

(or nonincreasing) sequence which converges to V H
t a.s.
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Proof. Fix n ∈ N and let
(
Γq

n
, Zqn

)
be the solution of the BSDE (4.9) with

q = qn :=
∑`n

j=1 ρsj1]tnj−1,t
n
j ]. By 1) of Proposition 4.3, − exp

(
−γΓq

n

t

)
equals

(4.12), and we show that this converges to V H
t a.s. Because ρ is Riemann

integrable, Lemma 4.4 yields limn→∞ |qns | = |ρs| for a.a. s ∈ [t, T ]. From
Lemma 4.1 and Theorem 2.1 follows that − exp

(
−γΓq

n

t

)
converges to V H

t a.s.
and also the convergence result for the optimiser π? for V H

t is implied.
The last part of Theorem 4.5 follows analogously, with qn replaced by∑`n
j=1 ρn,j1]tnj−1,t

n
j ], using additionally parts 2) and 3) of Proposition 4.3.

Let us mention two straightforward generalisations of Theorem 4.5. The
convergence still works if ρ itself is not Riemann integrable, but ρ equals
Lebesgue-almost everywhere a Riemann integrable function ρ̃. One simply
replaces ρ by ρ̃ in Theorem 4.5, and uses V H

t = − exp(−γΓρt ) = − exp
(
−γΓρ̃t

)
a.s. for the solutions (Γρ, Zρ) and (Γρ̃, Z ρ̃) of the BSDE (4.9) with q = ρ and
q = ρ̃, respectively. An example for such a pair of ρ and ρ̃ is ρ = 1

2
1Q∩[t,T ]

and ρ̃ = 0.
In the first part of Theorem 4.5, one can easily get rid of the restriction

that ρ is valued in ]−1, 1[. To this end, one replaces |ρsj | by |ρsj | ∧ (1− 1/n)
in (4.12), and uses for the proof that

∑`n
j=1 |ρsj | ∧ (1 − 1/n)1]tnj−1,t

n
j ] con-

verges pointwise to |ρ| since the correlation ρ is valued in [−1, 1]. The
same procedure works for the last part of Theorem 4.5, but the sequence
of iterated expectations with ρn,j := sups∈[tnj−1,t

n
j ] |ρs| ∧ (1− 1/n) instead of

ρn,j := sups∈[tnj−1,t
n
j ] |ρs| is no longer nonincreasing.

Further comments on Theorem 4.5 are given in the next remark.

Remark 4.6. 1) One can show that the a.s. convergence of (4.12) to V H
t

holds uniformly with respect to the partitions. In more detail, we denote by
at(∆

n, ~s n) the random variable given by the iterated conditional expectation
in (4.12), where the pair (∆n, ~s n) =

(
(tn0 , . . . , t

n
`n

), (s1, . . . , s`n)
)

is called a
tagged partition of [t, T ] with mesh |∆n|. The first part of Theorem 4.5
yields limn→∞ at(∆

n, ~s n) = V H
t a.s. In the Appendix, we sketch the proof of

the more general result

lim
ε↘0

ess sup
(∆,~s ): |∆|<ε

∣∣at(∆,~s )− V H
t

∣∣ = 0 a.s., (4.13)

where the essential supremum is taken over all tagged partitions (∆,~s ) of
[t, T ] with mesh |∆| < ε.

2) For q valued in [−1, 1], the generator of (4.9) is concave in Zq
r , and we

can apply to (−Γq, Zq) the convergence result of Briand and Hu [3]. (Since
the generators are uniformly bounded by a quadratic function, the minor
amendment to that convergence result mentioned in Section 7 of Mocha and
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Westray [12] is here not necessary.) Recall
(
Γq

n
, Zqn

)
from the proof of

Theorem 4.5, and let (Γ, Z) be the solution of (4.6). Proposition 7 of [3]
implies that, for every p ≥ 1,

lim
n→∞

EP

[
exp

(
sup
s∈[t,T ]

∣∣Γqns − Γs
∣∣)p +

(∫ T

t

∣∣Zqn

s − Zs
∣∣2 ds

)p/2]
= 0.

If σ is uniformly bounded away from zero, this yields similarly to Theorem 4.5

that, for every p ≥ 1, limn→∞EP

[(∫ T
t

∣∣ ρs
σs
Zqn

s + λs
γσs
− π?s

∣∣2 ds
)p/2]

= 0. 3

Under a slightly more restrictive assumption on ρ, we can prove a stronger
convergence result than Theorem 4.5.

