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A Model Construction and Properties

Recall that S(t) =
(
S1(t), . . . , SM (t)

)
is the vector of stock prices at t given by (2.1), in which W(t) =(

W1(t), . . . ,Wd(t)
)>

is a standard Brownian motion. The default indicator process is denoted by H(t) =(
H1(t), . . . ,HM (t)

)
. We assume that between two subsequent default times, each of the K components of

the factor process F(t) follows an Itô diffusion process whose drift and volatility functions are uniformly

Lipschitz continuous and whose driving Brownian motions can be correlated with each other and with

W(t). For given trajectories of S(u) =
(
S1(u), . . . , SM (u)

)
and F(u) =

(
F1(u), . . . , FK(u)

)
, u ≤ t,

H(t) follows a time-inhomogeneous continuous time Markov chain on {0, 1}M transitioning

to a state H(i)(t) with H
(i)
j (t) = Hj(t), j 6= i, and H

(i)
i (t) = 1 at rate 1Hi(t)=0hi(t,S(t),F(t)).

(A.1)

Since the stock prices are observable, the market information is given by the filtration generated by

S(t). Under suitable assumptions on hi, one can prove mathematically that our model exists. We assume

that for every n ∈ N, hi(t, s1, . . . , sM , f1, . . . , fK) are nonnegative, uniformly Lipschitz continuous and

bounded (the bound can depend on n) for t ≥ 0, si ≥ 1/n, sj ≥ 0 with j 6= i and f` ∈ R.

Lemma A.1. For given K-dimensional factor process F(t), M -dimensional Brownian motion W(t) and

a sequence of standard exponentially distributed random variables triggering the default events, there exists

a unique (S(t),H(t)) satisfying (2.1) and (A.1).

Proof. We first show that, for i = 1, . . . ,M , the SDEs

dS̃i(t) = S̃i(t)
(
µi + hi

(
t, S̃(t),F(t)

))
dt+ S̃i(t)Σi dW(t), S̃i(0) > 0 (A.2)

have a unique solution. Note that at this point, the vector of pre-default prices S̃(t) occurs as an argument

in hi because we have not yet constructed the default times, and thus we cannot define defaultable prices

S(t) at this time. By considering Xi = log
(
S̃i(t)

)
, we see that (A.2) is equivalent to

dXi(t) =
(
µi −ΣiΣ

>
i /2 + hi

(
t, eX1(t), . . . , eXM (t), F1(t), . . . , FK(t)

))
dt+ Σi dW(t).
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By Theorem II.5.2 of Kunita (1984), this has a unique solution up to a possibly finite explosion time.

To see that this solution is non-exploding, we show that Xi can be bounded from below and above by

non-exploding processes. Because hi is nonnegative, we have dXi(t) ≥
(
µi −ΣiΣ

>
i /2

)
dt+ Σi dW(t) so

that Xi(t) ≥ Xi(0) + (µi −ΣiΣ
>
i /2)t+ ΣiW(t), which shows that Xi(t) does not explode to −∞. Due

to the assumptions on hi, there is a constant ci with 1xi≥Xi(0)hi(t, e
x1 , . . . , exM , f1, . . . , fK) ≤ ci, which

implies Xi(t) ≤ |Xi(0)| + (|µi| + ci)t + max{0,ΣiW(t)} because the trajectories of the process on the

right-hand side stay always above the trajectories of Xi(t) as they have a bigger drift and never become

negative. Hence, Xi(t) does not explode to∞, and Xi(t) and Si(t) = exp(Xi(t)) are well defined for all t.

We construct the pair (S(t),H(t)) iteratively, using exponentially distributed random variables simi-

larly to Section 4 of Lando (1998). Let (Ei,j)i,j=1,...,M be independent standard exponentially distributed

random variables, which are also independent of F(t) and the Brownian motion W(t). In the first step,

we start with zero defaults, which means to consider (A.2) up to the stopping time τ1, where

τ1 = min
j=1,...,M

ν1,j , ν1,j = inf

{
t ≥ 0 :

∫ t

0
hj
(
u, S̃(u),F(u)

)
du ≥ E1,j

}
. (A.3)

From the first part of the proof, we get a unique, strictly positive solution S̃(t), and we set S(t) = S̃(t)

up to time τ1. We then continue in the same manner, just by setting S̃j∗1 (t) = 0 after time τ1 where

j∗1 = argmin
j=1,...,M

ν1,j . We can apply again the first part of the proof, which gives us the construction of S(t)

from τ1 up to some stopping time τ2, defined analogously to (A.3) with

τ2 = min
j∈{1,...,M}\{j∗1}

ν2,j , ν2,j = inf

{
t ≥ τ1 :

∫ t

τ1

hj
(
u, S̃(u),F(u)

)
du ≥ E2,j

}
.

