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Abstract

We consider a dynamic multitask principal-agent model in which the agent
allocates his resources on two tasks of different types: effort and accident pre-
vention. We explicitly characterize the optimal contract as well as optimal
effort and prevention actions applied by the agent. In contrast to the linear
incentive scheme for effort, accident prevention leads to a log-linear punish-
ment scheme if the agent is risk averse, becoming linear only if the agent is risk
neutral. Both the sublinearity of the contract and the allocation of resources
on the two tasks crucially depend on the risk aversion of the agent. Accident
prevention ties up some of the agent’s capacity and induces him to substitute
resources away from effort to prevention.

1 Introduction

We extend the classical Holmström and Milgrom (1987) framework by introduc-
ing jumps in the output process, whose frequency can be controlled by the agent.
This leads to a fundamentally different form for the optimal contract which becomes
log-linear in the accident component, but remarkably the optimal contract can still
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be found explicitly despite its nonlinear form. The sublinearity of the contract as
well as the optimal diversion of agent’s resources from the continuous to the jump
component of the output crucially depend on the risk aversion level of the agent.
Our model is broadly applicable for analyzing contracting environments in which
the output process can experience jumps of unknown size in addition to continuous
innovations corresponding to the earnings process of any typical corporation. Hence,
it allows analyzing the optimal incentive provisions of a principal to an agent who
can execute two tasks, each having a fundamentally different impact on the output
process. For example, jumps can be used to model accidents whose negative conse-
quences usually have a longer-term impact on the output process. Indeed, this has
become highly relevant in recent years given the growing interest in including sus-
tainability performance as a part of executive compensation; see Cordeiro and Sarkis
(2008). This stems from the fact that major environmental accidents are subject to
severe moral hazard problems.1

Most of the literature on continuous-time contracting has focused on agents ex-
ecuting a single task. Starting with the pioneering paper by Holmström and Mil-
grom (1987), many extensions have been proposed; see for instance Schättler and
Sung (1993), Schättler and Sung (1997), Hellwig and Schmidt (2002), Cvitanić et
al. (2009), and Ju and Wan (2012). Capponi et al. (2013) allow for the agent to
alter the fundamental value of the firm besides applying effort. Sannikov (2008)
solves the principal-agent problem allowing for the agent to be paid continuously.
He (2009) extends his framework to the case when the agent can control the size of
the company.

Optimal contracting with multitasking has been initiated by Holmström and
Milgrom (1991), who consider a single-period model and analyze how optimal incen-
tives are related to measurability of the output. Follow-up works include Bond and
Gomes (2009), who consider a static framework with a risk-neutral agent incurring
linear effort and with no specific preference across tasks, and Manso (2011) who
studies the tradeoff between two tasks interpreted as exploration and exploitation.
A continuous-time multitasking model for the optimal design of mortgage backed se-
curities is considered in Hartman-Glaser et al. (2012), where a mortgage underwriter
must evaluate multiple defaultable loans, and may shirk in selecting them.

Our framework allows for jump risk to negatively affect revenue generation in a
dynamic setting. We model operating profits using a continuous process, chosen to
be a Brownian motion, and use a compound Poisson process to model the effect of
accidents. This leads to a jump-diffusion driven outcome process. The agent can
simultaneously apply two hidden actions, referred to as (1) effort to increase the
instantaneous growth rate of the outcome process, and (2) prevention to decrease
the frequency of accidents. Both actions are costly to the agent. Unlike the actions,
the size of the accidents is publicly observable, verifiable, and hence contractible.
Both principal and agent are risk averse with exponential utility.

1As reported by Palast (1994) in the Chicago Tribune, one of the main reasons for the Exxon
Valdez oil spill disaster was that a sophisticated radar was turned off. The tanker’s radar was left
broken and disabled for more than a year before the disaster, and Exxon management knew it. It
was, in their view, too expensive to fix it.
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To the best of our knowledge, this paper is the first that explicitly characterizes
the optimal contract in a dynamic framework with both effort and accident preven-
tion. Crucially, the optimal contract is sublinear in the accident component. The
principal charges a lower percentage penalty for big accidents than he does for small
accidents. This is consistent with existing literature on managerial compensation,
which has shown that payment schemes are often convex and in the form of call
options, see for instance Jensen and Murphy (1990) and Murphy (1999). The typ-
ical explanation for the convexity is that this gives the manager more incentives
to behave in a way that boosts the company’s stock price. Our analysis highlights
an additional reason: a small decline is penalized relatively (in percentage of the
decline) more than a big decline. Indeed, the accident component in the contract
serves the principal to give incentives to the agent for avoiding accidents. Because of
the agent’s risk aversion, already a small portion of large accidents gives the agent
enough incentives to try to reduce their frequency while for small accidents a higher
portion is required to incentivize him enough. Because the principal shifts a portion
of accident costs to the agent, he has to compensate him by increasing his fixed-wage
compensation. The latter exceeds the expected accident costs incurred by the agent
throughout the life of the contract. The contract only becomes linear in the accident
component if the agent is risk neutral, given that in this case the agent behaves in
the same way as if he owned the company.

Our paper is related to Biais et al. (2010). Their focus is on analyzing the optimal
incentives provided by an insurance company (principal) to a risk-neutral manager.
The latter can exert costly effort to reduce the onset of accidents which can generate
large losses. An important difference with their study is the crucial role played
by task interaction in our framework in driving agent’s incentives and determining
substitution effects. When effort and prevention are substitutes and task interaction
is strong, the principal finds it optimal to induce higher level of prevention and reduce
effort incentives, regardless of whether the principal takes preventive measures to
cover against part of the losses. All this reflects the fundamentally different impact
of the two tasks on the final output. While applying little effort only results in
a small instantaneous growth rate without affecting volatility risk of the output,
applying little prevention generates high risk due to the increased accident costs.
Pagès and Possamäı (2014) consider a contracting framework similar to Biais et al.
(2010). They provide a comprehensive mathematical analysis of optimal contracting
between competitive investors and an impatient bank monitoring a pool of long-term
loans subject to default risk, i.e., the bank can reduce the default intensities through
its monitoring activities.

Our study is also related to Sung (1997), who develops a continuous-time frame-
work where the manager performs multiple tasks to reduce the expected number of
accidents. Differently from ours, his model only allows for a finite number of cat-
egories to which accidents belong, and the cost of each category is assumed to be
known. This leads to the optimal contract being linear in the account balance of ac-
cidents. Other studies have considered contractual frameworks where Poisson jumps
affect the payoff process. DeMarzo et al. (2012) consider the case of unobservable
productivity shocks, while Hoffmann and Pfeil (2010) allow for a persistent and pub-
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licly observable lucky shock to occur. A crucial difference with these studies, where
jumps occur to the drift rate and are assumed to be positive and exogenously given,
is that in our model jumps of random size negatively affect the total output process
and not the drift rate. Moreover, the agent can control the accident frequency in
our model.

We also make other contributions to the literature. We consider the correspond-
ing risk-sharing model, where the principal has the entire bargaining power and
decides both the contract and the actions applied by the agent. As opposed to the
weak formulation arising in the moral hazard case, optimal contracting under risk
sharing is usually modeled via a strong formulation of the principal-agent problem.
Most of the previous studies on continuous-time contracting under a risk-sharing
framework, see for instance Cadenillas et al. (2007) and references therein, only deal
with continuous processes driven by Brownian motion. To the best of our knowledge,
our study is the first to establish the strong formulation when the outcome process
also consists of a discontinuous component, and achieves it via a time change of the
Poisson process capturing the occurrence of accidents.

