Differential Conformal Superalgebras
and
Their Twisted Forms

Zhihua Chang*
(joint work with Arturo Pianzola)

University of Alberta

September 03, 2013

* Email: zhihuachang@gmail.com
Dept of Math and Stats, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada.
Outline

Affine Kac-Moody algebras

- Lie algebras and Lie conformal algebras
- Differential conformal algebras and their forms
- The \(N = 1, 2, 3 \) conformal superalgebras
- The small \(N = 4 \) conformal superalgebra
- The large \(N = 4 \) conformal superalgebra
Twisted loop realization of affine KM algebras

Let \mathfrak{g} be a finite dimensional simple Lie algebra over \mathbb{C} and σ an automorphism of \mathfrak{g} of order m. Then

$$\mathfrak{g} = \bigoplus_{\ell=1}^{m} \mathfrak{g}_\ell,$$

where $\mathfrak{g}_\ell = \{x \in \mathfrak{g} \mid \sigma(x) = \zeta_\ell^\ell x\}$, $\zeta_m = e^{\frac{2\pi i}{m}}$.

One can construct a Lie algebra

$$L(\mathfrak{g}, \sigma) = \bigoplus_{\ell \in \mathbb{Z}} \mathfrak{g}_\ell \otimes \mathbb{C}t^\ell.$$

Fact: every affine Kac-Moody algebra is isomorphic to a Lie algebra of the form

$$L(\mathfrak{g}, \sigma) \oplus \mathbb{C}c \oplus \mathbb{C}d.$$
Affine algebras as twisted forms

Key observations by A. Pianzola and his collaborators:

- $L(g, \sigma)$ is a Lie algebra over $D := \mathbb{C}[t^{\pm 1}]$.
- $D \hookrightarrow D_m := \mathbb{C}[t^{\pm \frac{1}{m}}]$ is a finite Galois ring extension.
- $L(g, \sigma) \otimes_D D_m \cong (g \otimes_{\mathbb{C}} D) \otimes_D D_m \cong g \otimes_{\mathbb{C}} D_m$, i.e., $L(g, \sigma)$ is a D_m/D–twisted form of $g \otimes_{\mathbb{C}} D = L(g, \text{id})$.

Well known result on twisted forms:
The isomorphism classes of D_m/D–twisted form of $g \otimes_{\mathbb{C}} D$ bijectively correspond to elements of $H^1(D_m/D, \text{Aut}(g \otimes_{\mathbb{C}} D))$.
Researches motivated by the above viewpoint

- $H^1_{\text{ét}}(D, G)$ for a reductive group scheme G over D.
 c.f. [P 2004], [GP 2007-2008], [CGP2012], [GP2013].

- Application of descent theory to Lie theory:
 - central extension:
 c.f. [PPS 2007], [S 2009].
 - derivation:
 c.f. [P 2010].
 - conjugacy of Cartan subalgebras:
 c.f. [P 2004], [CGP 2011], [CEGP 2012].
 - finite dimensional irreducible representation:
 c.f. [L 2010], [LP 2013].
 - invariant bilinear form:
 c.f. [NPP 20??].
Outline

Affine Kac-Moody algebras

Lie algebras and Lie conformal algebras

Differential conformal algebras and their forms

The $N = 1, 2, 3$ conformal superalgebras

The small $N = 4$ conformal superalgebra

The large $N = 4$ conformal superalgebra
Motivating Example:
The Centreless Virasoro Algebra

\(\mathbb{k} \): an algebraically closed field of characteristic zero
\(\mathfrak{v} \): the centreless Virasoro algebra

- \(\mathfrak{v} \) has a basis \(\{ L_n | n \in \mathbb{Z} \} \) satisfying \([L_m, L_n] = (m - n)L_{m+n} \).

Consider the formal series \(L(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2} \).

The Lie bracket on \(\mathfrak{v} \) yields the OPE

\[
[L(z), L(w)] : = \sum_{m,n \in \mathbb{Z}} [L_m, L_n] z^{-m-2} w^{-n-2}
\]

\[
= (\partial_w L(w)) \delta(z - w) + 2L(w) \partial_w \delta(z - w),
\]

where \(\delta(z - w) = \sum_{n \in \mathbb{Z}} w^n z^{-n-1} \).
Lie Algebra \Rightarrow Conformal Algebra

Let $\mathcal{V} := \text{span}_k \{ \partial_{\ell}^L(z) | \ell \geq 0 \}$.