By iteratively continuing like this until all M names have defaulted, we conclude the proof.

We assume that the risk-neutral default intensities λi are such that

λi(t, s1, . . . , sM ) are nonnegative, uniformly Lipschitz continuous, bounded for t ≥ 0, si ≥ 1/n,

sj ≥ 0 with j 6= i and the ratios
hi(t,S(t),F(t))

λi(t,S(t))
are bounded away from zero and infinity.

(A.4)

To later study the dynamics of the wealth process, we first derive the dynamics of the CDS prices.

Lemma A.2. The CDS prices are such that dCi(t) + dDi(t)− rCi(t) dt equals to

∑
n∈M(t)

(
Φi(t,S

(n)(t−))− Φi(t,S(t−))
)(

dHn(t)− λn(t,S(t)) dt
)

+ Li
(
dHi(t)− λi(t,S(t))

)
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+
∑

n∈M(t)

∂Φi

∂sn
(t,S(t))Sn(t)

(
Σn dW(t) +

(
µn − r + hn(t,S(t),F(t))− λn(t,S(t))

)
dt
)
.

Proof. We first note that under a risk-neutral probability measure Q, we have

dSi(t) = Si(t−)
(
r dt+ Σi dWQ(t)−

(
dHi(t)− λi(t,S(t)) dt

))
(A.5)

because the default intensity is λi(t,S(t)) and the drift needs to be r as Q is a risk-neutral probability

measure, where WQ(t) is a Brownian motion under Q. Comparing (A.5) with (2.1) implies

Σ dWQ(t) = Σ dW(t) +
(
µi − r + hi(t,S(t),F(t))− λi(t,S(t))

)
i=1,...,M

dt. (A.6)

To apply Itô’s formula to Φi(t,S(t)), we first show that Φi(t, s1, . . . , sM ) is continuously differentiable

in t ≥ 0 and twice continuously differentiable in s1 > 0, . . . , sM > 0. We use (2.2) and (2.3) to write

Φi(t,S(t)) = LiΦ
(1)
i (t,S(t))− Li1Si(t)=0Φ

(2)
i (t,S(t))− νiΦ(3)

i (t,S(t)).

For s = (s1, . . . , sM ), consider now the three partial differential equations

(
∂

∂t
+A

)
f

(1)
i (t, s) = r1si>0f

(1)
i (t, s), f

(1)
i (Ti, s) = 1si=0, (A.7)(

∂

∂t
+A

)
f

(2)
i (t, s) = r1si>0f

(2)
i (t, s), f

(2)
i (Ti, s) = 1, (A.8)(

∂

∂t
+A

)
f

(3)
i (t, s) + 1si>0 = rf

(3)
i (t, s), f

(3)
i (Ti, s) = 0, (A.9)

where Af(t, s) equals

M∑
j=1

∂f

∂sj
(t, s)sj (r + hj(t, s)) +

1

2

M∑
i,j=1

∂2f

∂si∂sj
(t, s)ΣiΣ

>
j sisj +

M∑
j=1

(
f
(
t, s(j)

)
− f(t, s)

)
1sj>0hj(t, s),

and s(j) ∈ RM is equal to s except for the j-th component which is zero. Thanks to (A.4), we can apply

Proposition 2.3 of Becherer and Schweizer (2005) iteratively, first when all names have defaulted, then

when all except one name have defaulted, and so on. This yields that the differential equations (A.7)–

(A.9) have unique solutions being continuously differentiable in t and twice continuously differentiable in

s1, . . . , sM . An application of the Feynman-Kac formula yields that f
(j)
i (t, s) = Φ

(j)
i (t, s) for j = 1, 2, 3 so
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that Φi(t, s) = LiΦ
(1)
i (t, s)− Li1si=0Φ

(2)
i (t, s)− νiΦ(3)

i (t, s) indeed satisfies the differentiability property.