The rest of the paper is organized as follows. Section 2 sets up the principal-
agent problem under moral hazard, which we solve in Section 3. Section 4 considers
the risk-sharing formulation of our contracting problem. Section 5 illustrates effort
substitution effects in the case of full accident exposure and partial preventive cover-
age in three contractual environments arising as specializations of our moral hazard
framework. Section 6 concludes, and the Appendix contains all proofs.

2 Problem formulation

We define the dynamics of the output process under no effort and prevention action
in Section 2.1. We model the hidden actions of the agent and the space of contracts
considered in Section 2.2. We formulate the optimization problem of the agent in
Section 2.3, and the corresponding problem for the principal in Section 2.4.

2.1 Output process dynamics

The outcome process consists of a continuous component modeling the outcome from
daily activities, and of a jump component capturing the occurrence of accidents.

Continuous Component. Under no managerial effort, the outcome process has
the dynamics

dxt = ct dt+ εt dBt, (2.1)

where Bt is a Brownian motion under the standard reference probability measure
P defined on a measurable space (Ω,F). Here ct and εt are, possibly time varying,
coefficients modeling the exogenous drift rate and outcome volatility.2

2For the following computations to be valid, we assume that the function εt is positive and
bounded away from zero and infinity, i.e., there exist constants K ≥ k > 0 such that K ≥ εt ≥ k.
We also assume that ct is integrable.
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Jump Component. Accidents can occur and negatively affect the output process.
Each accident is modeled as the jump of a compound Poisson process

Jt =
Nt∑
i=1

Yi,

defined on the same probability space (Ω,F ,P), where (Yi) is a sequence of bounded
nonnegative i.i.d. random variables with cumulative distribution function F . The
random variable Yi quantifies the cost of the i-th accident. Under the reference
probability measure P, Nt is a Poisson process with some fixed intensity λ0 > 0. Our
results do not depend on the choice of λ0 because in the optimization problems only
the intensity chosen by the agent will be relevant.

For future purposes, we set m =
∫∞

0
y dF (y) = E[Yi] as the average cost per

accident and define the outcome process Xt as

Xt = xt − Jt, (2.2)

i.e., the cumulative output process inclusive of the impact of accidents occurred up
to time t. We assume that Bt and Jt are independent and denote by (Ft)0≤t≤T the
augmented filtration generated by the processes, up to time T > 0.

2.2 Hidden actions and contract space

Through costly effort the agent can control the growth rate of the continuous com-
ponent of the output. Moreover, by applying costly prevention, he can reduce the
intensity at which accidents occur.

Effort. We model the effort applied by the agent, following a standard change
of measure argument on the Brownian motion Bt. More precisely, an admissible
effort action is a bounded (Ft)-predictable process ut, which induces a change of
probability measure by

Mu
t = exp

(∫ t

0

us
εs
dBs −

1

2

∫ t

0

(us
εs

)2

ds

)
and

dPu

dP
= Mu

T , (2.3)

where Mu
t is an (Ft)-adapted martingale. Then, by the Girsanov theorem, the

process Bu
t = Bt −

∫ t
0
us
εs
ds is a Brownian motion under the probability measure Pu.

Consequently, we can rewrite the dynamics (2.1) under Pu as

dxt = (ct + ut) dt+ εt dB
u
t , (2.4)

Above, notice that the agent chooses his effort ut based on the output process xt
which is observable to the principal. However, although ut is (Ft)-adapted, the
principal only observes xt and does not know ut, and hence he does not know the
value of Bu, either. Therefore, this approach allows modeling the effort action ut as
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a hidden action. From (2.4), we can see that the effect of the costly effort action of
the agent is to increase the instantaneous growth rate of the output by ut.

Accident Prevention. We model the costly accident prevention action of the
agent by letting him choose the intensity λt at which jumps occur. Such a process λt
is admissible if it is (Ft)-predictable and bounded away from zero and infinity. By
reducing λt, the agent can decrease the frequency of accidents, but will face additional
costs which we will later formalize. Similarly to (2.3), we model the choice of the
intensity λt by a change of measure. We define a probability measure Pu,λ by

dPu,λ

dP
=
dPu

dP
exp

(∫ T

0

log(λt/λ0) dNt −
∫ T

0

(λt − λ0) dt

)
so that under Pu,λ, Nt is a Poisson process with instantaneous intensity λt and Bt is
a drifted Brownian motion with instantaneous drift ut.

A concrete application of our model, which outlines the importance of including
the accident component when modeling manager’s compensation, is sustainability.
As reported by Novacovici (2013) in the Huffington Post, large companies are start-
ing to link executive compensation to environmental sustainability. Intel started in
2008 to link 3% of all its employees’ annual bonuses to environmental sustainability
metrics and goals. Xcel Energy ties a third of its CEO’s annual bonus to energy and
greenhouse gas emission goals. Alcoa includes sustainability performance in its exec-
utive bonus plan; starting in 2010, it began linking 20% of the plan to non-financial
metrics that include carbon dioxide reduction goals. Our contracting model cap-
tures these sustainability performance metrics, because incentives are provided to
the agent not only to increase the daily operating profits through exertion of effort,
but also to limit environmental damages through prevention. Another relevant ap-
plication of our contracting framework is coinsurance. The principal (firm’s owner)
pays an insurer, or a guaranteed fund, a premium in exchange of a coinsurance con-
tract offering coverage for a fraction of losses. For each realized loss, the firm uses
its cash reserves to cover the loss fraction which is not covered by the insurer. Since
part of the accident risk is borne by the firm, the principal still needs to provide
incentives to the agent to apply prevention against accidents. The presence of coin-
surance is also discussed in the context of optimal insurance under moral hazard by
Winter (2000).

The contract space. At time 0, the principal (shareholders) offers a compensation
Cτ to the agent which will be paid at a termination time τ optimally determined
as a random variable by the principal. Moreover, the principal incurs termination
costs which will depend on the considered contractual environment. The setting
with a termination time determined by the principal allows us to consider different
contractual possibilities detailed in Sections 5.2–5.4. Technically, we need some
integrability conditions on Cτ . We will make them precise in Remark 3.2 in terms
of a representation of Cτ .
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2.3 The agent

The agent obtains utility from consuming Cτ . The payment Cτ is an Fτ -measurable
random variable, to be interpreted as a payment in cash, the amount of which
depends on random outcomes by time τ . Moreover, he incurs disutility for exerting
costly effort and accident prevention up to time τ . We assume that this is of the
form

Eτ =

∫ τ

0

e(ut, λt) dt,

where e : [0,∞)× (0,∞)→ [0,∞) is a twice continuously differentiable and strictly
convex function with ∂e

∂u
> 0, ∂e

∂λ
< 0, limu↗∞

(
e(u, λ) − u

)
= ∞ for all λ > 0,

limλ↗∞
∂e
∂λ

(u, λ) = 0 and limλ↘0 e(u, λ) =∞ for all u ≥ 0.

Remark 2.1. 1) The cost function e captures the interaction between the two tasks
of applying effort and reducing accident risk. Although our framework is general and
can accommodate both complementary and substitute tasks, we will primarily focus
on the case when they are substitutes. This is because our framework is designed
to capture contractual scenarios related to, for example, sustainability performance.
Here, executives are incentivized to dedicate resources toward set sustainability goals
which may significantly reduce the level of effort devoted to the generation of operating
profits. In other words, the marginal cost of the effort action is increasing in the
amount of prevention applied by the agent, and vice versa. Since we measure the
cost of accident prevention by 1

λ
(the higher the prevention applied by the agent, the

smaller the accident frequency λ is), the two tasks are substitutes if ∂2e
∂u∂λ

< 0. A
detailed analysis is reported in Section 5.
2) Sung (1997) restricts the intensity of accidents to be within a bounded interval.
Although we do not impose any restriction and let the intensity vary on the whole
interval (0,∞), our analysis carries through upon adjusting the incentive compati-
bility conditions to guarantee that the intensity stays within the desired interval. In
a similar way, one could choose a reference level of accident prevention so that the
agent doing nothing would correspond to the given reference level and any accident
prevention would lead to an increase from the reference level.

