Automorphisms and Twisted Forms of Differential Conformal Superalgebras

Zhihua Chang*
(joint work with Arturo Pianzola)

Bar-Ilan University

December 04, 2013

*Email: zhihuachang@gmail.com
Department of Mathematics, Bar-Ilan University
Outline

Affine Kac-Moody algebras

Lie algebras and Lie conformal algebras

Differential conformal algebras and their forms

The $N = 1, 2, 3$ conformal superalgebras

The small $N = 4$ conformal superalgebra

The large $N = 4$ conformal superalgebra
Generalized Cartan matrices

A matrix $A = (a_{ij}) \in M_n(\mathbb{Z})$ is called a Generalized Cartan Matrix if

- $a_{ii} = 2$,
- $a_{ij} \leq 0$ if $i \neq j$,
- $a_{ij} = 0$ if and only if $a_{ji} = 0$.
Classification of generalized Cartan matrices

A is decomposable if there is $\sigma \in S_n$ such that

$$(a_{\sigma(i),\sigma(j)}) = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}.$$

Otherwise, we say A is indecomposable.
Classification of generalized Cartan matrices

A is decomposable if there is $\sigma \in S_n$ such that

$$(a_{\sigma(i),\sigma(j)} = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}.$$

Otherwise, we say A is indecomposable.

Facts:
Let A be an indecomposable GCM. Then exactly one of the following statements holds:

- There is $v \in \mathbb{R}^n_{>0}$ such that $Av > 0$. (Finite Type)
- There is $v \in \mathbb{R}^n_{>0}$ such that $Av = 0$. (Affine Type)
- There is $v \in \mathbb{R}^n_{>0}$ such that $Av < 0$. (Indefinite Type)
Definition of KM algebra

Let \(A \) be a generalized Cartan matrix. Then we define \(\mathcal{L}(A) \) to be the Lie algebra generated by \(\{ h_i, e_i, f_i \mid i = 1, \ldots, n \} \) subject to the relations:

\[
\begin{align*}
[h_i, h_j] &= 0, \\
[h_i, e_j] &= a_{ij} e_j, \\
[h_i, f_j] &= -a_{ij} f_j, \\
\text{ad}(e_i)^{1-a_{ij}}(e_j) &= 0, \\
\text{ad}(f_i)^{1-a_{ij}}(f_j) &= 0,
\end{align*}
\]

for \(i, j = 1, \ldots, n \).
Definition of KM algebra

Let A be a generalized Cartan matrix. Then we define $\mathcal{L}(A)$ to be the Lie algebra generated by $\{h_i, e_i, f_i| i = 1, \ldots, n\}$ subject to the relations:

\[
[h_i, h_j] = 0, \quad [e_i, f_j] = \delta_{ij} h_i, \quad [h_i, e_j] = a_{ij} e_j, \quad [h_i, f_j] = -a_{ij} f_j, \quad \text{ad}(e_i)^{1-a_{ij}}(e_j) = 0, \quad \text{ad}(f_i)^{1-a_{ij}}(f_j) = 0,
\]

for $i, j = 1, \ldots, n$.

Facts:

- the set of equivalent classes of GCM of finite type
- the isomorphism classes of finite dimensional simple complex Lie algebras
Twisted loop realization of affine KM algebras

Let \(g \) be a finite dimensional simple Lie algebra over \(\mathbb{C} \) and \(\sigma \) an automorphism of \(g \) of order \(m \). Then

\[
g = \bigoplus_{\ell=1}^{m} g_{\ell},
\]

where \(g_{\ell} = \{ x \in g \mid \sigma(x) = \zeta_{m}^\ell x \} \), \(\zeta_{m} = e^{\frac{2\pi i}{m}} \).
Twisted loop realization of affine KM algebras

Let \(g \) be a finite dimensional simple Lie algebra over \(\mathbb{C} \) and \(\sigma \) an automorphism of \(g \) of order \(m \). Then

\[
g = \bigoplus_{\ell=1}^{m} g_{\ell},
\]

where \(g_{\ell} = \{ x \in g | \sigma(x) = \zeta_{m}^{\ell}x \} \), \(\zeta_{m} = e^{\frac{2\pi i}{m}} \).

One can construct a Lie algebra

\[
L(g, \sigma) = \bigoplus_{\ell \in \mathbb{Z}} g_{\ell} \otimes \mathbb{C} t^{\frac{\ell}{m}}.
\]
Twisted loop realization of affine KM algebras

- Let \(\mathfrak{g} \) be a finite dimensional simple Lie algebra over \(\mathbb{C} \) and \(\sigma \) an automorphism of \(\mathfrak{g} \) of order \(m \). Then

\[
\mathfrak{g} = \bigoplus_{\ell=1}^{m} \mathfrak{g}_\ell,
\]

where \(\mathfrak{g}_\ell = \{ x \in \mathfrak{g} | \sigma(x) = \zeta_{m}^{\ell} x \} \), \(\zeta_{m} = e^{\frac{2\pi i}{m}} \).

- One can construct a Lie algebra

\[
L(\mathfrak{g}, \sigma) = \bigoplus_{\ell \in \mathbb{Z}} \mathfrak{g}_\ell \otimes \mathbb{C} t^{\ell/m}.
\]

- Fact: For an affine GCM \(A \), the Lie algebra \(\mathcal{L}(A) \) is isomorphic to a Lie algebra of the form

\[
L(\mathfrak{g}, \sigma) \oplus \mathbb{C}c.
\]
Affine algebras as twisted forms

Key observations by A. Pianzola and his collaborators:
Affine algebras as twisted forms

Key observations by A. Pianzola and his collaborators:

- $L(g, \sigma)$ is a Lie algebra over $D := \mathbb{C}[t^{\pm 1}]$.
Affine algebras as twisted forms

Key observations by A. Pianzola and his collaborators:

- $L(\mathfrak{g}, \sigma)$ is a Lie algebra over $D := \mathbb{C}[t^{\pm 1}]$.
- $D \hookrightarrow D_m := \mathbb{C}[t^{\pm \frac{1}{m}}]$ is a finite Galois ring extension.
Affine algebras as twisted forms

Key observations by A. Pianzola and his collaborators:

- $L(\mathfrak{g}, \sigma)$ is a Lie algebra over $D := \mathbb{C}[t^{\pm 1}]$.
- $D \hookrightarrow D_m := \mathbb{C}[t^{\pm \frac{1}{m}}]$ is a finite Galois ring extension.
- $L(\mathfrak{g}, \sigma) \otimes_D D_m \cong (\mathfrak{g} \otimes_{\mathbb{C}} D) \otimes_D D_m \cong \mathfrak{g} \otimes_{\mathbb{C}} D_m$, i.e., $L(\mathfrak{g}, \sigma)$ is a D_m/D–twisted form of $\mathfrak{g} \otimes_{\mathbb{C}} D = L(\mathfrak{g}, \text{id})$.

Well known results on twisted forms:

The isomorphism classes of D_m/D–twisted form of $\mathfrak{g} \otimes_{\mathbb{C}} D$ bijectively correspond to elements of $H^1(D_m/D, \text{Aut}(\mathfrak{g} \otimes_{\mathbb{C}} D))$.

$N = 1, 2, 3$

small $N = 4$

large $N = 4$
Affine algebras as twisted forms

Key observations by A. Pianzola and his collaborators:

- $L(\mathfrak{g}, \sigma)$ is a Lie algebra over $D := \mathbb{C}[t^{\pm 1}]$.
- $D \hookrightarrow D_m := \mathbb{C}[t^{\pm 1/m}]$ is a finite Galois ring extension.
- $L(\mathfrak{g}, \sigma) \otimes_D D_m \cong (\mathfrak{g} \otimes_{\mathbb{C}} D) \otimes_D D_m \cong \mathfrak{g} \otimes_{\mathbb{C}} D_m$, i.e., $L(\mathfrak{g}, \sigma)$ is a D_m/D–twisted form of $\mathfrak{g} \otimes_{\mathbb{C}} D = L(\mathfrak{g}, \text{id})$.

Well known results on twisted forms:
The isomorphism classes of D_m/D–twisted form of $\mathfrak{g} \otimes_{\mathbb{C}} D$ bijectively correspond to elements of $H^1(D_m/D, \text{Aut}(\mathfrak{g} \otimes_{\mathbb{C}} D))$.
Definition of H^1

Let

- $R \rightarrow S$ a faithfully flat ring extension, and
- G a functor from the category of commutative rings to the category of groups.

Consider the natural maps

$$d^i : G(S) \rightarrow G(S \otimes_R S),$$

for $i = 1, 2$, and

$$d^{ij} : G(S \otimes_R S) \rightarrow G(S \otimes_R S \otimes_R S),$$

for $(i, j) = (1, 2), (1, 3), (2, 3)$.