- For $a(z), b(z) \in \mathcal{V}$, we have

 $$[a(z), b(w)] = \sum_{\ell \geq 0} c_{\ell}(w) \cdot \partial_w^{(\ell)} \delta(z - w),$$

 where $c_{\ell}(z) \in \mathcal{V}$.

- We can define a product on \mathcal{V} for each $\ell \geq 0$ by

 $$a(z)_{(\ell)} b(z) := c_{\ell}(z).$$

Notation: λ–bracket

$$[a(z) \lambda b(z)] = \sum_{\ell \geq 0} \lambda^{(\ell)} (a(z)_{(\ell)} b(z)).$$

Summarizing: \mathcal{V} is a $k[\partial]$–module generated by $L(z)$, equipped with a λ–bracket on \mathcal{V} given by

$$[L(z) \lambda L(z)] := (\partial_z + 2\lambda)L(z).$$
Lie conformal algebras
axiomatic definition

Due to V. G. Kac.

A Lie conformal algebra over \mathbb{k} is a $\mathbb{k}[\partial]$–module \mathcal{A} equipped with a λ–bracket

$$[-\lambda-]: \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}[\lambda],$$

satisfying

(C1) $[(\partial a)_\lambda b] = -\lambda[a_\lambda b],$

(C2) $[b_\lambda a] = -[a_{-\partial-} \lambda b],$

(C3) $[a_\lambda [b_\mu c]] = [[a_\lambda b]_\lambda + \mu c] + [b_\mu [a_\lambda c]],$

for all $a, b, c \in \mathcal{A}.$
Lie conformal algebra \Rightarrow Lie algebra

affinization

\mathcal{A}: a Lie conformal algebra over \mathbb{k}.

Define a conformal algebra structure on $\mathcal{A} \otimes_{\mathbb{k}} \mathbb{k}[t^\pm 1]$ by

$$\hat{\partial}(a \otimes r) = \partial(a) \otimes r + a \otimes \frac{d}{dt}(r)$$

and

$$(a \otimes r)(\ell)(b \otimes s) := \sum_{j \geq 0} (a(\ell+j)b) \otimes (\frac{d}{dt})^j(r)s,$$

for $a, b \in \mathcal{A}$ and $r, s \in \mathbb{k}[t^\pm 1]$.

Terminology: the (untwisted) loop conformal algebra based on \mathcal{A}.

Notation: $\mathcal{A} \otimes_{\mathbb{k}} \mathcal{D}$, where $\mathcal{D} = (\mathbb{k}[t^\pm 1], \frac{d}{dt})$.
Lie conformal algebra \Rightarrow Lie algebra

The conformal algebra $\mathcal{A} \otimes_k \mathcal{D}$ determines a Lie algebra

$$\text{Alg}(\mathcal{A}) := (\mathcal{A} \otimes_k \mathcal{D}) \big/ \hat{\partial} (\mathcal{A} \otimes_k \mathcal{D}),$$

with Lie bracket induced by the 0–th product on $\mathcal{A} \otimes_k \mathcal{D}$.
Twisted loop Lie conformal algebras

Given

- \mathcal{A}: a Lie conformal algebra over \mathbb{k}
- $\sigma: \mathcal{A} \rightarrow \mathcal{A}$ an automorphism of \mathcal{A} of order m

We know that

- $\mathcal{A} \otimes_{\mathbb{k}} D_m$ is a Lie conformal algebra over \mathbb{k}, where $D_m = (\mathbb{k}[t^{\pm \frac{1}{m}}], \frac{d}{dt})$.

\[
\mathcal{A} = \bigoplus_{\ell=1}^{m} \mathcal{A}_\ell,
\]

where $\mathcal{A}_\ell = \{a \in \mathcal{A} | \sigma(a) = \zeta_{m}^{\ell} a\}$ and $\zeta_{m} = e^{\frac{2\pi i}{m}}$.

small $N = 4$

12 / 58
Twisted loop Lie conformal algebras

Facts:

- The k–subspace
 \[
 \mathcal{L}(\mathcal{A}, \sigma) = \bigoplus_{\ell=1}^{m} \mathcal{A}_\ell \otimes t^\ell \mathbb{K}[t^{\pm 1}] \subseteq \mathcal{A} \otimes_k \mathcal{D}_m,
 \]
 is a Lie conformal subalgebra of $\mathcal{A} \otimes_k \mathcal{D}_m$.