On the one hand, we have Ci(t) = Φi(t,S(t)) and can apply Itô’s formula to Φi(t,S(t)), which yields

dCi(t) =
∑

n∈M(t)

∂Φi

∂sn
(t,S(t))Sn(t)Σn dW(t) +

∑
n∈M(t)

(
Φi(t,S

(n)(t−))− Φi(t,S(t−))
)

dHn(t) + (. . . ) dt,

where we sum over n ∈M(t) as only the nondefaulted stocks matter, and we suppress the dt-term because

its precise form will be irrelevant. Combining this with (2.2) gives

dCi(t) + dDi(t)− rCi(t) dt =
∑

n∈M(t)

∂Φi

∂sn
(t,S(t))Sn(t)Σn dW(t) + Li dHi(t) (A.10)

+
∑

n∈M(t)

(
Φi(t,S

(n)(t−))− Φi(t,S(t−))
)
dHn(t) + (. . . ) dt.

On the other hand, from (2.3), e−rtCi(t) +
∫ t

0 e−urdDi(u) = EQ
[∫ Ti

0 e−urdDi(u)
∣∣∣S(t)

]
is a martingale

under Q, thus dCi(t) + dDi(t)− rCi(t) dt has zero drift under Q and we deduce from (A.10) that

dCi(t) + dDi(t)− rCi(t) dt =
∑

n∈M(t)

∂Φi

∂sn
(t,S(t))Sn(t)Σn dWQ(t) + Li

(
dHi(t)− λi(t,S(t))

)
+
∑

n∈M(t)

(
Φi(t,S

(n)(t−))− Φi(t,S(t−))
)(

dHn(t)− λn(t,S(t))
)
.

This concludes the proof in view of (A.6).

We next give a useful interpretation of the matrix Θ(t,S(t)) in terms of hedging errors, mentioned

in Section 4.1. Let Ξn be the compounded payment stream of the n-th CDS. This is given by

Ξn =

∫ T

0
er(T−t)

(
dCn(t)− rCn(t) dt+ dDn(t)

)
, (A.11)

where dCn(t) is the change in the price of the n-th CDS, −rCn(t) dt is the interest cost for a unit

investment in the n-th CDS, and dDn(t) is the dividend income related to the n-th CDS.
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Lemma A.3. If an investor hedges the n-th CDS with a strategy in stocks to eliminate market risk, the

residual risk (credit risk) between the terminal value V S(T ) of the stock portfolio and Ξn equals

EQ[(V S(T )− Ξn)2
]

=
M∑
j=1

∫ T

0
e2r(T−t)EQ[Θ2

n,j(t,S(t))] dt. (A.12)

Proof. A self-financing strategy in stock yields wealth dynamics

dV S(t) =

(
V S(t)−

∑
j ∈M(t)

αj(t)Sj(t)

)
r dt+

∑
j ∈M(t)

αj(t) dSj(t),

where αj(t) denotes the units invested in stock j. Then the hedging error under the risk-neutral proba-

bility measure can be written as

EQ[(V S(T )− Ξn)2
]

=
(
erTV S(0)− EQ[Ξn]

)2
+

∫ T

0
e2r(T−t)EQ

[∣∣∣∣Σ>(Sj(t)αj(t)− Sj(t)∂Φn

∂sj
(t,S(t))

)
j ∈M(t)

∣∣∣∣]dt
+

∫ T

0
e2r(T−t)EQ

[∑
j 6=n

(
αj(t)Sj(t) + Φn(t,S(j)(t))− Cn(t)

)2]
dt

+

∫ T

0
e2r(T−t)EQ[(αn(t)Sn(t) + Ln − Cn(t)

)2]
dt

by (A.11), (A.5), Lemma A.2 and the isometry property of stochastic integration. Recall that Σ denotes

the reduced matrix corresponding to untriggered CDSs as described after Theorem 4.1. Choosing V S
0 =

e−rTEQ[Ξn] and αj(t) = ∂Φn
∂sj

(t,S(t)) minimizes diffusion risk, and the residual risk equals (A.12).

B Proof of the Main Theorem 4.1

As in Theorem 4.1, we omit in the following the argument (t,S(t)) in hi, λi and Θ. Before giving the

proof of Theorem 4.1, we state a mathematically precise definition of admissible strategies.