Definition of H^1

A 1-cocycle is $\mathcal{z} \in \mathbf{G}(S \otimes_R S)$ such that

$$d^{13}(\mathcal{z}) = d^{23}(\mathcal{z})d^{12}(\mathcal{z}).$$

Two 1-cocycles \mathcal{z} and \mathcal{z}' are equivalent if there is $a \in \mathbf{G}(S)$ such that

$$\mathcal{z}' = d^2(a)\mathcal{z}(d^1(a))^{-1}.$$

$H^1(S/R, \mathbf{G})$ is the set

$$\left\{ \text{1-cocycles} \right\}_{\text{equivalence}}.$$
Researches motivated by the above viewpoint

- $H^1_{\text{ét}}(D, G)$ for a reductive group scheme G over D.
 c.f. [P 2004], [GP 2007-2008], [CGP2012], [GP2013].
Researches motivated by the above viewpoint

- $H^1_{\text{ét}}(D, G)$ for a reductive group scheme G over D. c.f. [P 2004], [GP 2007-2008], [CGP2012], [GP2013].

- Application of descent theory to Lie theory:
 - central extension:
 c.f. [PPS 2007], [S 2009].
Researches motivated by the above viewpoint

- $H^1_{\text{ét}}(D, G)$ for a reductive group scheme G over D. c.f. [P 2004], [GP 2007-2008], [CGP2012], [GP2013].

- Application of descent theory to Lie theory:
 - central extension: c.f. [PPS 2007], [S 2009].
 - derivation: c.f. [P 2010].
Researches motivated by the above viewpoint

- $H^1_{\text{ét}}(D, G)$ for a reductive group scheme G over D.
 c.f. [P 2004], [GP 2007-2008], [CGP2012], [GP2013].

- Application of descent theory to Lie theory:
 - central extension:
 c.f. [PPS 2007], [S 2009].
 - derivation:
 c.f. [P 2010].
 - conjugacy of Cartan subalgebras:
 c.f. [P 2004], [CGP 2011], [CEGP 2012].
Researches motivated by the above viewpoint

- $H^1_{\text{ét}}(D, G)$ for a reductive group scheme G over D. c.f. [P 2004], [GP 2007-2008], [CGP2012], [GP2013].

- Application of descent theory to Lie theory:
 - central extension:
 c.f. [PPS 2007], [S 2009].
 - derivation:
 c.f. [P 2010].
 - conjugacy of Cartan subalgebras:
 c.f. [P 2004], [CGP 2011], [CEGP 2012].
 - finite dimensional irreducible representation:
 c.f. [L 2010], [LP 2013].
Researches motivated by the above viewpoint

- $H^1_{\text{ét}}(D, G)$ for a reductive group scheme G over D. c.f. [P 2004], [GP 2007-2008], [CGP2012], [GP2013].
- Application of descent theory to Lie theory:
 - central extension:
 c.f. [PPS 2007], [S 2009].
 - derivation:
 c.f. [P 2010].
 - conjugacy of Cartan subalgebras:
 c.f. [P 2004], [CGP 2011], [CEGP 2012].
 - finite dimensional irreducible representation:
 c.f. [L 2010], [LP 2013].
 - invariant bilinear form:
 c.f. [NPPS 2013].
Outline

Affine Kac-Moody algebras

Lie algebras and Lie conformal algebras

Differential conformal algebras and their forms

The $N = 1, 2, 3$ conformal superalgebras

The small $N = 4$ conformal superalgebra

The large $N = 4$ conformal superalgebra
Motivating Example:
The Centreless Virasoro Algebra

\(\mathbb{k} \): an algebraically closed field of characteristic zero
\(\mathfrak{v} \): the centreless Virasoro algebra

- \(\mathfrak{v} \) has a basis \(\{ L_n \mid n \in \mathbb{Z} \} \) satisfying \([L_m, L_n] = (m - n)L_{m+n} \).
Motivating Example:
The Centreless Virasoro Algebra

k: an algebraically closed field of characteristic zero
v: the centreless Virasoro algebra

\triangleright v has a basis $\{L_n| n \in \mathbb{Z}\}$ satisfying $[L_m, L_n] = (m - n)L_{m+n}$.

Consider the formal series $L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}$.
The Lie bracket on v yields the OPE

$$[L(z), L(w)] : = \sum_{m,n \in \mathbb{Z}} [L_m, L_n] z^{-m-2} w^{-n-2}$$
$$= (\partial_w L(w)) \delta(z - w) + 2L(w) \partial_w \delta(z - w),$$

where $\delta(z - w) = \sum_{n \in \mathbb{Z}} w^n z^{-n-1}$.
Lie Algebra \Rightarrow Conformal Algebra

Let $\mathcal{V} := \text{span}_k \{ \partial^\ell_z L(z) | \ell \geq 0 \}$.

- For $a(z), b(z) \in \mathcal{V}$, we have

$$[a(z), b(w)] = \sum_{\ell \geq 0} c_\ell(w) \cdot \partial_w^{(\ell)} \delta(z - w),$$

where $c_\ell(z) \in \mathcal{V}$.

Summarizing:

\mathcal{V} is a $k[\partial]$-module generated by $L(z)$, equipped with a λ-bracket on \mathcal{V} given by

$$[L(z) \lambda L(z)] := (\partial z + 2 \lambda) L(z).$$
Let \(\mathcal{V} := \text{span}_k \{ \partial_z^\ell L(z) | \ell \geq 0 \} \).

- For \(a(z), b(z) \in \mathcal{V} \), we have

\[
[a(z), b(w)] = \sum_{\ell \geq 0} c_\ell(w) \cdot \partial_w^{(\ell)} \delta(z - w),
\]

where \(c_\ell(z) \in \mathcal{V} \).

- We can define a product on \(\mathcal{V} \) for each \(\ell \geq 0 \) by

\[
a(z)(\ell)b(z) := c_\ell(z).
\]
Lie Algebra \Rightarrow Conformal Algebra

Let $\mathcal{V} := \text{span}_k \{ \partial^\ell_z L(z) | \ell \geq 0 \}$.

- For $a(z), b(z) \in \mathcal{V}$, we have

 $$[a(z), b(w)] = \sum_{\ell \geq 0} c_{\ell}(w) \cdot \partial_w^{(\ell)} \delta(z - w),$$

 where $c_{\ell}(z) \in \mathcal{V}$.

- We can define a product on \mathcal{V} for each $\ell \geq 0$ by

 $$a(z)_{(\ell)} b(z) := c_{\ell}(z).$$

Notation: λ–bracket

$$[a(z)_{\lambda} b(z)] = \sum_{\ell \geq 0} \lambda^{(\ell)} (a(z)_{(\ell)} b(z)).$$
Lie Algebra \Rightarrow Conformal Algebra

Let $\mathcal{V} := \text{span}_k \{ \partial^\ell_z L(z) | \ell \geq 0 \}$.

- For $a(z), b(z) \in \mathcal{V}$, we have
 \[[a(z), b(w)] = \sum_{\ell \geq 0} c_\ell(w) \cdot \partial^{(\ell)}_w \delta(z - w), \]
 where $c_\ell(z) \in \mathcal{V}$.

- We can define a product on \mathcal{V} for each $\ell \geq 0$ by
 \[a(z)(\ell)b(z) := c_\ell(z). \]

Notation: λ–bracket

\[[a(z)\lambda b(z)] = \sum_{\ell \geq 0} \lambda^{(\ell)} (a(z)(\ell)b(z)). \]

Summarizing: \mathcal{V} is a $k[\partial]$–module generated by $L(z)$, equipped with a λ–bracket on \mathcal{V} given by

\[[L(z)\lambda L(z)] := (\partial_z + 2\lambda)L(z). \]
Lie conformal algebras

axiomatic definition

Due to V. G. Kac.

A Lie conformal algebra over \(k \) is a \(k[\partial] \)-module \(\mathcal{A} \) equipped with a \(\lambda \)-bracket

\[
[\lambda] : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}[\lambda],
\]

satisfying

(C1) \([(\partial a)\lambda b] = -\lambda[a\lambda b] \),

(C2) \([b\lambda a] = -[a-\partial-\lambda b] \),

(C3) \([a\lambda[b\mu c]] = [[a\lambda b]\lambda+\mu c] + [b\mu[a\lambda c]] \),

for all \(a, b, c \in \mathcal{A} \).
Lie conformal algebra \Rightarrow Lie algebra

affinization

\mathcal{A}: a Lie conformal algebra over \mathbb{k}.

Define a conformal algebra structure on $\mathcal{A} \otimes_{\mathbb{k}} \mathbb{k}[t^{\pm 1}]$ by

$$\hat{\partial}(a \otimes r) = \partial(a) \otimes r + a \otimes \frac{d}{dt}(r)$$

and

$$(a \otimes r)(\ell)(b \otimes s) := \sum_{j \geq 0} (a(\ell+j)b) \otimes (\frac{d}{dt})^{(j)}(r)s,$$

for $a, b \in \mathcal{A}$ and $r, s \in \mathbb{k}[t^{\pm 1}]$.

Terminology: the (untwisted) loop conformal algebra based on \mathcal{A}.