 (the twisted loop conformal algebra based on \mathcal{A} w.r.t σ)

- \[
 \mathcal{L}(\mathcal{A}, \sigma) = (\mathcal{A} \otimes \mathcal{D}_m)^\Gamma,
 \]
 where Γ is a finite cyclic group of automorphisms of
 $\mathcal{A} \otimes \mathcal{D}_m$ generated by

 \[
 \sigma \otimes \psi : \mathcal{A} \otimes_k \mathcal{D}_m \to \mathcal{A} \otimes_k \mathcal{D}_m,
 \]
 \[
 a \otimes t^\frac{n}{m} \mapsto \sigma(a) \otimes \zeta^m_{-n} t^\frac{n}{m}.
 \]

- In particular, $\mathcal{L}(\mathcal{A}, \text{id}) = \mathcal{A} \otimes_k \mathcal{D}$.
The associated Lie algebras

- The conformal algebra $\mathcal{L}(\mathcal{A}, \sigma)$ determines a Lie algebra

$$\text{Alg}(\mathcal{A}, \sigma) := \mathcal{L}(\mathcal{A}, \sigma)/\hat{\partial}\mathcal{L}(\mathcal{A}, \sigma)$$

with Lie bracket induced by the 0-th product on $\mathcal{L}(\mathcal{A}, \sigma)$.

- Central extensions of Lie superalgebras of this form are indeed the twisted superconformal Lie algebras which appear in physics literature.
Lie algebras ⇐⇐ Lie conformal algebras

Summary:

\[\mathcal{L}(\mathcal{A}, \text{id}) \quad \text{Alg}(\mathcal{A}, \text{id}) \]

\[\mathfrak{g} \longrightarrow \mathcal{A} \longrightarrow \mathcal{A} \otimes_k \mathcal{D} \longrightarrow \text{Alg}(\mathcal{A}) \quad \longrightarrow \mathfrak{g} \]

\[\mathcal{L}(\mathcal{A}, \sigma) \longrightarrow \text{Alg}(\mathcal{A}, \sigma) \]
Question

Given a conformal algebra \mathcal{A} over \mathbb{k}, how can we classify all twisted loop conformal algebras based on \mathcal{A}?

The theory of differential conformal (super)algebras was developed in

[KLP] V. G. Kac, M. Lau, and A. Pianzola,

Differential conformal superalgebras and their forms,
Outline

Affine Kac-Moody algebras

Lie algebras and Lie conformal algebras

Differential conformal algebras and their forms

The $N = 1, 2, 3$ conformal superalgebras

The small $N = 4$ conformal superalgebra

The large $N = 4$ conformal superalgebra
Key observation I in [KLP]

\(\mathcal{L}(\mathcal{A}, \sigma) \) is not only a conformal algebra over \(\mathbb{k} \), but also a differential conformal algebra over \(\mathcal{D} := (\mathbb{k}[t^{\pm 1}], \frac{d}{dt}) \).

Let \(\mathcal{R} = (R, d) \) be a \(\mathbb{k} \)-differential ring.

A differential Lie conformal algebra over \(\mathcal{R} \) consists of

- an \(R \)-module \(\mathcal{A} \),
- a \(\mathbb{k} \)-linear operator \(\partial : \mathcal{A} \to \mathcal{A} \) such that
 \[\partial(ra) = d(r)a + r\partial(a), \]
- a \(\mathbb{k} \)-bilinear product \(-_{(n)} - \) for each \(n \in \mathbb{Z}_+ \) satisfying
 \[(1) \quad a_{(n)}(rb) = r(a_{(n)}b), \]
 \[(2) \quad (ra)_{(n)}b = \sum_{j \in \mathbb{Z}_+} d^{(j)}(r)(a_{(n+j)}b). \]

which satisfy axioms (C1), (C2) and (C3).