Definition B.1. A strategy (π,ψ) is admissible if the semimartingale decomposition of its relative wealth

process is of the form
∫ s

0
dV π,ψ(t)
V π,ψ(t−)

=
∫ s

0 α(t) dt +
∑d

j=1

∫ s
0 βj(t) dWj(t) +

∑M
j=1

∫ s
0 γj(t)

(
dHj(t) − hj dt

)
for an adapted α with well defined integral

∫ T
0 α(t) dt, predictable βj with E

[ ∫ T
0 |βj(t)|

2 dt
]
< ∞ for all

j = 1, . . . , d, and predictable γj which are bounded away from −1 and ∞ for all j = 1, . . . ,M .
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Remark B.2. The technical condition E
[ ∫ T

0 |βj(t)|
2 dt
]
< ∞ ensures that unrealistic strategies are not

admissible. We will see later in (B.1) that if there were no default risk, we would have β = Σ>π so that

the condition E
[ ∫ T

0 |βj(t)|
2 dt
]
<∞ for all j = 1, . . . , d is equivalent to E

[ ∫ T
0

∣∣Σ>π(t)
∣∣2 dt

]
<∞, which

indeed has been used in Definition 18 of Hu et al. (2005) in a different Brownian setting without defaults.

The condition that γj are bounded away from −1 guarantees that the wealth process stays strictly positive.

For an admissible strategy (π,ψ), the change in relative wealth is given by

dV π,ψ(t)

V π,ψ(t−)
=

∑
n∈M(t)

πn(t−)
dSn(t)

Sn(t−)
+

∑
n∈M(t)

ψn(t−) dCn(t) +
∑

n∈M(t)

ψn(t−) dDn(t)

+

(
1−

∑
n∈M(t)

πn(t)−
∑

n∈M(t)

ψn(t)Cn(t)

)
r dt.

Using the dynamics of stocks and CDS in (2.1) and Lemma A.2, we can rewrite this as

dV π,ψ(t)

V π,ψ(t−)
=

[
r +

∑
n∈M(t)

( ∑
j ∈M(t)

ψj(t)
∂Φj

∂sn
(t,S(t))Sn(t) + πn(t)

)
(µn − r)

+
∑

j,n∈M(t)

ψj(t)Θj,n(hn − λn)

]
dt

+
∑

n∈M(t)

( ∑
j ∈M(t)

ψj(t)
∂Φj

∂sn
(t,S(t))Sn(t) + πn(t)

)
Σn dW(t)

+
∑

n∈M(t)

( ∑
j ∈M(t)

ψj(t−)
(
Φj

(
t,S(n)(t−)

)
− Cj(t−)

)
+ ψn(t−)Ln − πn(t−)

)

×
(
dHn(t)− hn dt

)
. (B.1)

This is of the form dV π,ψ(t)
V π,ψ(t−)

= dX(t), which implies

log
(
V π,ψ(T )

)
= log(V (0)) +X(T )− 1

2
[X]c(T ) +

∑
0<t≤T

(
log(1 + ∆X(t))−∆X(t)

)

by Theorem II.37 of Protter (2006). Therefore, we can write

log
(
V π,ψ(T )

)
= log(V (0)) +N c(T ) +NJ(T ) +

∫ T

0
α(t) dt,
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where we define

N c(t) =

∫ t

0

∑
n∈M(u)

( ∑
j ∈M(u)

ψj(u)
∂Φj

∂sn
(u,S(u))Sn(u) + πn(u)

)
Σn dW(u),

NJ(t) =

∫ t

0

∑
n∈M(u)

log

(
1 +

∑
j ∈M(t)

ψj(u−)
(
Φj

(
u,S(n)(u−)

)
− Cj(u−)

)
+ ψn(u−)Ln − πn(u−)

)(
dHn(u)− hn(u,S(u)) du

)
,

α(t) = −1

2

∣∣∣∣Σ>( ∑
j ∈M(t)

ψj(t)
∂Φj

∂sn
(t,S(t))Sn(t) + πn(t)

)
n∈M(t)

∣∣∣∣2
+ r +

∑
j,n∈M(t)

ψj(t)Θj,n(hn − λn)

+
∑

n∈M(t)

( ∑
j ∈M(t)

ψj(t)
∂Φj

∂sn
(t,S(t))Sn(t) + πn(t)

)
(µn − r)

−
∑

n∈M(t)

( ∑
j ∈M(t)