Notation: $\mathcal{A} \otimes_{\mathbb{k}} \mathcal{D}$, where $\mathcal{D} = (\mathbb{k}[t^{\pm 1}], \frac{d}{dt})$.

Lie conformal algebra \Rightarrow Lie algebra

The conformal algebra $\mathcal{A} \otimes_k \mathcal{D}$ determines a Lie algebra

$$\text{Alg}(\mathcal{A}) := (\mathcal{A} \otimes_k \mathcal{D})/\widehat{\partial}(\mathcal{A} \otimes_k \mathcal{D}),$$

with Lie bracket induced by the 0–th product on $\mathcal{A} \otimes_k \mathcal{D}$.
Twisted loop Lie conformal algebras

Given

- \mathcal{A}: a Lie conformal algebra over \mathbb{k}
- $\sigma: \mathcal{A} \to \mathcal{A}$ an automorphism of \mathcal{A} of order m

We know that

- $\mathcal{A} \otimes_\mathbb{k} \mathcal{D}_m$ is a Lie conformal algebra over \mathbb{k}, where $\mathcal{D}_m = (\mathbb{k}[t^{\pm 1/m}], \frac{d}{dt})$.

\[
\mathcal{A} = \bigoplus_{\ell=1}^{m} \mathcal{A}_\ell,
\]

where $\mathcal{A}_\ell = \{ a \in \mathcal{A} | \sigma(a) = \zeta_\ell^m a \}$ and $\zeta_m = e^{\frac{2\pi i}{m}}$.
Twisted loop Lie conformal algebras

Facts:

- The k–subspace

$$\mathcal{L}(\mathcal{A}, \sigma) = \bigoplus_{\ell=1}^{m} \mathcal{A}_\ell \otimes t^\ell k[t^{\pm 1}] \subseteq \mathcal{A} \otimes_k \mathcal{D}_m,$$

is a Lie conformal subalgebra of $\mathcal{A} \otimes_k \mathcal{D}_m$.

(the twisted loop conformal algebra based on \mathcal{A} w.r.t σ)
Twisted loop Lie conformal algebras

Facts:

- The \(k \)-subspace

\[
\mathcal{L}(\mathcal{A}, \sigma) = \bigoplus_{\ell=1}^{m} \mathcal{A}_\ell \otimes t^\ell_m k[t^{\pm 1}] \subseteq \mathcal{A} \otimes_k \mathcal{D}_m,
\]

is a Lie conformal subalgebra of \(\mathcal{A} \otimes_k \mathcal{D}_m \).

(\text{the twisted loop conformal algebra based on } \mathcal{A} \text{ w.r.t } \sigma)

- \(\mathcal{L}(\mathcal{A}, \sigma) = (\mathcal{A} \otimes \mathcal{D}_m)^\Gamma \),

where \(\Gamma \) is a finite cyclic group of automorphisms of \(\mathcal{A} \otimes \mathcal{D}_m \) generated by

\[
\sigma \otimes \psi : \mathcal{A} \otimes_k \mathcal{D}_m \to \mathcal{A} \otimes_k \mathcal{D}_m,
\]

\[
a \otimes t^\frac{n}{m} \mapsto \sigma(a) \otimes \zeta_m^n t^\frac{n}{m}.
\]

- In particular, \(\mathcal{L}(\mathcal{A}, \text{id}) = \mathcal{A} \otimes_k \mathcal{D} \).
The associated Lie algebras

- The conformal algebra $\mathcal{L}(\mathcal{A}, \sigma)$ determines a Lie algebra

$$\text{Alg}(\mathcal{A}, \sigma) := \mathcal{L}(\mathcal{A}, \sigma) / \hat{\partial} \mathcal{L}(\mathcal{A}, \sigma)$$

with Lie bracket induced by the 0-th product on $\mathcal{L}(\mathcal{A}, \sigma)$.

Central extensions of Lie superalgebras of this form are indeed the twisted superconformal Lie algebras which appear in physics literature.
The associated Lie algebras

- The conformal algebra $\mathcal{L}(\mathcal{A}, \sigma)$ determines a Lie algebra

$$\text{Alg}(\mathcal{A}, \sigma) := \mathcal{L}(\mathcal{A}, \sigma)/\hat{\partial}\mathcal{L}(\mathcal{A}, \sigma)$$

with Lie bracket induced by the 0-th product on $\mathcal{L}(\mathcal{A}, \sigma)$.

- Central extensions of Lie superalgebras of this form are indeed the twisted superconformal Lie algebras which appear in physics literature.
Lie algebras ⇐ Lie conformal algebras

Summary:

\[\mathcal{L}(\mathcal{A}, \text{id}) \quad \text{Alg}(\mathcal{A}, \text{id}) \]

\[g \longrightarrow \mathcal{A} \longrightarrow \mathcal{A} \otimes_k \mathcal{D} \longrightarrow \text{Alg}(\mathcal{A}) \longrightarrow g \]

\[\mathcal{L}(\mathcal{A}, \sigma) \longrightarrow \text{Alg}(\mathcal{A}, \sigma) \]
Question

Given a conformal algebra \mathcal{A} over \mathbb{k}, how can we classify all twisted loop conformal algebras based on \mathcal{A}?
Question

Given a conformal algebra \mathcal{A} over \mathbb{k}, how can we classify all twisted loop conformal algebras based on \mathcal{A}?

The theory of differential conformal (super)algebras was developed in

[KLP] V. G. Kac, M. Lau, and A. Pianzola,
Differential conformal superalgebras and their forms,
Outline

Affine Kac-Moody algebras

Lie algebras and Lie conformal algebras

Differential conformal algebras and their forms

The $N = 1, 2, 3$ conformal superalgebras

The small $N = 4$ conformal superalgebra

The large $N = 4$ conformal superalgebra
Key observation I in [KLP]

\(\mathcal{L}(\mathcal{A}, \sigma) \) is not only a conformal algebra over \(k \), but also a differential conformal algebra over \(D := (k[t^{\pm 1}], \frac{d}{dt}) \).
Key observation I in [KLP]

\(\mathcal{L}(\mathcal{A}, \sigma)\) is not only a conformal algebra over \(\mathbb{k}\), but also a differential conformal algebra over \(\mathcal{D} := (\mathbb{k}[t^{\pm 1}], \frac{d}{dt})\).

Let \(\mathcal{R} = (R, d)\) be a \(\mathbb{k}\)–differential ring.
A differential Lie conformal algebra over \(\mathcal{R}\) consists of

- an \(R\)-module \(\mathcal{A}\),
- a \(\mathbb{k}\)–linear operator \(\partial : \mathcal{A} \to \mathcal{A}\) such that
 \[
 \partial(ra) = d(r)a + r\partial(a),
 \]
- a \(\mathbb{k}\)–bilinear product \(-_{(n)}-\) for each \(n \in \mathbb{Z}_+\) satisfying
 \[
 (1) \quad a_{(n)}(rb) = r(a_{(n)}b),
 (2) \quad (ra)_{(n)}b = \sum_{j \in \mathbb{Z}_+} d^{(j)}(r)(a_{(n+j)}b).
 \]
which satisfy axioms (C1), (C2) and (C3).
Terminology: \(\mathcal{R}\)–conformal algebra.
Key observation II in [KLP]

\[\mathcal{L}(A, \sigma) \] is a \(\mathcal{D}_m/\mathcal{D} \)-form of \(\mathcal{L}(A, \text{id}) \), i.e.,

\[\mathcal{L}(A, \sigma) \otimes_{\mathcal{D}} \mathcal{D}_m \cong \mathcal{L}(A, \text{id}) \otimes_{\mathcal{D}} \mathcal{D}_m \cong A \otimes_{k} \mathcal{D}_m \]

as \(\mathcal{D}_m \)-conformal algebras, where \(\mathcal{D}_m := (k[t^\pm \frac{1}{m}], \frac{d}{dt}) \).
Key observation II in [KLP]

\[\mathcal{L}(A, \sigma) \text{ is a } \mathcal{D}_m/\mathcal{D} \text{--form of } \mathcal{L}(A, \text{id}), \text{ i.e.,} \]

\[\mathcal{L}(A, \sigma) \otimes_{\mathcal{D}} \mathcal{D}_m \cong \mathcal{L}(A, \text{id}) \otimes_{\mathcal{D}} \mathcal{D}_m \cong A \otimes_{\mathcal{K}} \mathcal{D}_m \]

as \(\mathcal{D}_m \)--conformal algebras, where \(\mathcal{D}_m := (\mathcal{K}[t^{\pm \frac{1}{m}}], \frac{d}{dt}) \).