Terminology: \(\mathcal{R} \)-conformal algebra.
Key observation II in [KLP]

\(\mathcal{L}(\mathcal{A}, \sigma) \) is a \(\mathcal{D}_m/\mathcal{D} \)-form of \(\mathcal{L}(\mathcal{A}, \text{id}) \), i.e.,

\[
\mathcal{L}(\mathcal{A}, \sigma) \otimes_{\mathcal{D}} \mathcal{D}_m \cong \mathcal{L}(\mathcal{A}, \text{id}) \otimes_{\mathcal{D}} \mathcal{D}_m \cong \mathcal{A} \otimes_{\mathbb{k}} \mathcal{D}_m
\]

as \(\mathcal{D}_m \)-conformal algebras, where \(\mathcal{D}_m := (\mathbb{k}[t^{\pm \frac{1}{m}}], \frac{d}{dt}) \).

Base Change

an \(\mathcal{R} \)-conformal algebra \(\mathcal{A} \)
\(\mathcal{R} = (R, d_R) \to S = (S, d_S) \) \(\implies \) an \(S \)-conformal algebra \(\mathcal{A} \otimes_{\mathcal{R}} S \)

- the underlying \(S \)-module: \(\mathcal{A} \otimes_{\mathcal{R}} S \).
- \(\hat{\partial} := \partial \otimes \text{id} + \text{id} \otimes d_S \)
- the \(n \)-th product

\[
(a \otimes r)_{(n)}(b \otimes s) = \sum_{j \geq 0} (a_{(n+j)}b) \otimes d_{(j)}^S (r)s,
\]

for \(a, b \in \mathcal{A}, r, s \in S \).
Classification of twisted forms

\(\mathcal{A} \): an \(\mathcal{R} \)–conformal algebra

Automorphism group functor:

\[\text{Aut}(\mathcal{A}) : S \mapsto \text{Aut}_{S \text{-conf}}(\mathcal{A} \otimes \mathcal{R} S). \]

Theorem (Kac, Lau, Pianzola, 2009)

Let \(\mathcal{R} \to S \) be a faithfully flat extension of \(k \)–differential rings. Then

\[\text{the set of isomorphism classes of } S / \mathcal{R} \text{–forms of } \mathcal{A} \text{ (up to } \mathcal{R} \text{–isomorphism)} \leftrightarrow H^1(S / \mathcal{R}, \text{Aut}(\mathcal{A})). \]
Classification of twisted loop conformal algebras

Recall: $\mathcal{L}(\mathcal{A}, \sigma)$ is a $\mathcal{D}_m/\mathcal{D}$–form of $\mathcal{A} \otimes_k \mathcal{D}$.

Take

$$\hat{\mathcal{D}} := \lim_{\to} \mathcal{D}_m.$$

We know: $\mathcal{L}(\mathcal{A}, \sigma)$ is a $\hat{\mathcal{D}}/\mathcal{D}$–form of $\mathcal{A} \otimes_k \mathcal{D}$.

Fact:

\[
\text{the set of isomorphism classes of twisted loop conformal algebras based on } \mathcal{A} \\
\text{(up to } \mathcal{D} \text{–isomorphism)} \\
\longleftrightarrow \text{ one to one } \\
H^1(\hat{\mathcal{D}}/\mathcal{D}, \text{Aut}(\mathcal{A}))
\]
\[H^1 \Rightarrow H^1_{\text{ct}} \Rightarrow H^1_{\text{ét}} \]

Proposition (Kac, Lau, Pianzola, 2009)

If \(\mathcal{A} \) is a finitely generated \(\mathbb{k}[\partial] \)-module, then

\[H^1(\hat{D}/D, \text{Aut}(\mathcal{A})) = H^1_{\text{ct}} \left(\hat{\mathbb{Z}}, \text{Aut}_{\text{ct}}(\mathcal{A} \otimes_{\mathbb{k}} \hat{D}) \right). \]

Proposition (Gille, Pianzola, 2008)

Let \(G \) be an affine group scheme over \(D \). If \(G \) is an extension of a twisted finite constant group by a reductive group, then

\[H^1_{\text{ct}}(\hat{\mathbb{Z}}, G(\hat{D})) = H^1_{\text{ét}}(D, G). \]