Proposition 4.7. Assume that ρ is deterministic and the one-sided limits
limr↗s ρr for all s ∈ ]t, T ] and limr↘s ρr for all s ∈ [t, T [ exist. Then there ex-
ist partitions (tn0 , . . . , t

n
`n

)n∈N of [t, T ] with limn→∞
(
max1≤j≤`n(tnj − tnj−1)

)
= 0

such that for every choice of sj ∈ ]tnj−1, t
n
j [, (bn)n∈N given for r ∈ [tnj−1, t

n
j [ by

bnr := −EP̂

[
· · ·EP̂

[
EP̂

[
eĤ(1−ρ2

s`n
)
∣∣∣Ytn`n−1

]1−ρ2s`n−1

1−ρ2
s`n

∣∣∣∣Ytn`n−2

]1−ρ2s`n−2

1−ρ2
s`n−1 · · ·

∣∣∣∣∣Yr
] 1

1−ρ2
sj

satisfies lim
n→∞

∥∥∥ sup
s∈[t,T ]

|bns − V H
s |
∥∥∥
L∞(P )

= 0. For σ uniformly bounded away from

zero, we have lim
n→∞

sup
τ

∥∥∥EP[∫ Tτ ∣∣ ρsσsZqn

s + λs
γσs
− π?s

∣∣2 ds
∣∣∣Gτ]∥∥∥

L∞(P )
= 0, where

the supremum is taken over all G-stopping times τ valued in [t, T ], and(
Γq

n
, Zqn

)
is the solution of (4.9) with q = qn :=

∑`n
j=1 ρsj1]tnj−1,t

n
j ] for n ∈ N.

Proof. Fix n ∈ N and define by

tn0 := t, tnj := inf
{
s > tnj−1 :

∣∣∣ρs − lim
r↘tnj−1

ρr

∣∣∣ > 1/n
}
∧ T, j ∈ N,

a partition of [t, T ], noting that there is `n ∈ N such that tn`n = T by a com-

pactness argument. For every sj ∈ ]tnj−1, t
n
j [, qn =

∑`n
j=1 ρsj1]tnj−1,t

n
j ] converges

to ρ in L∞(Leb, [t, T ]) as n→∞. Except for the point mentioned next, the
remainder of the proof goes like in Theorem 4.5, using Corollary 2.2 instead
of Theorem 2.1 and additionally the idea of (3.8). Corollary 2.2 only yields

lim
n→∞

sup
τ

∥∥∥EP[∫ Tτ ∣∣ ρsσsZqn

s + λs
γσs
− π?s

∣∣2 ds
∣∣∣Yτ]∥∥∥

L∞(P )
= 0, where the supremum

is taken over all Y-stopping times τ . But the proof of Corollary 2.2 shows

that we also have lim
n→∞

sup
τ

∥∥∥EP[∫ Tτ ∣∣ ρsσsZqn

s + λs
γσs
− π?s

∣∣2 ds
∣∣∣Gτ]∥∥∥

L∞(P )
= 0 in

this situation, where the supremum is taken over all G-stopping times τ .
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4.2.2 A counterexample

We have seen in Theorem 4.5 that V H
t is the a.s. limit of an explicitly known

sequence if ρ equals almost everywhere a Riemann integrable function. In
particular, the choice of a nondecreasing sequence of partitions in Theo-
rem 4.5 allows us to approximate V H

t from above and below. We give here
an example of a correlation process which is not almost everywhere equal to
a Riemann integrable function and where indeed the approximations of V H

t

in the sense of Theorem 4.5 from above and below are not possible.
We take for simplicity t = 0, T = 1, γ = 1, µ ≡ 0 and σ ≡ 1. Let

C ⊆ [0, 1] be the “fat” Cantor set with Lebesgue measure 1/2. This set,
which is also known as Smith-Volterra-Cantor set, is constructed iteratively
as follows: Start by removing ]3/8, 5/8[ from the interval [0, 1]; in the n-th
step, remove subintervals of width 1/22n from the middle of each of the 2n−1

intervals. If we continue like this, C consists of all points in [0, 1] that are
never removed. Because C is the complement of a countable union of open
intervals, it is Borel measurable. Moreover, it is well known that C is nowhere
dense, yet has Lebesgue measure 1/2. We assume that the correlation ρ is
given by ρ = 1

2
1C∩[0,1/2] + 1

2
1Cc∩]1/2,1] and H := Y1. Since Y1 is not bounded,

we have to adjust slightly the definition of admissible strategies: Instead of
(4.4), we impose on π ∈ A0 that

(
exp(−X0,π

s − Y1)
)

0≤s≤T is of class (D).