The objective of the agent is to maximize, over the choice of u and λ, the expected
utility

V1(C) := sup
u,λ

V1(C, u, λ) := sup
u,λ

Eu,λ [U1(Cτ − Eτ )] ,

where Eu,λ is the unconditional expectation (we omit the initial information F0 from
the expectation operator) corresponding to the effort and prevention strategy (u, λ)
applied by the agent, and Cτ is the payment from the principal to the agent at time
τ chosen by the principal. We choose

U1(x) =
1

γ1

(1− e−γ1x), (2.5)

i.e., the agent is risk averse with constant of absolute risk aversion γ1 > 0. We say
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that a contract C is implementable if there exists uf , λf such that

V1(C) = V1(C, uf , λf ).

2.4 The principal

Let R0 be the reservation utility of the agent. The principal can terminate the
contract with the agent prematurely at time τ ≤ T and will then incur costs d(τ). It
follows that the principal’s optimization problem is to maximize his expected utility

V2 := sup
C,τ

Eu∗,λ∗ [U2(Xτ − Cτ − d(τ))] (2.6)

over the class of implementable contracts C and exercise times τ subject to the
following incentive compatibility constraint

V1(C) = V1(C, u∗, λ∗)

and individual rationality constraint

V1(C) ≥ R0. (2.7)

The principal is also risk averse with exponential utility function

U2(x) =
1

γ2

(1− e−γ2x), (2.8)

where γ2 > 0 is the constant of absolute risk aversion of the principal.
Note that for fixed γi, choosing instead −e−γix as utility function leads to an

equivalent optimization problem. However, our choice of Ui has the advantage that
in the limit γi ↘ 0, which we will later study for the optimization problem, we obtain
a linear utility limγi↘0 Ui(x) = x.

3 Optimal contracting

We solve for the optimal contract in Section 3.1. We analyze the impact of vanishing
risk aversion on the optimal contract in Section 3.2. All proofs are relegated to the
Appendix.

3.1 Optimal contract and actions

We will derive the optimal contract in three steps. In the first step, stated in
Lemma 3.1, we give the general form of the optimal contract. This step is based on
the fact that the principal will not pay more than what the agent has as reservation
utility R0, which implies

R0 = Eu,λ[U1(Cτ − Eτ )]
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for the optimal contract and optimal actions. In the second step, Proposition 3.3
specifies which actions are incentive compatible. This uses the fact that for all
possible actions (optimal or not), the agent’s expected utility will be less than or
equal to R0. This allows us to prove Theorem 3.4, which completely characterizes
the optimal contract. In this last step, we combine the previous results along with
the consideration of the principal’s optimization problem.

Lemma 3.1. Given the agent’s reservation utility R0, the optimal contract is of the
form

Cτ =

∫ τ

0

αt dxt︸ ︷︷ ︸
continuous output component

− 1

γ1

∑
0<t≤τ

log(1 + γ1βt∆Jt)︸ ︷︷ ︸
accident penalty

(3.1)

− 1

γ1

log(1− γ1R0) +

∫ τ

0

(γ1

2
α2
t ε

2
t + βtλtm+ e(ut, λt)− αtct − αtut

)
dt︸ ︷︷ ︸

fixed wage

,

where α and β are predictable processes.

The above contract can be implemented using the following instruments:

• Cash amount given to the agent so as to meet his rationality constraint.

• Pay-for-performance compensation rewarding the agent for the daily profit
generating activities.

• From the above contractual specification, we see that the principal charges the
agent a portion of corporate liability. This may consist of disciplinary action
in the form of fines, loss of personal assets or reputation damage, imposed by
the company to its employees for negligent conduct causing, for example, envi-
ronmental liability. However, the company compensates the agent for bearing
accident risk. Using the inequality log(1 + x) ≤ x, and setting x = γ1βt∆Jt,
we obtain

Eu,λ
[

1

γ1

∑
0<t≤τ

log(1 + γ1βt∆Jt)

]
≤ Eu,λ

[∫ τ

0

βtλtmdt

]
.

Using (3.1), this indicates that the portion of the fixed wage compensating the
agent for bearing accident risk exceeds the expected accident costs charged by
the principal throughout the life of the contract.

Remark 3.2. To derive the representation in Lemma 3.1, we did not need any spe-
cific integrability conditions on Cτ . This is because the agent’s rationality constraint
(2.7) automatically imposes an integrability condition on implementable contracts.
Indeed, we have −∞ < Eu,λ[U1(Cτ − Eτ )] < ∞ for an admissible contract Cτ and
the agent’s actions for Cτ , where the former inequality follows from (2.7) while the
latter inequality is due to the form (2.5) of U1. To continue our calculations, we
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impose on the processes αt and βt in (3.1) that αt is bounded and βt is nonnega-
tive and bounded. These conditions represent a restriction on the class of admissible
contracts. For the following proofs, it would also be possible to choose the milder
condition that

∫
αt dBt and

∫
βt(dJt −mdt) are BMO-martingales under P. How-

ever, we choose the boundedness condition on αt and βt because this is in line with
the boundedness conditions for ut and λt so that allowed contracts induce the agent
to perform allowed actions. This will be a consequence of Proposition 3.3 below.

Lemma 3.1 also shows that the presence of accidents introduces a nonlinearity in
the optimal contract. While the optimal compensation is still linear in the continuous
component of the output with pay-for-performance sensitivity αt, it is nonlinear in
the accident component. From the term log(1 + γ1βt∆Jt), we deduce that due to
the concavity of the logarithmic function, the punishment of the principal is larger
for small accidents relative to large accidents. As accidents become more costly,
the additional punishment applied by the principal becomes smaller. This is in line
with empirical evidence on managerial compensation using call options incentive
schemes. If we think of the outcome process as the equity value of a firm (which
holds approximately true for low levered firms), we obtain the sublinearity property
from the convexity of the call option payoff. At a given level of stock price, a small
decrease of the stock price translates to a larger relative (in percentage of the stock
price decrease) change of the call option value compared to the one resulting from a
large decrease of the stock price.

The log-linearity property of the optimal contract may be explained in terms of
the agent’s risk aversion. While a small portion of the large accidents already gives
the risk-averse agent enough incentives to try to reduce their frequency, a higher
portion of the small accidents is required to give him enough incentives. Being the
principal aware of that, he offers a sublinear punishment scheme to the agent.

Since it is the principal who chooses the contract, he determines α and β to max-
imize his expected utility. Using the agent’s optimization problem, we first charac-
terize the actions u and λ which are compatible with α and β in Proposition 3.3. As
standard in the literature, actions are said to be incentive compatible with respect
to some contract if they maximize the agent’s total expected utility. In other words,
incentive compatible actions are the responses of the agent to a contract offered by
the principal.

Proposition 3.3. Actions u and λ are incentive compatible with α and β if and
only if

∂

∂u
e(ut, λt) = αt,

∂

∂λ
e(ut, λt) = −βtm, (3.2)

and this can be written as ut = it(αt, βt) and λt = jt(αt, βt) for suitably chosen
functions it and jt.

Combining the results given earlier, we can characterize the optimal contract in
the main Theorem 3.4.
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Theorem 3.4. The optimal contract is given by

C?
τ? =− 1

γ1

log(1− γ1R0) +

∫ τ?

0

α?t dxt −
1

γ1

∑
0<t≤τ?

log(1 + γ1β
?
t ∆Jt)

+

∫ τ?