Base Change

an \(\mathcal{R} \)--conformal algebra \(A \)
\[\mathcal{R} = (R, d_R) \rightarrow S = (S, d_S) \}

\[\Rightarrow \] an \(S \)--conformal algebra \(A \otimes_{\mathcal{R}} S \)

- the underlying \(S \)--module: \(A \otimes_R S \).
- \(\hat{\partial} := \partial \otimes \text{id} + \text{id} \otimes d_S \)
- the \(n \)-th product

\[(a \otimes r)_{(n)}(b \otimes s) = \sum_{j \geq 0} (a_{(n+j)}b) \otimes d_S^{(j)}(r)s, \]

for \(a, b \in A, r, s \in S \).
Classification of twisted forms

\(\mathcal{A} \): an \(\mathcal{R} \)–conformal algebra

Automorphism group functor:

\[
\text{Aut}(\mathcal{A}) : S \mapsto \text{Aut}_{S\text{-conf}}(\mathcal{A} \otimes \mathcal{R} S).
\]
Classification of twisted forms

\(\mathcal{A} : \text{an } \mathcal{R}\text{–conformal algebra} \)

Automorphism group functor:

\[\text{Aut}(\mathcal{A}) : S \mapsto \text{Aut}_{S\text{-conf}}(\mathcal{A} \otimes_{\mathcal{R}} S). \]

Theorem (Kac, Lau, Pianzola, 2009)

Let \(\mathcal{R} \rightarrow S \) be a faithfully flat extension of \(\mathbb{k}\text{–differential rings}. \) Then

\[\text{the set of isomorphism classes of } S/\mathcal{R}\text{–forms of } \mathcal{A} \text{ (up to } \mathcal{R}\text{–isomorphism)} \leftrightarrow H^1(S/\mathcal{R}, \text{Aut}(\mathcal{A})). \]
Classification of twisted loop conformal algebras

Recall: $L(\mathcal{A}, \sigma)$ is a $\mathcal{D}_m/\mathcal{D}$–form of $\mathcal{A} \otimes_k \mathcal{D}$.

Take

$$\hat{\mathcal{D}} := \lim_{\to} \mathcal{D}_m.$$

We know: $L(\mathcal{A}, \sigma)$ is a $\hat{\mathcal{D}}/\mathcal{D}$–form of $\mathcal{A} \otimes_k \mathcal{D}$.

$N = 1, 2, 3$

small $N = 4$

large $N = 4$
Classification of twisted loop conformal algebras

Recall: \(L(\mathcal{A}, \sigma) \) is a \(\mathcal{D}_m/\mathcal{D} \)–form of \(\mathcal{A} \otimes_k \mathcal{D} \).

Take

\[\hat{\mathcal{D}} := \lim_{\rightarrow} \mathcal{D}_m. \]

We know: \(L(\mathcal{A}, \sigma) \) is a \(\hat{\mathcal{D}}/\mathcal{D} \)–form of \(\mathcal{A} \otimes_k \mathcal{D} \).

Fact:

\[\text{the set of isomorphism classes of twisted loop conformal algebras based on } \mathcal{A} \] (up to \(\mathcal{D} \)–isomorphism)

\[\longleftrightarrow \]

\[H^1(\hat{\mathcal{D}}/\mathcal{D}, \text{Aut}(\mathcal{A})) \]
$H^1 \Rightarrow H^1_{ct} \Rightarrow H^1_{\text{ét}}$

Proposition (Kac, Lau, Pianzola, 2009)

If \mathcal{A} is a finitely generated $k[\partial]$–module, then

$$H^1(\mathcal{D}/\mathcal{D}, \text{Aut}(\mathcal{A})) = H^1_{ct}\left(\hat{\mathbb{Z}}, \text{Aut}_{\mathcal{D}-\text{conf}}(\mathcal{A} \otimes_k \mathcal{D})\right).$$
Proposition (Kac, Lau, Pianzola, 2009)

If \mathcal{A} is a finitely generated $k[\partial]$–module, then

$$H^1(\hat{D}/D, \text{Aut}(\mathcal{A})) = H^1_{ct}(\hat{\mathbb{Z}}, \text{Aut}_{\hat{D}\text{-conf}}(\mathcal{A} \otimes_k \hat{D})).$$

Proposition (Gille, Pianzola, 2008)

Let G be an affine group scheme over D. If G is an extension of a twisted finite constant group by a reductive group, then

$$H^1_{ct}(\hat{\mathbb{Z}}, G(\hat{D})) = H^1_{\text{ét}}(D, G).$$
\[H^1 \Rightarrow H^1_{\text{ct}} \Rightarrow H^1_{\text{ét}} \]

Proposition (Kac, Lau, Pianzola, 2009)

If \(\mathcal{A} \) is a finitely generated \(\mathbb{k}[\partial] \)-module, then

\[H^1(\hat{D}/D, \text{Aut}(\mathcal{A})) = H^1_{\text{ct}}\left(\hat{\mathbb{Z}}, \text{Aut}_{\hat{D}\text{-conf}}(\mathcal{A} \otimes_{\mathbb{k}} \hat{D})\right). \]

Proposition (Gille, Pianzola, 2008)

Let \(G \) be an affine group scheme over \(D \). If \(G \) is an extension of a twisted finite constant group by a reductive group, then

\[H^1_{\text{ct}}(\hat{\mathbb{Z}}, G(\hat{D})) = H^1_{\text{ét}}(D, G). \]

Proposition (Pianzola 2005)

Let \(G \) be a reductive group scheme over \(D \). Then \(H^1_{\text{ét}}(D, G) = 1 \).
Centroid trick

Question:
Given two twisted loop conformal algebras \(\mathcal{L}(A, \sigma_i), i = 1, 2, \)

\[
\mathcal{L}(A, \sigma_1) \not\cong_D \mathcal{L}(A, \sigma_2) \quad \Rightarrow \quad \mathcal{L}(A, \sigma_1) \not\cong_k \mathcal{L}(A, \sigma_2)
\]
Centroid trick

Question: Given two twisted loop conformal algebras $\mathcal{L}(\mathcal{A}, \sigma_i), i = 1, 2,$

$$\mathcal{L}(\mathcal{A}, \sigma_1) \not\cong_D \mathcal{L}(\mathcal{A}, \sigma_2) \Rightarrow \mathcal{L}(\mathcal{A}, \sigma_1) \not\cong_k \mathcal{L}(\mathcal{A}, \sigma_2)$$

Centroid: the centroid of an \mathcal{R}–conformal algebra \mathcal{B} is

$$\text{Ctd}_\mathcal{R}(\mathcal{B}) = \{ \chi \in \text{End}_{\mathcal{R}-\text{mod}}(\mathcal{B}) | \chi(a_{(n)}b) = a_{(n)}\chi(b), \forall a, b \in \mathcal{B}, n \in \mathbb{Z}_+ \},$$
Centroid trick

Question:
Given two twisted loop conformal algebras $\mathcal{L}(\mathcal{A}, \sigma_i), i = 1, 2,$

$$\mathcal{L}(\mathcal{A}, \sigma_1) \not\cong_D \mathcal{L}(\mathcal{A}, \sigma_2) \implies \mathcal{L}(\mathcal{A}, \sigma_1) \not\cong_k \mathcal{L}(\mathcal{A}, \sigma_2)$$

Centroid: the centroid of an \mathcal{R}–conformal algebra \mathcal{B} is

$$\text{Ctd}_\mathcal{R}(\mathcal{B}) = \{ \chi \in \text{End}_{\mathcal{R}-\text{mod}}(\mathcal{B}) | \chi(a(n)b) = a(n)\chi(b), \forall a, b \in \mathcal{B}, n \in \mathbb{Z}_+ \}$$

Proposition (Kac, Lau, Pianzola, 2009)

If the canonical maps $D \to \text{Ctd}_k(\mathcal{L}(\mathcal{A}, \sigma_i)), i = 1, 2$ are both k–algebra isomorphisms, then

$$\mathcal{L}(\mathcal{A}, \sigma_1) \cong_D \mathcal{L}(\mathcal{A}, \sigma_2) \iff \mathcal{L}(\mathcal{A}, \sigma_1) \cong_k \mathcal{L}(\mathcal{A}, \sigma_2)$$
Proposition (Chang 2013)

Let

- \mathcal{A} be a \mathbb{k}–conformal superalgebra and
- σ an automorphism of \mathcal{A} of finite order.

Suppose \mathcal{A} satisfies all of the following conditions:

1. There are $a_1, \ldots, a_{n_0} \in \mathcal{A}$ such that
 - $\mathcal{A}_0 = \mathbb{k}[\partial]a_1 \oplus \cdots \oplus \mathbb{k}[\partial]a_{n_0}$,
 - $L := a_1$ satisfies $[L_\lambda L] = (\partial + 2\lambda)L$ and $\sigma(L) = L$,
 - $[L_\lambda a_i] = (\partial + \lambda)a_i$, for $i = 2, \cdots, n_0$.

2. There are $b_1, \cdots, b_{n_1} \in \mathcal{A}_\bar{1}$ generating $\mathcal{A}_\bar{1}$ as a $\mathbb{k}[\partial]$–module such that $[L_\lambda b_i] = (\partial + \Delta'_i \lambda)b_i$ with $\Delta'_i \neq 0$ for $i = 1, \cdots, n_1$.