(Alternatively, one could approximate Y1 by bounded random variables like
in the example in Section 5 of Frei and Schweizer [5].) We claim that

sup
q∈Ξ,|q|≤ρ

Γq0 ≤ −15/32 < − log
(
−V H

0

)
= −7/16 < −13/32 ≤ inf

q∈Ξ,|q|≥ρ
Γq0,

where Γq is the solution of (4.9). This means that ρ cannot be approximated
by piecewise constant processes from above and below such that the corre-
sponding values converge to V H

0 . We first show V H
0 = − exp(7/16). For any

π ∈ A0 with bounded
∫ T

0
π2
s ds, we have

EP
[
U
(
X0,π

1 +H
)]

= −EP
[
exp

(
−
∫ 1

0

πs dWs − Y1

)]
= −EP

[
exp

(
−
∫ 1

0

πs dWs − Y1 −
1

2

〈∫
π dW + Y

〉
1

+
1

2

∫ 1

0

(
(πs + ρs)

2 + 1− ρ2
s

)
ds

)]
≤ −EP

[
exp

(
−
∫ 1

0

πs dWs − Y1 −
1

2

〈∫
π dW + Y

〉
1

)]
× exp

(
1

2

∫ 1

0

(
1− ρ2

s

)
ds

)
(4.14)
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and hence

EP
[
U
(
X0,π

1 +H
)]
≤ − exp

(
1

2

∫ 1

0

(
1− ρ2

s

)
ds

)
= − exp(7/16) (4.15)

since Leb
(
C∩[0, 1/2]

)
= Leb

(
Cc∩]1/2, 1]

)
= 1/4. Equality in (4.15) holds for

π = −ρ ∈ A0. Because of the class (D) condition on
(
exp(−X0,π

s − Y1)
)

0≤s≤T
for any π ∈ A0, we obtain V H

0 = − exp(7/16) by a localisation argument. To
prove supq∈Ξ,|q|≤ρ Γq0 ≥ −15/32, we note that q ∈ Ξ, |q| ≤ ρ implies q ≡ 0 on
[0, 1/2] since C does not contain any nontrivial intervals. By 3) of Proposi-
tion 4.3 with ρ replaced by ρ̃ := ρ1]1/2,1] = 1

2
1Cc∩]1/2,1], we have

sup
q∈Ξ,|q|≤ρ

Γq0 ≤ Γρ̃0,

and a calculation similar to (4.15) shows Γρ̃0 = −15/32, using that by Lemma
4.1, − exp

(
−Γρ̃0

)
equals V H

0 with ρ replaced by ρ̃. Similarly, we obtain

inf
q∈Ξ,|q|≥ρ

Γq0 ≥ Γρ̂0 = −13/32,

where ρ̂ := ρ1[0,1/2] + 1
2
1]1/2,1] = 1

2
1C∩[0,1/2] + 1

2
1]1/2,1].

4.2.3 Stochastic correlation

When ρ is stochastic, we cannot approximate V H
t from above and below like

in Theorem 4.5. However, we still have a convergence result for V H
t if ρ is

left-continuous.

Theorem 4.8. Assume that ρ is on ]]t, T ]] left-continuous and valued in
]−1, 1[. Then for every sequence (t = τn0 ≤ · · · ≤ τn`n = T )n∈N of [t, T ]-valued
Y-stopping times with limn→∞

(
max1≤j≤`n(τnj − τnj−1)

)
= 0 a.s.,

− EP̂

[
· · ·EP̂

[
EP̂

[
e
Ĥ(1−ρ2

τn
`n−1

)
∣∣∣Yτn`n−1

]1−ρ2τn`n−2

1−ρ2
τn
`n−1

∣∣∣∣Yτn`n−2

]1−ρ2τn`n−3

1−ρ2
τn
`n−2 · · ·

∣∣∣∣∣Yt
] 1

1−ρ2t

(4.16)

converges to V H
t a.s. Suppose σ is uniformly bounded away from zero, and

denote by
(
Γq

n
, Zqn

)
the solution of (4.9) with q = qn :=

∑`n
j=1 ρτnj−1

1]]τnj−1,τ
n
j ]]

for any n ∈ N. Then lim
n→∞

EP

[∫ T
t

∣∣ ρs
σs
Zqn

s + λs
γσs
− π?s

∣∣2 ds
]

= 0, where π? is

the optimiser for V H
t .
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Proof. Fix n ∈ N and let
(
Γq

n
, Zqn

)
be the solution of the BSDE (4.9)

with q = qn :=
∑`n

j=1 ρτnj−1
1]]τnj−1,τ

n
j ]], which is Y-predictable. By 1) of Propo-

sition 4.3, − exp
(
−γΓq

n

t

)
equals (4.16). We have limn→∞ q

n
s (ω) = ρs(ω) for

a.a. (ω, s) ∈ [[t, T ]] by the left-continuity of ρ, and the result follows from
Lemma 4.1 and Theorem 2.1.