0

(γ1

2
(α∗t )

2ε2t + β?t λ
?
tm+ e(u?t , λ

?
t )− α?t ct − α?tu?t

)
dt, (3.3)

where u?t = it(α
?
t , β

?
t ), λ?t = jt(α

?
t , β

?
t ), and α?t and β?t are the maximizers of

pt(αt, βt) = − e
(
it(αt, βt), jt(αt, βt)

)
− γ1

2
α2
t ε

2
t + ct + it(αt, βt)−

γ2

2
ε2t (αt − 1)2

−
(

1

γ2

∫ ∞
0

(1 + γ1βty)−γ2/γ1eγ2y dF (y)− 1

γ2

+ βtm

)
jt(αt, βt); (3.4)

the optimal termination time τ ? is given by

τ ? = arg max
τ∈[0,T ]

(∫ τ

0

pt(α
?
t , β

?
t ) dt− d(τ)

)
. (3.5)

Recall that for a given contract (α, β), the principal’s certainty equivalent CE is
defined by

Eu=i(α,β),λ=j(α,β)[U2(Xτ − Cτ − d(τ))] = U2 (CE) ,

i.e., CE is the cash amount that will leave the principal indifferent in terms of
expected utility between a guaranteed cash payment and what he receives after
paying the agent and terminating the contract. The proof of Theorem 3.4 shows
that

CE =

∫ τ

0

pt(αt, βt) dt− d(τ) +
1

γ1

log(1− γ1R0).

Because the contract is chosen so as to maximize the principal’s certainty equivalent,
from the above representation we can see that the principal will choose (αt, βt) at
each time t to optimize the derivative pt of the certainty equivalent. The latter can
be decomposed as follows:

pt(αt, βt) = − e
(
it(αt, βt), jt(αt, βt)

)︸ ︷︷ ︸
agent’s costs

−γ1

2
α2
t ε

2
t + ct + it(αt, βt)−

γ2

2
ε2t (αt − 1)2︸ ︷︷ ︸

contribution from continuous output component

−
(

1

γ2

∫ ∞
0

(1 + γ1βty)−γ2/γ1eγ2y dF (y)− 1

γ2

+ βtm

)
jt(αt, βt)︸ ︷︷ ︸

contribution from expected accident costs

. (3.6)

3.2 Vanishing risk aversion

We analyze how the form of the contract is affected by the risk aversion levels of
principal and agent. We will see that the nonlinearity of the contract hinges on the
agent’s risk aversion, but not on that of the principal. The next corollary shows that
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when the agent is risk neutral, the principal finds it optimal to choose a punishment
scheme which is linear in the accident component.

Corollary 3.5. For γ1 ↘ 0, the optimal contract converges in probability to

C1,?
τ? = R0 +

∫ τ?

0

e(u?t , λ
?
t ) dt+

∫ τ?

0

(dxt − (ct + u?t ) dt)−
∫ τ?

0

(dJt − λ?tmdt),

where u?t and λ?t are given by

∂

∂u
e(u?t , λ

?
t ) = 1,

∂

∂λ
e(u?t , λ

?
t ) = −m. (3.7)

It is best for the principal if the agent’s incentive conditions are identical to the
principal’s optimality conditions, and hence it is optimal to charge the agent the
entire randomness of the output process. Note, however, that the principal is still
affected by the output process because due to the agent’s risk neutrality, his expected
compensation netted of action costs must still meet the agent’s rationality constraint.
Hence, the principal charges the agent only the randomness (martingale part) of the
output process, but keeps the predictable part (drift and martingale compensator).

This behavior for vanishing agent’s risk aversion is in line with the well-known
fact that in a Holmström and Milgrom (1987) type framework, a risk-neutral agent
behaves as if he owns the whole project. Indeed, if the agent is the sole owner of
the project and is risk neutral, he will take the first-best actions given by (3.7) to
maximize the firm value. With this choice of actions, the agent can pay the first-
best firm value to the principal, which is the best value the principal can achieve. In
contrast, if the agent is risk averse, he will ask the principal for a risk compensation
which crucially depends on the size of the accidents. In this case, the principal will
then offer a sublinear contract to minimize the risk compensation related to large
accidents.

The next corollary shows that even if the principal were to become risk neutral,
he would still offer a sublinear punishment scheme to the risk-averse agent.

Corollary 3.6. For γ2 ↘ 0, the optimal contract converges in probability to the
same nonlinear contract (3.3), but where α?t and β?t are now the maximizers of

p2
t (αt, βt) = − e

(
it(αt, βt), jt(αt, βt)

)
− γ1

2
α2
t ε

2
t + ct + it(αt, βt)

−
(
m+ βtm−

1

γ1

∫ ∞
0

log(1 + γ1βty) dF (y)

)
jt(αt, βt).

Moreover, we have p2
t (αt, βt) ≥ pt(αt, βt).

4 Risk sharing

This section studies the case of risk sharing, in which both principal and agent have
the same information. This is also called first best and corresponds to the situation
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when the principal has the entire bargaining power so that he decides both the effort
and prevention action of the agent. It can also be interpreted as the optimization
of total welfare by a social planner. Before turning to the optimization problem, a
technical remark is in order.

Remark 4.1. There are two ways to construct a Brownian motion with drift. The
first way is to start with a standard Brownian motion and then simply add a drift term
to its dynamics. The second way is through Girsanov’s theorem, i.e. by changing the
probability measure so that under the new probability measure the Brownian motion
has a drift term. The first method gives rise to the so-called strong formulation while
the latter is related to the weak formulation of the principal-agent problem. The weak
formulation corresponds to a model with moral hazard, also called second best, where
the precise value of the instantaneous drift cannot be inferred from observing the
output process. In the previous sections, we have used the weak formulation (2.4)
because the drift was hidden to the principal. In this section, the action is observable
and hence we choose the strong formulation for the dynamic contracting formulation.

For the accident component, in the previous section we have used the intensity
of the Poisson process as the control variable. This was also a weak formulation
because a change in the intensity means considering the same process under a dif-
ferent probability measure. Like for the Brownian component, we want to have a
strong formulation for the accident component in this section. We achieve this by
performing a time change. Recall the standard result that if Nt is a Poisson process
with intensity 1, then Ñt = NΛ(t) is a Poisson process with instantaneous intensity

λ(t), where Λ(t) =
∫ t

0
λ(s) ds. Therefore, the prevention action in this section af-

fects the accident component via a time change of the underlying Poisson process.
The filtration, for which the actions are predictable, is here the augmented filtration
generated by the Brownian motion and the time-changed compound Poisson process.

In the risk-sharing problem, a social planner maximizes the joint welfare

EP[U1(Cτ − Eτ )] + ρEP[U2

(
Xτ − Cτ − d(τ)

)]
, (4.1)

where ρ is a given constant which represents the relative risk-sharing level. In this
formulation, X is given by Xt = xt − JΛ(t) where Λ(t) =

∫ t
0
λ(s) ds, Jt =

∑Nt
i=1 Yi is

a compound Poisson process with intensity 1 under P, and

dxt = (ct + ut) dt+ εt dBt

for a Brownian motion Bt under P. Principal and agent share the contract Cτ . In
addition, they have to find the optimal choice of effort ut and prevention λt. Applica-
tion of the first-order condition implies the classical Borch rule for risk sharing, which

states that the ratio of marginal utilities is constant at the risk-sharing optimum,
i.e.,

U ′1(Cτ − Eτ ) = ρU ′2
(
Xτ − Cτ − d(τ)

)
.

Using that both agent and principal have exponential utility functions given by (2.5)
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and (2.8), respectively, we find

Cτ =
γ2

γ1 + γ2

Xτ +
γ1

γ1 + γ2

Eτ −
1

γ1 + γ2

log(ρ)− γ2

γ1 + γ2

d(τ). (4.2)

Substituting this expression back into (4.1), the maximization problem becomes

−ρ
γ1

γ1+γ2

( 1

γ1

+
1

γ2

)
EP
[

exp

(
− γ1γ2

γ1 + γ2

(
Xτ − Eτ − d(τ)

))]
+

1

γ1

+
ρ

γ2

.