Then $\text{Ctd}_\mathbb{k}(\mathcal{L}(\mathcal{A}, \sigma)) = D$.
Centroid: special case

Corollary

Let \mathcal{A} be one of the $N = 1, 2, 3$ and (small or large) $N = 4$ conformal superalgebras over k, and $\mathcal{L}(\mathcal{A}, \sigma)$ be an arbitrary twisted loop conformal superalgebra based on \mathcal{A}. Then the canonical map

$$k[t^\pm 1] \to \text{Ctd}_k(\mathcal{L}(\mathcal{A}, \sigma))$$

is an isomorphism.
Summary

Given a conformal superalgebra \mathcal{A} over k, the twisted loop conformal superalgebras based on \mathcal{A} can be classified using the following steps:

- Compute the automorphism group

$$\text{Aut}_{\hat{D}\text{-conf}}(\mathcal{A} \otimes_k \hat{D});$$

- Compute the non-abelian cohomology set

$$H^1_{\text{ct}} \left(\hat{\mathbb{Z}}, \text{Aut}_{\hat{D}\text{-conf}}(\mathcal{A} \otimes_k \hat{D}) \right);$$

- Compute the centroid $\text{Ctd}_k(\mathcal{L}(\mathcal{A}, \sigma))$ for all twisted loop conformal superalgebra $\mathcal{L}(\mathcal{A}, \sigma)$.
Outline

Affine Kac-Moody algebras

Lie algebras and Lie conformal algebras

Differential conformal algebras and their forms

The $N = 1, 2, 3$ conformal superalgebras

The small $N = 4$ conformal superalgebra

The large $N = 4$ conformal superalgebra
The $N = 1, 2, 3$ Lie Conformal Superalgebras \mathcal{H}_N

\[\mathcal{H}_N := \mathbb{k}[\partial] \otimes_{\mathbb{k}} \Lambda(N), \]

where $\Lambda(N)$ is the exterior superalgebra over \mathbb{k} in N–variables ξ_1, \ldots, ξ_N.

For $n \in \mathbb{Z}_+$, the n-th product on \mathcal{H}_N is given by

\[f(0)g = \left(\frac{1}{2}|f| - 1 \right) \partial \otimes fg + \frac{1}{2}(-1)^{|f|} \sum_{i=1}^{N} (\partial_i f)(\partial_i g), \]

\[f(1)g = \left(\frac{1}{2}(|f| + |g|) - 2 \right) fg, \]

\[f(n)g = 0, \quad n \geq 2, \]

where f and g are monomials in ξ_1, \ldots, ξ_N of degree $|f|$ and $|g|$, respectively.
Automorphism group functors: $N = 1, 2, 3$

For a \mathbb{k}–differential ring $\mathcal{R} = (R, d)$, we define

$$\text{GrAut}(\mathcal{H}_N)(\mathcal{R}) := \{ \phi \in \text{Aut}(\mathcal{H}_N)(\mathcal{R}) | \phi(\Lambda(N) \otimes R) \subseteq \Lambda(N) \otimes R \}.$$

Fact: $\text{GrAut}(\mathcal{H}_N)$ is a subgroup functor of $\text{Aut}(\mathcal{H}_N)$.
Automorphism group functors: $N = 1, 2, 3$

For a \mathbb{k}–differential ring $\mathcal{R} = (R, d)$, we define

$$\text{GrAut}(\mathcal{K}_N)(\mathcal{R}) := \{ \phi \in \text{Aut}(\mathcal{K}_N)(\mathcal{R}) | \phi(\Lambda(N) \otimes R) \subseteq \Lambda(N) \otimes R \}.$$

Fact: $\text{GrAut}(\mathcal{K}_N)$ is a subgroup functor of $\text{Aut}(\mathcal{K}_N)$.

Proposition (Chang, Pianzola, 2011)

For $N = 1, 2, 3$, the following hold:

- $\text{GrAut}(\mathcal{K}_N) \cong O_N \circ f$ as functors \mathbb{k}-$\text{drng} \rightarrow \text{grp}$, where

 $$f : \mathbb{k}$-drng $\rightarrow \mathbb{k}$-rng, \quad \mathcal{R} = (R, d) \mapsto R.$$
Automorphism group functors: $N = 1, 2, 3$

For a \mathbb{k}–differential ring $\mathcal{R} = (R, d)$, we define

$$\text{GrAut}(\mathcal{K}_N)(\mathcal{R}) := \{ \phi \in \text{Aut}(\mathcal{K}_N)(\mathcal{R}) | \phi(\Lambda(N) \otimes R) \subseteq \Lambda(N) \otimes R \}. $$

Fact: $\text{GrAut}(\mathcal{K}_N)$ is a subgroup functor of $\text{Aut}(\mathcal{K}_N)$.

Proposition (Chang, Pianzola, 2011)

For $N = 1, 2, 3$, the following hold:

1. $\text{GrAut}(\mathcal{K}_N) \cong O_N \circ f$ as functors \mathbb{k}-$\text{drng} \to \text{grp}$, where

 $$f : \mathbb{k}$-$\text{drng} \to \mathbb{k}$-$\text{rng}, \quad \mathcal{R} = (R, d) \mapsto R.$$

2. If $\mathcal{R} = (R, d)$ where R is an integral domain, then

 $$\text{GrAut}(\mathcal{K}_N)(\mathcal{R}) = \text{Aut}(\mathcal{K}_N)(\mathcal{R}).$$
Sketch of Proof:

Explicit construction of automorphisms

Let $\mathcal{R} = (R, d)$ be an object in \mathbf{k}-drng.
For each N, we construct a group homomorphism

$$O_N(R) \to \text{GrAut}(\mathcal{H}_N)(\mathcal{R}) \subseteq \text{Aut}(\mathcal{H}_N)(\mathcal{R})$$

$$A \mapsto \phi_A.$$
Sketch of Proof:

Explicit construction of automorphisms

Let $\mathcal{R} = (R, d)$ be an object in \mathbb{k}-drng.
For each N, we construct a group homomorphism

$$O_N(R) \rightarrow \text{GrAut}(\mathcal{K}_N)(\mathcal{R}) \subseteq \text{Aut}(\mathcal{K}_N)(\mathcal{R})$$

$$A \mapsto \phi_A.$$

$N = 1$:

- $A = (a)$ where $a^2 = 1$.
- ϕ_A is given by

$$\phi_A(1) = 1, \text{ and } \phi_A(\xi_1) = \xi_1 \otimes a$$
Sketch of Proof:

Explicit construction of automorphisms

$N = 2$:

- $A = (a_{ij})_{2 \times 2}$.
- ϕ_A is given by

 $\phi_A(1) = 1 + \xi_1 \xi_2 \otimes r$,
 $\phi_A(\xi_1) = \xi_1 \otimes a_{11} + \xi_2 \otimes a_{21}$,
 $\phi_A(\xi_1 \xi_2) = \xi_1 \xi_2 \otimes \det(A)$,
 $\phi_A(\xi_2) = \xi_1 \otimes a_{12} + \xi_2 \otimes a_{22}$,

where

$$
\begin{pmatrix}
0 & r \\
-r & 0
\end{pmatrix} = 2d(A)A^T.
$$
Sketch of Proof:

Explicit construction of automorphisms

$N = 3$:

- For $A = (a_{ij})_{3 \times 3} \in O_3(R)$, ϕ_A is given by

\[
\phi_A(1) = 1 + \sum_{l=1}^{3} \epsilon_{mnl} \xi_m \xi_n \otimes r_l,
\]

\[
\phi_A(\xi_j) = \sum_{l=1}^{3} \xi_l \otimes a_{lj} + \xi_1 \xi_2 \xi_3 \otimes s_j,
\]

\[
\phi_A(\xi_i \xi_j) = \epsilon_{ijl} \sum_{l'=1}^{3} \epsilon_{mnl'} \xi_m \xi_n \otimes A_{l'1},
\]

\[
\phi_A(\xi_1 \xi_2 \xi_3) = \xi_1 \xi_2 \xi_3 \otimes \det(A),
\]

$i, j = 1, 2, 3, i \neq j$, where $A_{l'1}$ is the cofactor of $a_{l'1}$ in A and

\[
\begin{pmatrix}
0 & r_3 & -r_2 \\
-r_3 & 0 & r_1 \\
r_2 & -r_1 & 0
\end{pmatrix} = 2d(A)A^T,
\]

\[
\begin{pmatrix}
0 & s_3 & -s_2 \\
-s_3 & 0 & s_1 \\
s_2 & -s_1 & 0
\end{pmatrix} = 2(\det A)A^T d(A).
\]
Twisted loop conformal superalgebras: $N = 1, 2, 3$

Theorem (Chang, Pianzola, 2011)