In the same way as Theorem 4.5, one can slightly generalise Theorem 4.8
to the case where ρ equals (P⊗Leb)-a.e. a (P⊗Leb)-a.e. left-continuous pro-
cess, and one can get rid of the assumption that ρ is valued in ]−1, 1[.

Remark 4.9. The assumption from Section 4.1 that
∫ T

0
λ2
s ds is bounded

can be slightly weakened. Theorem 4.8 still holds if
∫
λ dW ∈ BMO(G, P )

and

sup
s∈[0,T ]

∥∥∥∥EP[exp

(∫ T

s

(1 + ρ2
r)λ

2
r dr

)∣∣∣∣Gs]∥∥∥∥
L∞

<∞. (4.17)

By the John-Nirenberg inequality (see Theorem 2.2 of Kazamaki [7]), (4.17)
is satisfied if, for example, the BMO2(G, P )-norm of

∫
λ dW is less than

1/
√

2. In the Appendix, we sketch the proof of this slight generalisation of
Theorem 4.8. 3

4.3 Continuity of the value process in the correlation

This short section exploits the convergence Theorem 2.1 to show a continuity
property of V H in ρ.

Let us introduce more precise notations by writing (4.1) as

dWs(ρ̃) = ρ̃s dYs +
√

1− ρ̃2
s dY ⊥s , 0 ≤ s ≤ T

for a G-predictable process ρ̃ denoting the instantaneous correlation between
the (G, P )-Brownian motions W (ρ̃) and Y so that W = W (ρ). We replace
in all definitions W by W (ρ̃) and write Ŵ (ρ̃), V H(ρ̃), etc. V H(ρ̃) is then the
dynamic value process for a stochastic control problem when the correlation
between the underlying Brownian motions W (ρ̃) and Y is ρ̃. Note that if we
change ρ̃, only W (ρ̃) and all expressions depending on it will change. This
is reasonable; clearly H and Y should not be affected.

Proposition 4.10. Let (ρn)n∈N be a sequence of Y-predictable [−1, 1]-valued
processes which converge pointwise to ρ on [[t, T ]]. Then V H

t (ρn) converges to
V H
t = V H

t (ρ) P -a.s. as n → ∞. Moreover, sups∈[t,T ]

∣∣V H
s (ρn)− V H

s

∣∣→ 0 as
n→∞ in P -probability and in Lp(P ), 1 ≤ p <∞.
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Proof. This follows from Lemma 4.1 and Theorem 2.1, using additionally the
same argument as in (3.8) to show the second statement.

Proposition 4.10 can be generalised to a multidimensional setting where
W and Y are stochastically correlated multidimensional Brownian motions.
But we give no details since this provides no essential new insights.

A Appendix: Proofs of the convergence re-

sults

Proof of Theorem 2.1. By Theorems 2.5 and 2.6 of Morlais [13], there ex-
ist unique solutions (Γn, Zn, Nn) to (2.1) with parameters (fn, βn, Hn) for
n = 1, . . . ,∞. Moreover, Lemma 3.1 of Morlais [13] implies that Γn and the
BMO(P )-norms of

∫
Zn dM and Nn are bounded uniformly in n = 1, . . . ,∞.

(Theorems 2.5, 2.6 and Lemma 3.1 of [13] do not use the assumption in Sec-
tion 2.1 of [13] that a.s., the matrix msm

′
s is invertible for every s ∈ [0, T ].)