We can write

EP
[

exp

(
− γ1γ2

γ1 + γ2

(
Xτ − Eτ − d(τ)

))]
= EP

[
Mτe

−
(∫ τ

0 qt(ut,λt) dt− γ1γ2
γ1+γ2

d(τ)
)]
,

where we define

Mτ = exp

(
− γ1γ2

γ1 + γ2

∫ τ

0

εt dBt −
γ2

1γ
2
2

2(γ1 + γ2)2

∫ τ

0

ε2t dt+
γ1γ2

γ1 + γ2

JΛ(τ)

−
∫ τ

0

λt dt

∫ ∞
0

(
e
γ1γ2
γ1+γ2

y − 1
)
dF (y)

)
,

qt(ut, λt) =
γ1γ2

γ1 + γ2

(
ct + ut − e(ut, λt)

)
− γ2

1γ
2
2

2(γ1 + γ2)2
ε2t − λt

∫ ∞
0

(
e
γ1γ2
γ1+γ2

y − 1
)
dF (y).

Note that qt is a deterministic function and M is a martingale because εt, λt and Yi
are bounded. Consequently, we have

EP
[
Mτe

−
(∫ τ

0 qt(ut,λt) dt− γ1γ2
γ1+γ2

d(τ)
)]
≥ EP

[
Mτe

−max
s

( ∫ s
0 max

y,z
qt(y,z) dt− γ1γ2

γ1+γ2
d(s)
)]

= e
−max

s

( ∫ s
0 max

y,z
qt(y,z) dt− γ1γ2

γ1+γ2
d(s)
)
EP[Mτ ]

= e
−max

s

( ∫ s
0 max

y,z
qt(y,z) dt− γ1γ2

γ1+γ2
d(s)
)

with equality when we choose

τ ? = arg max
τ

(∫ τ

0

max
y,z

qt(y, z) dt−
γ1γ2

γ1 + γ2

d(τ)

)
and u?t and λ?t as the maximizers of qt(ut, λt). Therefore, u?t and λ?t are given by

∂

∂u
e(u?t , λ

?
t ) = 1,

∂

∂λ
e(u?t , λ

?
t ) = −γ1 + γ2

γ1γ2

∫ ∞
0

(
e
γ1γ2
γ1+γ2

y − 1
)
dF (y).

This shows that the optimal actions are deterministic and constant in time. The op-
timal contract (4.2) is linear in both the accident part and the continuous component
of the output process. The contract has pay-performance sensitivity γ2

γ1+γ2
, which is

in agreement with standard results showing that the optimal risk-sharing fraction is
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determined by the relative size of the risk aversion parameters of principal and agent.
In the limit case γ1 ↘ 0 with fixed γ2 > 0, we obtain that such sensitivity goes to
one. This means that if the agent is indifferent toward accident and volatility risk,
then the entire output process is transferred to him. As discussed in Section 3.2, the
first-best actions of the agent would then satisfy (3.7). It can indeed be verified from
the equation above that ∂

∂λ
e(u?t , λ

?
t ) = −m when γ1 ↘ 0 with fixed γ2 > 0, where

we recall that m is the average cost per accident.
The higher the risk aversion level of the principal, and the the higher is the

fraction of the output process that he wants to transfer to the agent to get rid off
risk, a result consistent with the classical Holmström and Milgrom (1987) where
accident risk is absent. If the principal becomes risk neutral, γ2 ↘ 0 with fixed
γ1 > 0, the pay-performance sensitivity approaches zero as he wants to keep the
entire risk himself. The optimal actions of the agent still satisfy (3.7).

5 Effort substitution effects

As optimal effort and prevention are defined via the maximization in (3.4), we provide
a numerical study to assess the dependence of substitution effects on the variance of
accident costs and levels of risk aversion. We choose an effort and prevention cost
allocation function which makes the two tasks substitutes, given by

e(u, λ) = (κ1u)2 + (κ2/λ)2 + 2ρκ1uκ2/λ (5.1)

with the task interaction parameter ρ > 0 (see also Remark 2.1.1 for further discus-
sion). Here, the quantity 1/λ captures the prevention action of the agent. Moreover,
κ1, κ2 > 0 are constants converting effort and prevention into monetary levels. As in
the seminal paper of Holmström and Milgrom (1987) dealing with single-task mul-
tiple agent problems, the cost function given in (5.1) is quadratic, but here in two
arguments: effort and prevention actions. Clearly, higher ρ translates into higher
marginal costs for both activities since

∂e(u, λ)

∂u
= 2κ1

(
κ1u+

ρκ2

λ

)
> 0 and

∂e(u, λ)

∂λ
= −2κ2

λ2

(κ2

λ
+ ρκ1u

)
< 0.

Next, we demonstrate that the interaction parameter ρ plays a key role in deter-
ministic substitution effects of agent’s resources. We illustrate this under different
contractual environments. We choose the distribution of the jump sizes Yi so that
Yi −

(
1− 1

$

)
is exponential with parameter $. This allows to control for the mean

(identically equal to one), while varying the standard deviation 1
$

of accidents.

5.1 Case I: basic framework

The graphs in Figure 1 indicate that when ρ is increasing on a low level, the agent
applies less prevention. However, if marginal costs become higher, the amount of
prevention applied by the agent increases in ρ. This indicates that the agent is
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engaging in effort substitution, shifting resources away from effort to prevention, and
reflects the fundamentally different nature of the two tasks. While applying little
effort results in small instantaneous output growth, applying little prevention would
result in accidents occurring at a large frequency, hence depressing significantly the
outcome process. Having to choose where to devote his resources, the agent allocates
them to the most critical task, especially if he is risk averse.
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Figure 1: Optimal prevention action with respect to the strength of task interactions.
We set ε = 1, κ1 = 0.7, κ2 = 0.3, γ2 = 0.3, and τ ? = T = 1. The left panel
corresponds to accidents with standard deviation 0.5. In the right panel, we choose
γ1 = 1, and vary the standard deviation of accidents.

Like the sublinear form of the contract, these substitution effects depend crucially
on the agent’s risk aversion, as the left graph shows. The most risk-averse agent
applies the highest prevention when the strength of task interaction is the largest.
Moreover, when accident costs have higher variability, the risk averse agent applies
more prevention given that the resulting negative effects are harder to predict.

5.2 Case II: accident coverage

We allow for the principal to take prevention measures which cover accident losses
exceeding a threshold A. This means that the principal will be exposed to a maxi-
mum loss of A. Mathematically, the jump size Yi modeling accident costs is replaced
by Ỹi = min(Yi, A). The cost of these measures is detracted from the initial output
process, and we fix τ = T . In the absence of task interaction the incentive com-
patibility conditions are decoupled, hence the agent always applies the same level
of effort regardless of the coverage threshold. However when tasks interact and full
coverage is not guaranteed, Figure 2 shows that the agent progressively reduces the
applied effort and increases the amount of accident prevention as the guaranteed
coverage decreases.

Figure 3 shows the premiums at which it is beneficial for the principal to buy
(area below the curve) or not to buy (area above the curve) accident coverage. On the
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Figure 2: Optimal actions with respect to percentage coverage amount for different
levels of ρ. The parameters are ε = 1, $ = 2, γ1 = 0.4, γ2 = 0.3, κ1 = 0.7, κ2 = 0.3
and τ ? = T = 1.

curve, the principal is indifferent between having and not having accident coverage.
The critical premium is defined so that the principal’s certainty equivalent inclusive
of the coverage at the critical premium equals the principal’s certainty equivalent
without the coverage. As ρ increases and the agent suffers higher costs from task
interaction, the principal is willing to pay more to be insulated against accident
losses.
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Figure 3: The critical coverage pre-
mium as a function of the coverage
threshold, plotted for different levels of
ρ. The parameters are the same as in
Figure 2.