There are exactly two twisted loop conformal superalgebras (up to isomorphism of k–conformal superalgebras) based on each \mathcal{K}_N, $N = 1, 2, 3$, namely, $L(\mathcal{K}_N, \text{id})$ and $L(\mathcal{K}_N, \omega_N)$, where $\omega_N : \mathcal{K}_N \to \mathcal{K}_N$ is given by

\[
\begin{align*}
\omega_1 : & \quad 1 \mapsto 1, \quad \xi_1 \mapsto -\xi_1, \\
\omega_2 : & \quad 1 \mapsto 1, \quad \xi_1 \mapsto -\xi_1, \quad \xi_2 \mapsto \xi_2, \quad \xi_1\xi_2 \mapsto -\xi_1\xi_2, \\
\omega_3 : & \quad 1 \mapsto 1, \quad \xi_j \mapsto -\xi_j, j = 1, 2, 3, \quad \xi_i\xi_j \mapsto \xi_i\xi_j, i \neq j, \quad \xi_1\xi_2\xi_3 \mapsto -\xi_1\xi_2\xi_3.
\end{align*}
\]
Sketch of Proof

\[H^1_{ct}(\hat{\mathbb{Z}}, \text{Aut}_{\mathcal{D}-\text{conf}}(\mathcal{X}_N, \mathcal{D})) \cong H^1_{ct}(\hat{\mathbb{Z}}, O_N(\mathcal{D})). \]
Sketch of Proof

- $H^1_{ct}(\hat{\mathbb{Z}}, \text{Aut}_{\mathcal{D}-\text{conf}}(\mathcal{X}_N, \hat{\mathcal{D}})) \cong H^1_{ct}(\hat{\mathbb{Z}}, O_N(\hat{D}))$.

- $H^1_{ct}(\hat{\mathbb{Z}}, O_N(\hat{D}))$ has exactly two elements.
 - There is a split exact sequence of $\hat{\mathbb{Z}}$–groups

 $$1 \to SO_N(\hat{D}) \to O_N(\hat{D}) \xrightarrow{\text{det}} \mathbb{Z}_2 \to 1,$$

 which induces an exact sequence of pointed sets

 $$H^1_{ct}(\hat{\mathbb{Z}}, SO_N(\hat{D})) \to H^1_{ct}(\hat{\mathbb{Z}}, O_N(\hat{D})) \xrightarrow{\psi} H^1_{ct}(\hat{\mathbb{Z}}, \mathbb{Z}_2).$$

 - ψ is surjective and each fiber of ψ contains exactly one point.

- Centroid trick.
The associated Lie superalgebras

For each of $N = 1, 2, 3$, the two non-isomorphic twisted loop conformal superalgebras $\mathcal{L}(\mathcal{K}_N, \text{id})$ and $\mathcal{L}(\mathcal{K}_N, \omega_N)$ yield two Lie superalgebras

$$\text{Alg}(\mathcal{K}_N, \text{id}) \text{ and Alg}(\mathcal{K}_N, \omega_N).$$
The associated Lie superalgebras

For each of $N = 1, 2, 3$, the two non-isomorphic twisted loop conformal superalgebras $\mathcal{L}(\mathcal{H}_N, \text{id})$ and $\mathcal{L}(\mathcal{H}_N, \omega_N)$ yield two Lie superalgebras

$$\text{Alg}(\mathcal{H}_N, \text{id}) \text{ and } \text{Alg}(\mathcal{H}_N, \omega_N).$$

Proposition (Chang, Pianzola, 2011&2013)

For each $N = 1, 2, 3$, $\text{Alg}(\mathcal{H}_N, \text{id})$ and $\text{Alg}(\mathcal{H}_N, \omega_N)$ are not isomorphic as Lie superalgebras over \mathbb{k}.
Outline

Affine Kac-Moody algebras

Lie algebras and Lie conformal algebras

Differential conformal algebras and their forms

The $N = 1, 2, 3$ conformal superalgebras

The small $N = 4$ conformal superalgebra

The large $N = 4$ conformal superalgebra
The small $N = 4$ conformal superalgebra \(\mathcal{W} \)

\[\mathcal{W} = \mathcal{W}_0 \oplus \mathcal{W}_1, \]

where

\[\mathcal{W}_0 = k[\partial]L \oplus k[\partial]T^1 \oplus k[\partial]T^2 \oplus k[\partial]T^3, \]

\[\mathcal{W}_1 = k[\partial]G^1 \oplus k[\partial]G^2 \oplus k[\partial]\bar{G}^1 \oplus k[\partial]\bar{G}^2. \]

The \(\lambda \)-bracket on \(\mathcal{W} \) is given by

\[[L_\lambda L] = (\partial + 2\lambda)L, \quad [L_\lambda T^i] = (\partial + \lambda)T^i, \]

\[[L_\lambda G^p] = (\partial + \frac{3}{2}\lambda)G^p, \quad [T^i_\lambda T^j] = i\epsilon_{ijk}T^k, \]

\[[L_\lambda \bar{G}^p] = (\partial + \frac{3}{2}\lambda)\bar{G}^p, \quad [G^p_\lambda G^q] = [\bar{G}^p_\lambda \bar{G}^q] = 0, \]

\[[T^i_\lambda G^p] = -\frac{1}{2}\sum_{q=1}^2 \sigma^i_{pq}G^q, \quad [T^i_\lambda \bar{G}^p] = \frac{1}{2}\sum_{q=1}^2 \sigma^i_{qp}\bar{G}^q, \]

\[[G^p_\lambda \bar{G}^q] = 2\delta_{pq}L - 2(\partial + 2\lambda)\sum_{i=1}^3 \sigma^i_{pq}T^i, \]

for \(i, j = 1, 2, 3 \) and \(p, q = 1, 2 \), where

\[\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \]
Known results

Proposition (Kac, Lau, Pianzola, 2009)

\[
\text{Aut}_{\widehat{D}-\text{conf}}(\mathcal{W}_{\widehat{D}}) \cong \frac{\text{SL}_2(\widehat{D}) \times \text{SL}_2(\mathbb{k})}{\langle (-I_2, -I_2) \rangle}.
\]
Known results

Proposition (Kac, Lau, Pianzola, 2009)

$$\text{Aut}_{\hat{D}-\text{conf}}(\hat{\mathcal{W}}_\hat{D}) \cong \frac{\text{SL}_2(\hat{D}) \times \text{SL}_2(\mathbb{k})}{\langle (-I_2, -I_2) \rangle}.$$
Automorphism group functor

Fix a subspace

\[V = \text{span}_k \{L, T^1, T^2, T^3, G^1, G^2, \overline{G}^1, \overline{G}^2\}. \]

Then \(\mathcal{W} = k[\partial] \otimes_k V. \)

For each \(\mathcal{R} = (R, d) \in k\text{-drng}, \) we define a subgroup

\[\text{GrAut}(\mathcal{W})(\mathcal{R}) = \{ \phi \in \text{Aut}(\mathcal{W})(\mathcal{R}) | \phi(V \otimes R) \subseteq V \otimes R \}, \]

which is functorial in \(\mathcal{R}. \)
Automorphism group functor

Theorem (Chang, 2013)

Let $\mathcal{R} = (R, d) \in \mathbb{k}\text{-}\text{drng}$.

- $\text{GrAut}(\mathcal{W})(\mathcal{R}) = \text{Aut}(\mathcal{W})(\mathcal{R})$ if R is an integral domain.
Automorphism group functor

Theorem (Chang, 2013)

Let \(\mathcal{R} = (R, d) \in \k\text{-drng} \).
- \(\text{GrAut}(\mathcal{W})(\mathcal{R}) = \text{Aut}(\mathcal{W})(\mathcal{R}) \) if \(R \) is an integral domain.
- There is an exact sequence of groups

\[
1 \rightarrow \mu_2(R) \rightarrow \text{SL}_2(R) \times \text{SL}_2(R_0) \overset{\iota_R}{\rightarrow} \text{GrAut}(\mathcal{W})(\mathcal{R}),
\]

where \(R_0 = \ker d \). The sequence is functorial in \(\mathcal{R} \).
Automorphism group functor

Theorem (Chang, 2013)

Let $\mathcal{R} = (R, d) \in \mathbb{k}$-drng.

- $\mbox{GrAut}(\mathcal{W})(\mathcal{R}) = \mbox{Aut}(\mathcal{W})(\mathcal{R})$ if R is an integral domain.
- There is an exact sequence of groups

$$1 \rightarrow \mu_2(R) \rightarrow \text{SL}_2(R) \times \text{SL}_2(R_0) \xrightarrow{\iota_{\mathcal{R}}} \mbox{GrAut}(\mathcal{W})(\mathcal{R}),$$

where $R_0 = \ker d$. The sequence is functorial in \mathcal{R}.