We now subtract (2.1) with parameters (f∞, β∞, H∞) from that with
parameters (fn, βn, Hn) for a fixed n ∈ N to obtain, for 0 ≤ s ≤ T ,

Γns − Γ∞s (A.1)

= Hn −H∞ +

∫ T

s

(
fn(r, Zn

r )− f∞(r, Z∞r )
)

dDr −
∫ T

s

(Zn
r − Z∞r ) dMr

+
βn

2

(
〈Nn〉T − 〈Nn〉s

)
− β∞

2

(
〈N∞〉T − 〈N∞〉s

)
−
∫ T

s

d(Nn −N∞)r,

which implies

Γns − Γ∞s =
βn − β∞

2

(
〈N∞〉T − 〈N∞〉s

)
−
∫ T

s

(Zn
r − Z∞r )

(
dMr − d〈M〉rgnr

)
−
∫ T

s

(
d(Nn −N∞)r −

βn

2
d〈Nn −N∞, Nn +N∞〉r

)
+Hn −H∞ +

∫ T

s

(
fn(r, Z∞r )− f∞(r, Z∞r )

)
dDr, (A.2)

where gn is defined for 0 ≤ s ≤ T by

gns :=

{
fn(s,Zns )−fn(s,Z∞s )
|m(Zns −Z∞s )|2 (Zn

s − Z∞s ) if |m(Zn
s − Z∞s )| 6= 0,

0 otherwise.

Due to the assumption (ii) of the theorem,
∫
gn dM is in BMO(P ) and its

BMO(P )-norm is uniformly bounded since the BMO(P )-norm of
∫
Zn dM
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is bounded uniformly in n = 1, . . . ,∞. Therefore, taking conditional expec-
tations in (A.2) under the probability measure Qn given by

dQn

dP
:= E

(∫
gn dM +

βn

2
(Nn +N∞)

)
T

yields

Γns − Γ∞s =
βn − β∞

2
EQn

[
〈N∞〉T − 〈N∞〉s

∣∣Fs]+ EQn [Hn −H∞|Fs]

+ EQn

[∫ T

s

(
fn(r, Z∞r )− f∞(r, Z∞r )

)
dDr

∣∣∣∣Fs]. (A.3)

Because the convergent sequence (βn)n=1,...,∞ is bounded, the BMO(P )-norm
of M̃n :=

∫
gn dM + βn

2
(Nn +N∞), which equals the stochastic logarithm of

the P -density process of Qn, is uniformly bounded in n = 1, . . . ,∞. There-
fore, Theorem 3.6 of Kazamaki [7] and continuity in s of EQn [〈N∞〉T |Fs] and
〈N∞〉s imply∥∥∥∥ sup

n=1,...,∞
sup
s∈[0,T ]

EQn [〈N∞〉T − 〈N∞〉s|Fs]
∥∥∥∥
L∞(P )

<∞, (A.4)

and hence

lim
n→∞

sup
s∈[0,T ]

∣∣∣∣βn − β∞2
EQn

[
〈N∞〉T − 〈N∞〉s

∣∣Fs]∣∣∣∣ = 0 in L∞(P ). (A.5)

Since the BMO(P )-norm of M̃n is uniformly bounded in n, there exist by
Theorem 3.1 of Kazamaki [7] p > 1 and a constant Cp, both independent
of n, such that for all n = 1, . . . ,∞

EQn

[(
E(M̃n)T

E(M̃n)s

)1/(p−1)
∣∣∣∣∣Fs
]

= EP

[(
E(M̃n)T

E(M̃n)s

)p/(p−1)
∣∣∣∣∣Fs
]
≤ Cp. (A.6)

Recall the constant c1 from the assumption (i) of the theorem and set

α :=
1

2pc1‖
∫
Z∞ dM‖2

BMO2(P ) + 1
. (A.7)

Applying αx ≤ eαx − 1 for x ∈ R, the Hölder inequality
(
with exponents p

and p/(p− 1)
)

and (A.6) yields

EQn

[∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

∣∣∣∣Fs]
≤ 1

α
EQn

[(
E(M̃n)T

E(M̃n)s

)1/p( E(M̃n)s

E(M̃n)T

)1/p(
eα

∫ T
s |f

n(r,Z∞r )−f∞(r,Z∞r )| dDr − 1
)∣∣∣∣Fs]

≤ 1

α
|Cp|(p−1)/pEP

[(
eα

∫ T
s |f

n(r,Z∞r )−f∞(r,Z∞r )| dDr − 1
)p∣∣∣Fs]1/p

. (A.8)
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By the assumption (i), we have(
eα

∫ T
s |f

n(r,Z∞r )−f∞(r,Z∞r )| dDr − 1
)p

≤ exp

(
pα

∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

)
≤ exp

(
2pα

∥∥∥∥∫ T

0

κ1
r dDr

∥∥∥∥
L∞(P )

)
exp

(
2pc1α

∫ T

0

|mrZ
∞
r |2 dDr

)
.