5.3 Case III: promoting the agent

We consider the situation in which the principal can train the agent at time ν upon
incurring training costs d(ν). As in Sannikov (2008), we assume that training per-
manently increases the agent’s productivity of effort from ut to θ1ut. Additionally,

17



we assume that it permanently increases the effectiveness of prevention, in that it re-
duces the frequency of occurring accidents from λt to λt/θ2. Here, θ1, θ2 ≥ 1 are con-
stants. This is equivalent to changing the cost function to ẽ(ut, λt) = e(ut/θ1, λtθ2)
after the promotion. For notational convenience, we set d(T ) = 0 so that the princi-
pal does not train at all the agent when ν = T . The principal’s optimization problem
is to maximize

Eu,λ[U2(XT − CT − d(ν))]
over CT and ν where

R0 = sup
u, λ

Eu,λ[U1(CT−E0,ν,T )] with E0,ν,T =

∫ ν

0

e(ut, λt) dt+

∫ T

ν

(
ẽ(ut, λt)+f(t)

)
dt.

Here, f(t) models the opportunity costs of the agent at t deriving from his promotion.
As his new skills become more valuable to other principals, the current principal
would need to increase his incentives to keep him. This problem can be solved very
similarly to Section 3.1, resulting in the optimal contract of the form (3.3) with τ ∗

replaced by T , and the function e(u, λ) replaced by

e∗t (ut, λt) =

{
e(ut, λt) for t ≤ ν?

ẽ(ut, λt) + f(t) = e(ut/θ1, λtθ2) + f(t) for t > ν?
;

the optimal promotion time ν∗ is the maximizer of∫ ν

0

pt(α
?
t , β

?
t ) dt+

∫ T

ν

p̃t
(
α̃?t , β̃

?
t

)
dt− d(ν)−

∫ T

ν

f(t) dt,

where p̃t is defined as pt in (3.4) but with e replace by ẽ. We next analyze how
the opportunity costs of the agent affect the optimal promotion time for different
levels of post-training efficiency and strength of task interaction. Clearly, an early
promotion has higher opportunity costs than a later promotion, given that the agent
would have more and better options in earlier stages of his career. This means that
f(t) should be decreasing in time.

As expected, the principal finds it optimal to promote the agent later if the
interaction of the two tasks is stronger. Figure 4 shows that when task interaction
is high, the promotion time is highly sensitive to the opportunity costs of the agent
after promotion. A small increase in such costs may lead the principal to change his
decision from immediately promoting the agent to never promoting him. By contrast,
when task interaction is small the principal gradually postpones the promotion time
if the opportunity costs increase. This happens because the efficiency gains after the
promotion time outweigh the opportunity costs of the agent if he is promoted later.

5.4 Case IV: firm’s liquidation

The principal can liquidate the firm and lay off the agent prematurely at some time
τ ≤ T . The mathematical formulation is similar to the previous section with the
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Figure 4: The optimal promotion time depending on the agent’s opportunity cost
and task interaction. We set ε = 1, $ = 2, γ1 = 0.4, γ2 = 0.3, κ1 = 0.7, κ2 = 0.3,
T = 1, d(s) = 0.1 for s < T , θ1 = 1.2 and θ2 = 3.3. We choose f(t) = ηe−γt. In the
left panel, we fix γ = 2.5, while we choose η = 0.5 in the right panel.

principal maximizing
Eu,λ[U2(Xτ − Cτ )]

over Cτ and τ where

R0 = sup
u, λ

Eu,λ[U1(Cτ − E0,τ,T )] with E0,τ,T =

∫ τ

0

e(ut, λt) dt+

∫ T

τ

f(t) dt.

In particular, the termination costs are d(τ) = 0. The term
∫ T
τ
f(t) dt reflects the

benefit the agent has from a premature contract termination. Such benefits typically
decrease with time as the opportunities for the agent would reduce with passage of
time. The optimal contract is of a similar form as in (3.3) where τ ? is now the
maximizer of ∫ τ

0

pt(α
?
t , β

?
t ) dt−

∫ T

τ

f(t) dt.

As expected, the principal always liquidates earlier if task interaction is higher.
Interestingly, a direct comparison of left and right panels of Figure 5 shows that
when both task interaction and standard deviation of accidents are large, a small
increase in accident uncertainty only slightly anticipates the liquidation time, but this
action positively affects the principal’s certainty equivalent gains. By contrast, when
task interaction is small and standard deviation of accidents is large, the opposite
happens: the principal anticipates the liquidation time, but his resulting certainty
equivalent gains are negligible. This can be explained in terms of effort substitution.
If task interaction is small, the agent applies high effort. As a consequence, when
the principal liquidates prematurely he gains because accident losses are eliminated,
but loses the short term profits resulting from the agent’s effort action. Altogether,
this leads to small net gains. Differently, when task interaction is high, the agent
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Figure 5: The optimal time to liquidate the firm and the corresponding certainty
equivalent gains for the principal. We set ε = 1, $ = 2, γ1 = 0.4, γ2 = 0.3, κ1 = 0.7,
κ2 = 0.3 and T = 1. We choose f(t) = ηe−γt with γ = 1 and η = 1.6.

diverts most of his resources to preventing accidents and only applies little effort.
Hence, when the principal liquidates earlier he gains from the absence of accidents,
but does not lose much in terms of short-term profit generation.

6 Conclusions

We have developed a continuous-time contracting framework to analyze optimal
incentives provision in multitasking settings. The agent can maximize short-term
output growth through effort, and perform accident prevention. The accident pre-
vention task breaks the linearity of the contract, and induces the principal to offer
a sublinear punishment scheme to the risk-averse agent. Such a punishment scheme
only becomes linear if the agent is risk neutral, in which case he behaves in the same
way as if he owned the company. The influence of the agent’s risk aversion is also
reflected in his resource allocation decisions, where the critical impact of accidents
on the outcome process induces him to divert resource away from effort to preven-
tion. This substitution effect is significant regardless of whether accident prevention
measures are taken by the principal.

A Proofs

Proof of Lemma 3.1. Using that the agent’s reservation utility is R0, we have
R0 = Eu,λ[U1(Cτ − Eτ )] or, equivalently,

1− γ1R0 = Eu,λ[exp(−γ1Cτ + γ1Eτ )] (A.1)

at the optimum. Indeed, it holds that 1 − γ1R0 ≥ Eu,λ[exp(−γ1Cτ + γ1Eτ )] by the
individual rationality constraint (2.7), and if we assume to the contrary of (A.1) that
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1− γ1R0 > Eu,λ[exp(−γ1Cτ + γ1Eτ )], the principal could replace Cτ by C̃τ = Cτ − c
with

c =
1

γ1

log
1− γ1R0

Eu,λ[exp(−γ1Cτ + γ1Eτ )]
.