ψj(t)
(
Φj

(
t,S(n)(t)

)
− Cj(t)

)
+ ψn(t)Ln − πn(t)

)
hn

+
∑

n∈M(t)

hn log

(
1 +

∑
j ∈M(t)

ψj(t)
(

Φj

(
t,S(n)(t)

)
− Cj(t)

)
+ ψn(t)Ln − πn(t)

)
,

where Σ denotes the reduced matrix consisting of rows corresponding to untriggered CDSs as described

after Theorem 4.1. From (B.1) and the Definition B.1 of admissible strategies, it follows that

E

[∫ T

0

∣∣∣∣Σ>( ∑
j ∈M(t)

ψj(t)
∂Φj

∂sn
(t,S(t))Sn(t) + πn(t)

)
n∈M(t)

∣∣∣∣2 dt

]
<∞,

and the jumps of
∑M

j=1 ψj(u−)
(
Φj

(
u,S(n)(u−)

)
−Cj(u−)

)
+ψn(u−)Ln−πn(u−) are bounded away from

−1 and ∞. This implies that N c(t) and NJ(t) are martingales with zero expectations, hence

E
[

log
(
V π,ψ(T )

)]
= log

(
V (0)

)
+

∫ T

0
E[α(t)] dt, (B.2)

and the maximizer is found by maximizing α(t). To find the optimal strategy, we could use the first-order

conditions, but this leads here to a tedious calculation. It is easier to analyze α(t) for fixed t by writing

it as α(t) = r + f(x) +
∑

n∈M(t) hngn(yn), where we define

f(x) = −1

2

∣∣Σ>(x− (ΣΣ>
)−1

(µn − r + hn − λn)n∈M(t)

)∣∣2
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+
1

2

∣∣Σ>(ΣΣ>
)−1

(µn − r + hn − λn)n∈M(t)

∣∣2,
gn(yn) = log(1 + yn)− λn

hn
yn,

x =

( ∑
j ∈M(t)

ψj(t)
∂Φj

∂sn
(t,S(t))Sn(t) + πn(t)

)
n∈M(t)

,

yn =
∑

j ∈M(t)

ψj(t)
(

Φj

(
t,S(n)(t)

)
− Cj(t)

)
+ ψn(t)Ln − πn(t).

The functions f and gn are maximized by x =
(
ΣΣ>

)−1(
µn − r + hn − λn

)
n∈M(t)

and yn = hn−λn
λn

,

respectively. Therefore, if the system

(
ΣΣ>

)−1(
µn − r + hn − λn

)
n∈M(t)

=

( ∑
j ∈M(t)

ψj(t)
∂Φj

∂sn
(t,S(t))Sn(t) + πn(t)

)
n∈M(t)

,

hn − λn
λn

=
∑

j ∈M(t)

ψj(t)
(

Φj

(
t,S(n)(t)

)
− Cj(t)

)
+ ψn(t)Ln − πn(t) (B.3)

has a solution ψn(t) and πn(t) for n ∈M(t), then this is the maximizer of α(t). Thanks to Assumption A,

this system indeed has a solution, which is explicitly given by (4.2) and (4.3). To show that this strategy

satisfies the admissibility condition of Definition B.1, we use (B.3) to write (B.1) as

dVt(φ)

Vt−(φ)
= (. . . ) dt+

(
µn− r+hn−λn

)>
n∈M(t)

(
ΣΣ>

)−1
Σ dW(t) +

∑
n∈M(t)

hn − λn
λn

(dHn(t)−hn dt), (B.4)

from which it can be seen that the conditions of Definition B.1 are satisfied by using (A.4).

It remains to show (4.4). To this end, we note that for the optimal strategy, we have

α(t) = r + f(x) +
∑

n∈M(t)

hngn(yn)

= r +
1

2

∣∣Σ>(ΣΣ>
)−1

(µn − r + hn − λn)n∈M(t)

∣∣2 +
∑

n∈M(t)

(
hn log

(
hn
λn

)
− hn + λn

)
.

Using (B.2), we then deduce (4.4) and conclude the proof of Theorem 4.1.

Proof of Corollary 4.2. This follows from (B.1) and (B.4), using that the sensitivity in Hn is the integrand

of the dHn-integral and that S(t) and Cj(t) are equal to S(t−) and Cj(t−) almost everywhere.
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