Using the definition (A.7) of α, the last expression is P -integrable by the
John-Nirenberg inequality; see Theorem 2.2 of Kazamaki [7]. Therefore,
dominated convergence and (A.8) imply that for s ∈ [t, T ],

lim
n→∞

EQn

[∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

∣∣∣∣Fs] = 0 P -a.s. (A.9)

Similarly to (A.8), we obtain

EQn
[
|Hn −H∞|

∣∣Fs] ≤ |Cp|(p−1)/pEP

[(
e|H

n−H∞| − 1
)p∣∣∣Fs]1/p

, (A.10)

which again converges P -a.s. to zero by dominated convergence. Therefore,
(A.3), (A.5) and (A.9) give limn→∞ |Γns − Γ∞s | = 0 P -a.s. for every s ∈ [t, T ].

We now prove sups∈[t,T ] |Γns−Γ∞s | converges in P -probability to zero. From
(A.8) and the martingale maximum inequality we obtain that, for any ε ≥ 0,

εpP

[
sup
s∈[t,T ]

EQn

[∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

∣∣∣∣Fs] ≥ 1

α
|Cp|(p−1)/pε

]

≤ εpP

[
sup
s∈[t,T ]

EP

[(
eα

∫ T
s |f

n(r,Z∞r )−f∞(r,Z∞r )| dDr − 1
)p∣∣∣Fs]1/p

≥ ε

]
≤ εpP

[
sup
s∈[t,T ]

EP

[(
eα

∫ T
t |f

n(r,Z∞r )−f∞(r,Z∞r )| dDr − 1
)p∣∣∣Fs] ≥ εp

]
≤ EP

[(
eα

∫ T
t |f

n(r,Z∞r )−f∞(r,Z∞r )|dDr − 1
)p]

, (A.11)

which converges to zero as n→∞ by dominated convergence. Analogously,
we obtain from (A.10) that

εpP

[
sup
s∈[t,T ]

EQn
[
|Hn −H∞|

∣∣Fs] ≥ |Cp|(p−1)/pε

]
≤ EP

[(
e|H

n−H∞| − 1
)p]

,

(A.12)
which also converges to zero as n → ∞ by dominated convergence. All in
all, (A.3), (A.5), (A.11) and (A.12) show that sups∈[t,T ] |Γns − Γ∞s | converges
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in P -probability to zero, and also convergence in Lp(P ), 1 ≤ p <∞, follows
since Γn is bounded uniformly in n.

To prove the convergence statements for Zn and Nn, we apply Itô’s for-
mula between t and T , and use (A.1) to obtain

(Hn −H∞)2 − (Γnt − Γ∞t )2

=

∫ T

t

2(Γns − Γ∞s )(Zn
s − Z∞s ) dMs +

∫ T

t

2(Γns − Γ∞s ) d(Nn −N∞)s

−
∫ T

t

(Γns − Γ∞s )
(
βn d〈Nn〉s − β∞ d〈N∞〉s

)
−
∫ T

t

2(Γns − Γ∞s )
(
fn(s, Zn

s )− f∞(s, Z∞s )
)

dDs

+

∫ T

t

(
|ms(Z

n
s − Z∞s )|2 dDs + d〈Nn −N∞〉s

)
,

which implies by taking expectations that

EP

[∫ T

t

(
|ms(Z

n
s − Z∞s )|2 dDs + d〈Nn −N∞〉s

)]
≤ EP

[
(Hn −H∞)2

]
+ E

[
(Γnt − Γ∞t )2

]
+ EP

[
sup
s∈[t,T ]

|Γns − Γ∞s |
(
|βn|

(
〈Nn〉T − 〈Nn〉t

)
+ |β∞|

(
〈N∞〉T − 〈N∞〉t

))]
+ 2EP

[
sup
s∈[t,T ]

|Γns − Γ∞s |
∫ T

t

∣∣fn(s, Zn
s )− f∞(s, Z∞s )

∣∣ dDs

]
. (A.13)

Because (Hn)n=1,...,∞ and (Γnt )n=1,...,∞ are a.s.-convergent bounded sequences,
we have limn→∞EP

[
(Hn −H∞)2

]
= 0 and limn→∞EP

[
(Γnt − Γ∞t )2

]
= 0 by

dominated convergence. Hölder’s inequality and the assumption (i) of the
theorem imply

EP

[
sup
s∈[t,T ]

|Γns − Γ∞s |
∫ T

t

∣∣fn(s, Zn
s )− f∞(s, Z∞s )

∣∣ dDs

]2

≤ EP

[
sup
s∈[t,T ]

|Γns − Γ∞s |2
]
EP

[(∫ T

t

(
2κ1

s + c1|msZ
n
s |2 + c1|msZ

∞
s |2
)

dDs

)2 ]
.