Because c > 0, we have C̃τ < Cτ , and hence the principal gets a strictly greater ex-
pected utility from using C̃τ instead of Cτ while C̃τ satisfies the individual rationality
constraint (2.7) with equality by the choice of c. Hence, Cτ cannot be an optimal
contract, which in turn proves the equality in (A.1). This implies that we can write

exp(−γ1Cτ + γ1Eτ ) = (1− γ1R0)Mτ (A.2)

at time τ , where M is a strictly positive martingale under the measure Pu,λ with
M0 = 1. Indeed, we can define M by Mt = Eu,λ[exp(−γ1Cτ + γ1Eτ )|Ft]/(1− γ1R0),
using that exp(−γ1Cτ +γ1Eτ ) is Pu,λ-integrable due to (A.1). By the martingale rep-
resentation theorem (see Theorem 13.19 of He et al. (1992)), there exist predictable
processes α̃ and β̃ such that

dMt

Mt−
= α̃t dB

u
t + β̃t (dJt − λtmdt), (A.3)

which is equivalent to

Mτ = exp

(∫ τ

0

α̃t dB
u
t +

∑
0<t≤τ

log
(
1 + β̃t∆Jt

)
−
∫ τ

0

(1

2
α̃2
t + β̃tλtm

)
dt

)
by the formula for the stochastic exponential; see Theorem II.37 of Protter (2005).
Combining this with (A.2) yields

Cτ =− 1

γ1

log(1− γ1R0)− 1

γ1

∫ τ

0

α̃t dB
u
t −

1

γ1

∑
0<t≤τ

log
(
1 + β̃t∆Jt

)
+

∫ τ

0

( 1

2γ1

α̃2
t +

1

γ1

β̃tλtm+ e(ut, λt)
)
dt,

from which we deduce (3.1) by defining α = − α̃t
γ1εt

, β = β̃t
γ1

and using the dynamics

(2.4) of xt.
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Proof of Proposition 3.3. For the optimal contract (3.1) and any not necessarily

optimal actions ũ and λ̃, we have R0 ≥ Eũ,λ̃
[
U1

(
Cτ−

∫ τ
0
e
(
ũt, λ̃t

)
dt
)]

or, equivalently,

1− γ1R0 ≤ Eũ,λ̃
[

exp

(
− γ1Cτ + γ1

∫ τ

0

e
(
ũt, λ̃t

)
dt

)]
with equality for ũ = u and λ̃ = λ. We set

Ys =
1

1− γ1R0

exp

(
− γ1Cs + γ1

∫ s

0

e
(
ũt, λ̃t

)
dt

)
= exp

(
−
∫ s

0

γ1αtεt dB
u
t +

∑
0<t≤s

log(1 + γ1βt∆Jt)−
∫ s

0

(γ1

2
α2
t ε

2
t + γ1βtλtm

)
dt

+ γ1

∫ s

0

(
e
(
ũt, λ̃t

)
− e(ut, λt)

)
dt

)
.

This satisfies Y0 = 1 and

dYt
Yt−

=− γ1αtεt dB
ũ
t + γ1βt

(
dJt − λ̃tmdt

)
+ γ1

(
αt(ut − ũt) + βtm

(
λ̃t − λt

)
+ e
(
ũt, λ̃t

)
− e(ut, λt)

)
dt.

If the drift is zero, Y is a martingale thanks to the boundedness assumptions on αt
and βt; see Remark 3.2. For the optimal choices ũ = u and λ̃ = λ, the drift indeed
vanishes so that Y = M is a martingale, with M defined in (A.3). Because this is
the optimal choice, the drift needs to be nonnegative in general. Hence, ũt = ut and
λ̃t = λt minimize

αt(ut − ũt) + βtm
(
λ̃t − λt

)
+ e
(
ũt, λ̃t

)
− e(ut, λt),

which is equivalent to (3.2) as first-order condition, using the assumptions on e.

Proof of Theorem 3.4. From Lemma 3.1 and Proposition 3.3, the contract is of
the form

Cτ =− 1

γ1

log(1− γ1R0) +

∫ τ

0

αt dxt −
1

γ1

∑
0<t≤τ

log(1 + γ1βt∆Jt) (A.4)

+

∫ τ

0

(γ1

2
α2
t ε

2
t + βtλtm+ e(ut, λt)− αtct − αtut

)
dt,

with ut = it(αt, βt) and λt = jt(αt, βt). Using this expression for Cτ in (2.6) and
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(2.8), we need to minimize

Eu,λ
[

exp

(
− γ2Xτ −

γ2

γ1

log(1− γ1R0) + γ2

∫ τ

0

αt dxt −
γ2

γ1

∑
0<t≤τ

log(1 + γ1βt∆Jt)

+ γ2d(τ) + γ2

∫ τ

0

(γ1

2
α2
t ε

2
t + βtλtm+ e(ut, λt)− αtct − αtut

)
dt

)]
over α, β and τ with ut = it(αt, βt) and λt = jt(αt, βt). Recalling (2.2) and (2.4) for
the dynamics of X, the optimization problem becomes

min
α,β,τ

Eu,λ
[
Mτe

−γ2(
∫ τ
0 pt(αt,βt) dt−d(τ))

]
,

where we use the abbreviations

Mt = (1− γ1R0)−γ2/γ1 exp

(
− γ2

∫ t

0

εs(1− αs) dBu
s −

γ2
2

2

∫ t

0

ε2s(1− αs)2 ds

)
×
∏

0<s≤t

(1 + γ1βs∆Js)
−γ2/γ1eγ2∆Js

× exp

(
−
∫ t

0

(∫ ∞
0

(1 + γ1βsy)−γ2/γ1eγ2y dF (y)− 1

)
λs ds

)
,

pt(αt, βt) = − e
(
it(αt, βt), jt(αt, βt)

)
− γ1

2
α2
t ε

2
t + ct + it(αt, βt)−

γ2

2
ε2t (αt − 1)2

−
(

1

γ2

∫ ∞
0

(1 + γ1βty)−γ2/γ1eγ2y dF (y)− 1

γ2

+ βtm

)
jt(αt, βt).

Using that pt is a deterministic function and M is a martingale because α and β are
bounded for an admissible contract, we have

Eu,λ
[
Mτe

−γ2(
∫ τ
0 pt(αt,βt) dt−d(τ))

]
≥ Eu,λ

[
Mτe

−γ2 max
s

( ∫ s
0 max

y,z
pt(y,z) dt−d(s)

)]
= e

−γ2 max
s

( ∫ s
0 max

y,z
pt(y,z) dt−d(s)

)
Eu,λ[Mτ ]

= e
−γ2 max

s

( ∫ s
0 max

y,z
pt(y,z) dt−d(s)

)
(1− γ1R0)−γ2/γ1

with equality when choosing α?t and β?t to be the maximizers of pt(αt, βt) and τ = τ ?

as in (3.5). This shows that α?, β? and τ ? are the maximizers of

Eu,λ[U2(Xτ − Cτ − d(τ))] = Eu,λ
[
− 1

γ2

(
Mτe

∫ τ
0 pt(αt,βt) dt−γ2d(τ) − 1

)]
= − 1

γ2

(
(1− γ1R0)−γ2/γ1e−γ2 (

∫ τ
0 pt(αt,βt) dt−d(τ)) − 1

)
= U2

(∫ τ

0

pt(αt, βt) dt− d(τ) +
1

γ1

log(1− γ1R0)

)
,

23



and the optimal contract is given by (A.4) with α = α?, β = β? and τ = τ ?. To
check that this contract and the corresponding actions are indeed admissible, we
first fix some arbitrary ũ ≥ 0 and λ̃ > 0 with corresponding α̃ = ∂

∂u
e
(
ũ, λ̃
)

and

β̃ = − 1
m

∂
∂λ
e
(
ũ, λ̃
)
. Because εt is a bounded function, pt

(
α̃, β̃

)
− ct is also a bounded

function so that there exists K such that pt
(
α̃, β̃

)
− ct ≥ K for all t. Using that

pt(αt, βt)− ct ≤ − e(ut, λt) + ut −
(

1

γ2

∫ ∞
0

(
1− γ1y

m

∂

∂λ
e(ut, λt)

)−γ2/γ1
eγ2y dF (y)

− 1

γ2

− ∂

∂λ
e(ut, λt)

)
λt,

we check that the right-hand side (and thus also pt(αt, βt) − ct) diverges to −∞
if ut ↗ ∞ or λt ↗ ∞ or λt ↘ 0. In turn, this yields the existence of constants
k1, k2, k3 > 0 such that pt(αt, βt)−ct < K if ut > k1 or λt < k2 or λt > k3. Therefore,
the optimal u∗t and λ∗t are valued in bounded sets [0, k1] and [k2, k3], respectively,
for all t ∈ [0, T ], and hence also the optimal α∗t and β∗t , which are related to u∗t
and λ∗t by (3.2), are bounded. This shows that the optimal contract and actions are
admissible.