- Assume R is an integral domain. Then, for every $\phi \in \mbox{GrAut}(\mathcal{W})(\mathcal{R})$, there is an étale extension S of \mathcal{R} such that

$$\phi_S \in \text{Im}(\iota_S : \text{SL}_2(S) \times \text{SL}_2(S_0) \xrightarrow{\iota_S} \mbox{GrAut}(\mathcal{W})(S)).$$
Sketch of Proof I:

review the definition relations for \mathcal{W}

$$\mathcal{W} = \mathcal{W}_0 \oplus \mathcal{W}_1,$$

where

$$\mathcal{W}_0 = k[\partial]L \oplus k[\partial]T^1 \oplus k[\partial]T^2 \oplus k[\partial]T^3,$$

$$\mathcal{W}_1 = k[\partial]G^1 \oplus k[\partial]G^2 \oplus k[\partial]\overline{G}^1 \oplus k[\partial]\overline{G}^2.$$

The λ–bracket on \mathcal{W} is given by

$$[L_\lambda L] = (\partial + 2\lambda)L,$$

$$[L_\lambda T^i] = (\partial + \lambda)T^i,$$

$$[L_\lambda G^p] = (\partial + \frac{3}{2}\lambda) G^p,$$

$$[T^i_\lambda T^j] = i\epsilon_{ijk} T^k,$$

$$[L_\lambda \overline{G}^p] = (\partial + \frac{3}{2}\lambda) \overline{G}^p,$$

$$[G^p_\lambda G^q] = [\overline{G}^p_\lambda \overline{G}^q] = 0,$$

$$[T^i_\lambda G^p] = -\frac{1}{2} \sum_{q=1}^{2} \sigma^i_{pq} G^q,$$

$$[T^i_\lambda \overline{G}^p] = \frac{1}{2} \sum_{q=1}^{2} \sigma^i_{qp} \overline{G}^q,$$

$$[G^p_\lambda \overline{G}^q] = 2\delta_{pq} L - 2(\partial + 2\lambda) \sum_{i=1}^{3} \sigma^i_{pq} T^i,$$

for $i, j = 1, 2, 3$ and $p, q = 1, 2$, where

$$\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
Sketch of Proof II: simplification

Notation:

\[T(x) := (x_{12} + x_{21})T^1 + i(x_{12} - x_{21})T^2 + 2x_{11}T^3, \]
\[G(u) := u_{22}G^1 + u_{11}G^1 - u_{12}G^2 + u_{21}G^2. \]

for \(x = (x_{ij})_{2 \times 2} \in \mathfrak{sl}_2(\mathbb{k}) \) and \(u = (u_{ij})_{2 \times 2} \in \text{Mat}_2(\mathbb{k}) \).

The \(\lambda \)-bracket on \(\mathcal{W} \) is rewritten as follows:

\[
\begin{align*}
[L_\lambda L] &= (\partial + 2\lambda)L, \\
[L_\lambda T(x)] &= (\partial + \lambda)T(x), \quad [T(x) L_{\lambda} T(y)] = T([x, y]), \\
[L_\lambda G(u)] &= (\partial + \frac{3}{2}\lambda)G(u), \quad [T(x) L_{\lambda} G(u)] = G(xu), \\
[G(u) L_{\lambda} G(v)] &= 2\text{tr}(uv^\dagger)L + (\partial + 2\lambda)T(uv^\dagger - vu^\dagger).
\end{align*}
\]

where \(x, y \in \mathfrak{sl}_2(\mathbb{k}) \), and \(u, v \in \text{Mat}_2(\mathbb{k}) \).

\[\dagger: \text{Mat}_2(\mathbb{k}) \rightarrow \text{Mat}_2(\mathbb{k}), \quad u = u_{ij} \mapsto u^\dagger := \begin{pmatrix} u_{22} & -u_{12} \\ -u_{21} & u_{11} \end{pmatrix}. \]
Sketch of Proof III:
construction of automorphisms

Let $\mathcal{R} = (R, d) \in k$-drng and $R_0 = \ker d$.
Then every element $(A, B) \in \text{SL}_2(R) \times \text{SL}_2(R_0)$
defines an automorphism $\theta_{A,B}$ of \mathcal{W}:

$$
\theta_{A,B}(L) = L + T(d(A)A^{-1}),
$$
$$
\theta_{A,B}(T(x)) = T(AxA^{-1}),
$$
$$
\theta_{A,B}(G(u)) = G(AuB^{-1}).
$$
Outline

Affine Kac-Moody algebras

Lie algebras and Lie conformal algebras

Differential conformal algebras and their forms

The $N = 1, 2, 3$ conformal superalgebras

The small $N = 4$ conformal superalgebra

The large $N = 4$ conformal superalgebra
The large $N = 4$ superconformal Lie algebras

\[
\begin{align*}
[L_m, L_n] &= (m - n)L_{m+n} + \frac{m^3 - m}{12} \delta_m, -n c, \\
[L_m, U_n] &= -nU_{m+n},
\end{align*}
\]

\[
\begin{align*}
[T^+_m, T^+_n] &= \epsilon_{ijk} T^+_{m+n} - \frac{m}{12\gamma} \delta_{ij} \delta_m, -n c, \\
[T^-_m, T^-_n] &= \epsilon_{ijk} T^-_{m+n} - \frac{m}{12(1-\gamma)} \delta_{ij} \delta_m, -n c, \\
[L_m, Q'^p_{n'}] &= -\left(\frac{1}{2} m + n'\right) Q'^p_{m+n'}, \\
[L_m, G'^p_{n'}] &= \left(\frac{1}{2} m - n'\right) G'^p_{m+n'}, \\
[Q'^p_{m'}, Q'^q_{n'}] &= -\frac{\delta_{pq}\delta_{m', -n'}}{12\gamma(1-\gamma)} c, \\
[T^+_m, G'^p_{n'}] &= \alpha^+_pq (G'^q_{m+n'} - 2(1 - \gamma) mQ'^q_{m+n'}), \\
[T^-_m, G'^p_{n'}] &= \alpha^-iq (G'^q_{m+n'} + 2\gamma mQ'^q_{m+n'}), \\
[Q'^p_{m'}, G'^q_{n'}] &= \delta_{pq} U_{m'+n'} + 2(\alpha^+_pq T^+_m + \alpha^-iq T^-_m) - \alpha^-iq T^-_m + n' \right), \\
[G'^p_{m'}, G'^q_{n'}] &= \frac{1}{3}\delta_{pq}\delta_{m', -n'}(m'^2 - 1/4)c, \\
\end{align*}
\]

for $i, j = 1, 2, 3, p, q = 1, 2, 3, 4, m, n \in \mathbb{Z}, m', n' \in \frac{1}{2} + \mathbb{Z}$.

\[N = 1, 2, 3, \text{ small } N = 4, \text{ large } N = 4\]
The large $N = 4$ conformal superalgebra

the $k[\partial]$–module

$$\mathcal{M} = \mathcal{M}_0 \oplus \mathcal{M}_1,$$

where

$$\mathcal{M}_0 = k[\partial] \otimes_k (kL \oplus \mathfrak{sl}_2(k) \oplus \mathfrak{sl}_2(k) \oplus kU),$$

$$\mathcal{M}_1 = k[\partial] \otimes_k (\text{Mat}_2(k) \oplus \text{Mat}_2(k)).$$

Notation:

$$T^+(x) = 1 \otimes (0 \oplus x \oplus 0 \oplus 0) \in \mathcal{M}_0,$$

$$T^-(x) = 1 \otimes (0 \oplus 0 \oplus x \oplus 0) \in \mathcal{M}_0,$$

$$G(u) = 1 \otimes (u \oplus 0) \in \mathcal{M}_1,$$

$$Q(u) = 1 \otimes (0 \oplus u) \in \mathcal{M}_1,$$

for $x \in \mathfrak{sl}_2(k)$ and $u \in \text{Mat}_2(k)$.
The large $N = 4$ conformal superalgebra defining relations

\[
[L_{\lambda}L] = (\partial + 2\lambda)L, \\
[L_{\lambda}U] = (\partial + \lambda)U, \\
[T^{\pm}(x)_{\lambda}T^{\pm}(y)] = T^{\pm}([x, y]), \\
[L_{\lambda}Q(u)] = (\partial + \frac{1}{2}\lambda)Q(u), \\
[L_{\lambda}G(u)] = (\partial + \frac{3}{2}\lambda)G(u), \\
[T^{+}(x)_{\lambda}G(u)] = G(xu) - \lambda Q(xu), \\
[T^{-}(x)_{\lambda}G(u)] = -G(ux) - \lambda Q(ux), \\
[Q(u)_{\lambda}G(v)] = 2tr(uv^\dagger)U - T^{+}(uv^\dagger - vu^\dagger) + T^{-}(u^\dagger v - v^\dagger u), \\
[G(u)_{\lambda}G(v)] = 4tr(uv^\dagger)L + (\partial + 2\lambda)\left(T^{+}(uv^\dagger - vu^\dagger) + T^{-}(u^\dagger v - v^\dagger u)\right) \\
\]

for $x, y \in \mathfrak{sl}_2(\mathbb{k})$ and $u, v \in \text{Mat}_2(\mathbb{k})$.
Automorphism group