This converges to zero since sups∈[t,T ] |Γns −Γ∞s | → 0 in L2(P ) and the second
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term is bounded uniformly in n, which can be seen as follows: We have

EP

[(∫ T

t

(
2κ1

s + c1|msZ
n
s |2 + c1|msZ

∞
s |2
)

dDs

)2 ]
≤ EP

[
3

(∫ T

t

2κ1
s dDs

)2

+ 3|c1|2
〈∫

Zn dM

〉2

T

+ 3|c1|2
〈∫

Z∞ dM

〉2

T

]
,

and this is bounded uniformly in n because
∥∥ ∫ T

0
κ1
s dDs

∥∥
L∞(P )

< ∞, the

BMO(P )-norms of
∫
Zn dM are uniformly bounded and we can take j = 2

in the energy inequalities

EP

[〈∫
Zn dM

〉j
T

]
≤ j!

∥∥∥∥∫ Zn dM

∥∥∥∥2j

BMO2(P )

<∞, j ∈ N; (A.14)

see the corollary to Theorem 4 of Kikuchi [8]. Analogously, the term

EP

[
sup
s∈[t,T ]

|Γns − Γ∞s |
(
|βn|(〈Nn〉T − 〈Nn〉t) + |β∞|(〈N∞〉T − 〈N∞〉t)

)]
converges to zero. By (A.13), we obtain that

lim
n→∞

EP

[∫ T

t

(
|ms(Z

n
s − Z∞s )|2 dDs + d〈Nn −N∞〉s

)]
= 0,

which concludes the proof.

Remark A.1. To prove (A.9), one can also apply directly the energy in-
equalities instead of using the John-Nirenberg inequality. In fact, taking
` ∈ N with ` ≥ p, we obtain from (A.6) and the Hölder inequality that

EQn

[∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

∣∣∣∣Fs]
≤ |Cp|(p−1)/pEP

[(∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

)`∣∣∣∣Fs]1/`

. (A.15)

By the assumption (i), we have(∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

)`
≤
(

2

∫ T

0

κ1
r dDr + 2c1

∫ T

0

|mrZ
∞
r |2 dDr

)`
= 2`

∑̀
j=0

(
`

j

)(∫ T

0

κ1
r dDr

)`−j
|c1|j

〈∫
Z∞ dM

〉j
T

,
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which is P -integrable because of (A.14) and
∥∥ ∫ T

0
κ1
r dDr

∥∥
L∞(P )

<∞. Domi-

nated convergence and (A.15) now imply (A.9). 3

Proof of Corollary 2.2. To show (2.3), it is by (A.3) and (A.4) enough to
prove the existence of a constant K > 0 such that

sup
s∈[t,T ]

EQn

[∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

∣∣∣∣Fs]
≤ K

(
‖an − 1‖L∞(P⊗D) + ‖an − 1‖L∞(P⊗D)

)
, n ∈ N.

But the assumption (v) implies

sup
s∈[t,T ]

EQn

[∫ T

s

∣∣fn(r, Z∞r )− f∞(r, Z∞r )
∣∣ dDr

∣∣∣∣Fs]
≤ ‖an − 1‖L∞(P⊗D) sup

s∈[t,T ]

EQn

[∫ T

s

∣∣f(r, Z∞r )
∣∣ dDr

∣∣∣∣Fs]
+ ‖an − 1‖L∞(P⊗D) sup

s∈[t,T ]

EQn

[∫ T

s

∣∣f(r, Z∞r )
∣∣ dDr

∣∣∣∣Fs],
and the conditional expectations are bounded in L∞(P ) uniformly in n ∈ N
and s ∈ [t, T ] by an argument similar to (A.4). So (2.3) is established, and
since its right-hand side converges to zero by the assumptions (iii)–(v), we
have sups∈[t,T ] |Γns − Γ∞s | → 0 in L∞(P ).