Proof of Corollary 3.5. We first note that it(αt, βt) and jt(αt, βt) do not depend
on γ1; see (3.2). Therefore, to consider pt(αt, βt) as γ1 ↘ 0, it is enough to deduce
from

lim
γ1↘0

(1 + γ1βty)−γ2/γ1 = lim
z→∞

(
1 +

γ2βty

z

)−z
= e−γ2βty,

that

lim
γ1↘0

pt(αt, βt) =− e
(
it(αt, βt), jt(αt, βt)

)
+ ct + it(αt, βt)

− γ2

2
ε2t (αt − 1)2 −

(
1

γ2

∫ ∞
0

eγ2y(1−βt) dF (y)− 1

γ2

+ βtm

)
jt(αt, βt)

and denote p1
t (αt, βt) = limγ1↘0 pt(αt, βt). This convergence is uniform in (αt, βt) for

bounded values. We note that in (3.3), we have

lim
γ1↘0

(
− 1

γ1

log(1− γ1R0)
)

= R0,

lim
γ1↘0

(
1

γ1

∑
0<t≤τ?

log(1 + γ1β
?
t ∆Jt)

)
=
∑

0<t≤τ?
β?t ∆Jt =

∫ τ?

0

β?t dJt a.s.

Therefore, using that pointwise convergence of an integrand gives convergence in
probability of the corresponding stochastic integral, we deduce that the optimal
contract converges in probability to

C1,?
τ? = R0 +

∫ τ?

0

e(u?t , λ
?
t ) dt+

∫ τ?

0

α?t (dxt − (ct + u?t ) dt)−
∫ τ?

0

β?t (dJt − λ?tmdt),
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where u?t = it(α
?
t , β

?
t ), λ

?
t = jt(α

?
t , β

?
t ), and α?t and β?t are the maximizers of

p1
t (αt, βt) = − e

(
it(αt, βt), jt(αt, βt)

)
+ ct + it(αt, βt)−

γ2

2
ε2t (αt − 1)2

−
(

1

γ2

∫ ∞
0

eγ2y(1−βt) dF (y)− 1

γ2

+ βtm

)
jt(αt, βt).

Using the incentive compatibility condition (3.2), we can write p1
t (α

?
t , β

?
t ) as a func-

tion of u?t = it(α
?
t , β

?
t ), λ

?
t = jt(α

?
t , β

?
t ) in the form

p̃1
t (u

?
t , λ

?
t ) = − e(u?t , λ?t ) + ct + u?t −

γ2

2
ε2t

(
∂

∂u
e(u?t , λ

?
t )− 1

)2

−
(

1

γ2

∫ ∞
0

eγ2y(1+ 1
m

∂
∂λ
e(u?t ,λ

?
t )) dF (y)− 1

γ2

− ∂

∂λ
e(u?t , λ

?
t )

)
λ?t .

The first-order conditions yield

∂

∂u
p̃1
t (u

?
t , λ

?
t ) = − ∂

∂u
e(u?t , λ

?
t ) + 1− γ2ε

2
t

(
∂

∂u
e(u?t , λ

?
t )− 1

)
∂2

∂u2
e(u?t , λ

?
t )

−
(∫ ∞

0

yeγ2y(1+ 1
m

∂
∂λ
e(u?t ,λ

?
t )) 1

m

∂2

∂λ∂u
e(u?t , λ

?
t ) dF (y)− ∂2

∂λ∂u
e(u?t , λ

?
t )

)
λ?t

= −
(

1 + γ2ε
2
t

∂2

∂u2
e(u?t , λ

?
t )

)(
∂

∂u
e(u?t , λ

?
t )− 1

)
− λ∗t

∂2

∂λ∂u
e(u?t , λ

?
t )

(∫ ∞
0

yeγ2y(1+ 1
m

∂
∂λ
e(u?t ,λ

?
t )) 1

m
dF (y)− 1

)
= 0,

∂

∂λ
p̃1
t (u

?
t , λ

?
t ) = − ∂

∂λ
e(u?t , λ

?
t )− γ2ε

2
t

(
∂

∂u
e(u?t , λ

?
t )− 1

)
∂2

∂λ∂u
e(u?t , λ

?
t )

−
(∫ ∞

0

yeγ2y(1+ 1
m

∂
∂λ
e(u?t ,λ

?
t )) 1

m

∂2

∂λ2
e(u?t , λ

?
t ) dF (y)− ∂2

∂λ2
e(u?t , λ

?
t )

)
λ?t

−
(

1

γ2

∫ ∞
0

eγ2y(1+ 1
m

∂
∂λ
e(u?t ,λ

?
t )) dF (y)− 1

γ2

− ∂

∂λ
e(u?t , λ

?
t )

)
= −γ2ε

2
t

(
∂

∂u
e(u?t , λ

?
t )− 1

)
∂2

∂λ∂u
e(u?t , λ

?
t )

−
∫ ∞

0

(
eγ2y(1+ 1

m
∂
∂λ
e(u?t ,λ

?
t )) − 1

)( 1

γ2

+
x

m

∂2

∂λ2
e(u?t , λ

?
t )

)
dF (y)

= 0.

These conditions are satisfied for ∂
∂u
e(u?t , λ

?
t ) = 1 and ∂

∂λ
e(u?t , λ

?
t ) = −m, which

follows from the incentive compatibility condition (3.2) by choosing α?t = 1 and
β?t = 1.
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Proof of Corollary 3.6. The optimal contract in Theorem 3.4 depends on γ2 only
through pt(αt, βt). Using the uniform convergence for bounded values in

lim
γ2↘0

1

γ2

(
(1 + γ1βty)−γ2/γ1eγ2y − 1

)
= lim

γ2↘0

1

γ2

((
(1 + γ1βty)−1/γ1ey

)γ2 − 1
)

= log
ey

(1 + γ1βty)1/γ1
(A.5)

and ∫ ∞
0

log
ey

(1 + γ1βty)1/γ1
dF (y) =

∫ ∞
0

(
y − 1

γ1

log(1 + γ1βty)
)
dF (y)

= m− 1

γ1

∫ ∞
0

log(1 + γ1βty) dF (y),

we deduce the uniform convergence for bounded values of pt(αt, βt) to p2
t (αt, βt) as

γ2 ↘ 0.
To prove p2

t (αt, βt) ≥ pt(αt, βt), it is enough to show

1

γ2

(
(1 + γ1βty)−γ2/γ1eγ2y − 1

)
≥ log

ey

(1 + γ1βty)1/γ1
for all γ2 > 0.

Because of (A.5), we can establish this if we show that the function x(y1/x − 1) is
decreasing in x > 0 for every fixed y > 0. We have

d

dx
x(y1/x − 1) = y1/x − 1 + x log(y)y1/x−1

x2
= y1/x

(
1− y−1/x + log(y−1/x)

)
≤ 0,

where we applied 1− z + log(z) ≤ 0 for all z > 0, which follows from ez ≥ ze.
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A. Capponi, J. Cvitanić and T. Yolcu: A Variational Approach to Contracting
under Imperfect Observations. SIAM Journal on Financial Mathematics 3, 605–
638, 2012.

J. Cordeiro and J. Sarkis: Does Explicit Contracting Effectively Link CEO Com-
pensation to Environmental Performance? Business Strategy and the Environment
17, 304–317, 2008.
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