Proposition (Chang, Pianzola, 2013)

\[\text{Aut}_{\hat{D}-\text{conf}}(\hat{\mathcal{M}}_{\hat{D}}) \cong \left(\frac{\text{SL}_2(\hat{D}) \times \text{SL}_2(\hat{D})}{\langle (-I_2, -I_2) \rangle} \times G_a(\hat{D}) \right) \rtimes \mathbb{Z}_2. \]
Sketch of Proof I

There is a group homomorphism

\[\text{SL}_2(\hat{D}) \times \text{SL}_2(\hat{D}) \to \text{Aut}_{\hat{D}\text{-conf}}(\mathcal{M}_{\hat{D}}), \quad (A, B) \mapsto \theta_{A,B}, \]

where \(\theta_{A,B} \) is defined by

\[
L \mapsto L + T^+(d_t(A)A^{-1}) + T^{-1}(d_t(B)B^{-1}), \\
T^+(x) \mapsto T^+(AxA^{-1}), \\
T^-(y) \mapsto T^-(ByB^{-1}), \\
U \mapsto U, \\
G(u) \mapsto G(AuB^{-1}) - Q(d_t(A)uB^{-1} - Au d_t(B^{-1})), \\
Q(u) \mapsto Q(AuB^{-1}),
\]

for \(x \in \mathfrak{sl}_2(\mathbb{k}) \) and \(u \in \text{Mat}_2(\mathbb{k}) \).
Sketch of Proof II

There is a group homomorphism

\[G_a(\hat{D}) \to \text{Aut}_{\hat{D}\text{-conf}}(\mathcal{M}_{\hat{D}}), \quad s \mapsto \tau_s, \]

where \(\tau_s \) is defined by

- \(L \mapsto L + U \otimes s \),
- \(T^\pm(x) \mapsto T^\pm(x) \),
- \(U \mapsto U \),
- \(G(u) \mapsto G(u) + Q(su) \),
- \(Q(u) \mapsto Q(u) \),

for \(x \in \mathfrak{sl}_2(\mathbb{k}) \) and \(u \in \text{Mat}_2(\mathbb{k}) \).
Sketch of Proof III

- There is an element $\omega \in \text{Aut}_{\hat{D}-\text{conf}}(\hat{\mathcal{M}}_{\hat{D}})$ of order 2 given by

$$
\omega(L) = L, \quad \omega(T^\pm(x)) = T^\mp(x), \quad \omega(U) = -U,
$$

$$
\omega(G(u)) = G(u^\dagger), \quad \omega(Q(u)) = -Q(u^\dagger),
$$

for $x \in \mathfrak{sl}_2(\mathbb{k})$ and $u \in \text{Mat}_2(\mathbb{k})$.
Sketch of Proof III

There is an element $\omega \in \text{Aut}_{\hat{D}-\text{conf}}(\hat{M}_D)$ of order 2 given by

$$
\begin{align*}
\omega(L) &= L, \\
\omega(T^\pm(x)) &= T^\mp(x), \\
\omega(U) &= -U, \\
\omega(G(u)) &= G(u^\dagger), \\
\omega(Q(u)) &= -Q(u^\dagger),
\end{align*}
$$

for $x \in \mathfrak{sl}_2(\mathbb{k})$ and $u \in \text{Mat}_2(\mathbb{k})$.

These automorphisms satisfy

- $\theta_{A,B} \circ \tau_s = \tau_s \circ \theta_{A,B}$.
- $\omega \circ \theta_{A,B} \circ \omega = \theta_{B,A}$.
- $\omega \circ \tau_s \circ \omega = \tau_{-s}$.
Sketch of Proof III

There is an element $\omega \in \text{Aut}_{\hat{D}\text{-conf}}(\hat{\mathcal{M}})$ of order 2 given by

$$
\omega(L) = L, \quad \omega(T^{\pm}(x)) = T^{\mp}(x), \quad \omega(U) = -U,
\omega(G(u)) = G(u^\dagger), \quad \omega(Q(u)) = -Q(u^\dagger),
$$

for $x \in \mathfrak{sl}_2(\mathbb{k})$ and $u \in \text{Mat}_2(\mathbb{k})$.

These automorphisms satisfy

1. $\theta_{A,B} \circ \tau_s = \tau_s \circ \theta_{A,B}$.
2. $\omega \circ \theta_{A,B} \circ \omega = \theta_{B,A}$.
3. $\omega \circ \tau_s \circ \omega = \tau_{-s}$.

Hence, we get the group homomorphism

$$(\text{SL}_2(\hat{D}) \times \text{SL}_2(\hat{D}) \times \text{G}_a(\hat{D})) \rtimes \mathbb{Z}_2 \rightarrow \text{Aut}_{\hat{D}\text{-conf}}(\hat{\mathcal{M}}),$$

which is surjective and has kernel $\langle (-I_2, -I_2, 0, 0) \rangle$.

56 / 63
Twisted loop conformal superalgebras based on \mathcal{M}

Theorem (Chang, Pianzola, 2013)

There are exactly two twisted loop conformal superalgebras based on \mathcal{M} (up to isomorphism of \mathbb{k}–conformal superalgebras), namely, $\mathcal{L}(\mathcal{M}, \text{id})$ and $\mathcal{L}(\mathcal{M}, \omega)$.

Sketch of Proof.

\triangleright $H^1_{\text{ct}} \left(\hat{\mathbb{Z}}, \left(\frac{\text{SL}_2(\hat{D}) \times \text{SL}_2(\hat{D})}{\langle \langle -I_2, -I_2 \rangle \rangle} \right) \rtimes G_a(\hat{D}) \right) \rtimes \mathbb{Z}_2$ has exactly two elements.

\triangleright Centroid trick.
The associated Lie superalgebras

The two non-isomorphic Lie conformal superalgebras

$\mathcal{L}(\mathcal{M}, \text{id})$ and $\mathcal{L}(\mathcal{M}, \omega)$

yield two Lie superalgebras

$\text{Alg}(\mathcal{M}, \text{id})$ and $\text{Alg}(\mathcal{M}, \omega)$.
The associated Lie superalgebras

The two non-isomorphic Lie conformal superalgebras

\[\mathcal{L}(\mathcal{M}, \text{id}) \text{ and } \mathcal{L}(\mathcal{M}, \omega) \]

yield two Lie superalgebras

\[\text{Alg}(\mathcal{M}, \text{id}) \text{ and } \text{Alg}(\mathcal{M}, \omega). \]

Proposition (Chang, Pianzola, 2013)

The two Lie superalgebras \(\text{Alg}(\mathcal{M}, \text{id}) \text{ and } \text{Alg}(\mathcal{M}, \omega) \) are not isomorphic.
Reference

B. Allison, S. Berman, J. Faulkner, and A. Pianzola.
Multiloop realization of extended affine Lie algebras and Lie tori.

V. Chernousov, V. Egorov, P. Gille, and A. Pianzola.
A cohomological proof of Peterson-Kac’s theorem on conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras.

V. Chernousov, P. Gille, and A. Pianzola.
Conjugacy theorems for loop reductive group schemes and Lie algebras.

V. Chernousov, P. Gille, and A. Pianzola.
Torsors over the punctured affine line.

Z. Chang.
The automorphism group functor of the $N = 4$ Lie conformal superalgebra.

Z. Chang and A. Pianzola.
Automorphisms and twisted forms of the $N = 1, 2, 3$ Lie conformal superalgebras.
Z. Chang and A. Pianzola.
On twisted large $N = 4$ conformal superalgebras.

P. Gille and A. Pianzola.
Isotriviality of torsors over Laurent polynomial rings.

P. Gille and A. Pianzola.
Galois cohomology and forms of algebras over Laurent polynomial rings.

P. Gille and A. Pianzola.
Isotriviality and étale cohomology of Laurent polynomial rings.

P. Gille and A. Pianzola.
Torsors, reductive group schemes and extended affine Lie algebras,
V. G. Kac.
Vertex algebras for beginners, second edition,

V. G. Kac, M. Lau, and A. Pianzola.
Differential conformal superalgebras and their forms.

M. Lau.
Representations of multiloop algebras.

M. Lau and A. Pianzola.
Maximal ideals and representations of twisted forms of algebras.

Invariant bilinear forms of algebras given by faithfully flat descent.

A. Pianzola.
Locally trivial principal homogeneous spaces and conjugacy theorems for Lie algebras.
Reference

A. Pianzola.
Vanishing of H^1 for Dedekind rings and applications to loop algebras.

A. Pianzola.
Derivations of certain algebras defined by étale descent.

Descent constructions for central extensions of infinite dimensional Lie algebras.

A. Schwimmer and N. Seiberg.
Comments on the $N = 2, 3, 4$ superconformal algebras in two dimensions.

J. Sun.
Universal central extensions of twisted forms of split simple Lie algebras over rings.
Thank You!

KM alg
Lie ⇔ conf
diff conf
\(N = 1, 2, 3 \)
small \(N = 4 \)
large \(N = 4 \)