To show that
∫
Zn dM →

∫
Z∞ dM , Nn → N∞ on [[t, T ]] in BMO(P ),

we derive similarly to (A.13) that, for any stopping time τ valued in [[t, T ]],

EP

[∫ T

τ

(
|ms(Z

n
s − Z∞s )|2 dDs + d〈Nn −N∞〉s

)∣∣∣∣Fτ]
≤ ‖Hn −H∞‖2

L∞(P ) + ‖Γnτ − Γ∞τ ‖2
L∞(P )

+

∥∥∥∥ sup
s∈[t,T ]

|Γns − Γ∞s |
∥∥∥∥
L∞(P )

(
2EP

[∫ T

τ

∣∣fn(s, Zn
s )− f∞(s, Z∞s )

∣∣ dDs

∣∣∣∣Fτ]
+ EP

[
|βn|(〈Nn〉T − 〈Nn〉τ ) + |β∞|(〈N∞〉T − 〈N∞〉τ )

∣∣Fτ]).
Since the the BMO(P )-norms of

∫
Zn dM as well as Nn are bounded uni-

formly in n and sups∈[t,T ] |Γns − Γ∞s | → 0 in L∞(P ), it follows that

lim
n→∞

sup
τ

∥∥∥∥EP[∫ T

τ

(
|ms(Z

n
s − Z∞s )|2 dDs + d〈Nn −N∞〉s

)∣∣∣∣Fτ]∥∥∥∥
L∞(P )

= 0,

and hence
∫
Zn dM →

∫
Z∞ dM and Nn → N∞ on [[t, T ]] in BMO(P ) as

n→∞.
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Sketch of the proof of (4.13) in Remark 4.6.1. To check (4.13), one first de-

duces from Lemma 4.4 that limε↘0 sup(∆,~s ):|∆|<ε
∣∣q(∆,~s )
r − ρr

∣∣ = 0 for Leb-a.a.

r ∈ [t, T ], where one sets q(∆,~s ) :=
∑`

j=1 ρsj1]tj−1,tj ] for any tagged partition

(∆,~s ) =
(
(t0, . . . , t`), (s

1, . . . , s`)
)
. Then one slightly generalises Theorem 2.1

in the sense that this uniform convergence of q(∆,~s ) in (∆,~s ) implies that the

corresponding solutions Γq
(∆,~s )

t of (4.9) converge a.s. to Γρt = − 1
γ

log
(
−V H

t

)
uniformly in (∆,~s ). In fact, one needs only to generalise (A.9), which goes
similarly to (A.8) by dominated convergence. Now one deduces (4.13) from

lim
ε↘0

ess sup
(∆,~s ): |∆|<ε

∣∣∣− 1

γ
log
(
−at(∆,~s )

)
+

1

γ
log
(
−V H

t

)∣∣∣
= lim

ε↘0
ess sup

(∆,~s ): |∆|<ε

∣∣∣Γq(∆,~s )t +
1

γ
log
(
−V H

t

)∣∣∣ = 0 a.s.

similarly to the last part of the proof of Proposition 3.1, using that −at(∆,~s )

is bounded away from zero by e−‖Ĥ‖L∞(P ) uniformly in (∆,~s ).

Sketch of the proof of Remark 4.9. From Proposition 3 of Briand and Hu [3]
and Proposition 7 and Theorem 8 of Mania and Schweizer [11], one de-
duces that for a [−1, 1]-valued Y-predictable process q, the BSDE (4.9) still
has a unique solution (Γq, Zq) where Γq is a real-valued bounded contin-
uous (Y, P )-semimartingale and Zq is a Y-predictable process such that

EP
[∫ T

0
|Zq

s |2 ds
]
<∞. Furthermore,

∫
Zq dY is in both BMO(Y, P ) and

BMO(G, P ), and the BMO-norms are bounded uniformly with respect to
the [−1, 1]-valued q. Now one can proceed like in Lemma 4.1 and Propo-
sition 4.3 to obtain V H = − exp(−γΓρ) and (4.10). The argument is fin-
ished by applying Theorem 2.1, using that, under the assumption of uniform
boundedness of the BMO(F, P )-norms of

∫
Zn dM and Nn, the convergence

result can also be shown if in the assumptions (i) and (ii), one only has

supτ
∥∥EP [∫ Tτ κ1

s dDs

∣∣Fτ]∥∥L∞ < ∞ and supτ
∥∥EP [∫ Tτ |κ2

s|2 dDs

∣∣Fτ]∥∥L∞ < ∞
instead of

∥∥ ∫ T
0
κ1
s dDs

∥∥
L∞

< ∞ and
∥∥ ∫ T

0
|κ2
s|2 dDs

∥∥
L∞

< ∞, where the
suprema are taken over all F-stopping times τ .
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