Proposition (Pianzola 2005)

Let \(G \) be a reductive group scheme over \(D \). Then \(H^1_{\text{ét}}(D, G) = 1 \).
Centroid trick

Question:
Given two twisted loop conformal algebras $\mathcal{L}(\mathcal{A}, \sigma_i), i = 1, 2,$

$$\mathcal{L}(\mathcal{A}, \sigma_1) \not\cong_D \mathcal{L}(\mathcal{A}, \sigma_2) \Rightarrow \mathcal{L}(\mathcal{A}, \sigma_1) \not\cong_k \mathcal{L}(\mathcal{A}, \sigma_2)$$

Centroid: the centroid of an \mathcal{R}–conformal algebra \mathcal{B} is

$$\text{Ctd}_R(\mathcal{B}) = \{ \chi \in \text{End}_{R\text{-mod}}(\mathcal{B}) \mid \chi(a_n b) = a_n \chi(b), \forall a, b \in \mathcal{B}, n \in \mathbb{Z}_+ \}$$

Proposition (Kac, Lau, Pianzola, 2009)

If the canonical maps $D \rightarrow \text{Ctd}_k(\mathcal{L}(\mathcal{A}, \sigma_i)), i = 1, 2$ are both k–algebra isomorphisms, then

$$\mathcal{L}(\mathcal{A}, \sigma_1) \cong_D \mathcal{L}(\mathcal{A}, \sigma_2) \iff \mathcal{L}(\mathcal{A}, \sigma_1) \cong_k \mathcal{L}(\mathcal{A}, \sigma_2)$$
Centroid: special case

Proposition (Chang 2013)

Let

- \mathcal{A} be a \mathbb{k}–conformal superalgebra and
- σ an automorphism of \mathcal{A} of finite order.

Suppose \mathcal{A} satisfies all of the following conditions:

1. There are $a_1, \cdots, a_{n_0} \in \mathcal{A}$ such that
 - $\mathcal{A}_0 = \mathbb{k}[\partial]a_1 \oplus \cdots \oplus \mathbb{k}[\partial]a_{n_0}$,
 - $L := a_1$ satisfies $[L_\lambda L] = (\partial + 2\lambda)L$ and $\sigma(L) = L$,
 - $[L_\lambda a_i] = (\partial + \lambda)a_i$, for $i = 2, \cdots, n_0$.

2. There are $b_1, \cdots, b_{n_1} \in \mathcal{A}_\overline{1}$ generating $\mathcal{A}_\overline{1}$ as a $\mathbb{k}[\partial]$–module such that $[L_\lambda b_i] = (\partial + \Delta'_i \lambda)b_i$ with $\Delta'_i \neq 0$ for $i = 1, \cdots, n_1$.

Then $\text{Ctd}_{\mathbb{k}}(\mathcal{L}(\mathcal{A}, \sigma)) = D$.
Centroid: special case

Corollary

Let \mathcal{A} be one of the $N = 1, 2, 3$ and (small or large) $N = 4$ conformal superalgebras over \mathbb{k}, and $\mathcal{L}(\mathcal{A}, \sigma)$ be an arbitrary twisted loop conformal superalgebra based on \mathcal{A}.
Then the canonical map

$$\mathbb{k}[t^{\pm 1}] \to \text{Ctd}_\mathbb{k}(\mathcal{L}(\mathcal{A}, \sigma))$$

is an isomorphism.
Summary

Given a conformal superalgebra \mathcal{A} over k, the twisted loop conformal superalgebras based on \mathcal{A} can be classified using the following steps:

1. Compute the automorphism group

 $$\text{Aut}_{\hat{D}-\text{conf}}(\mathcal{A} \otimes_k \hat{D});$$

2. Compute the non-abelian cohomology set

 $$H^1_{\text{ct}} \left(\hat{\mathbb{Z}}, \text{Aut}_{\hat{D}-\text{conf}}(\mathcal{A} \otimes_k \hat{D}) \right);$$

3. Compute the centroid $\text{Ctd}_k(\mathcal{L}(\mathcal{A}, \sigma))$ for all twisted loop conformal superalgebra $\mathcal{L}(\mathcal{A}, \sigma)$.
Outline

Affine Kac-Moody algebras

Lie algebras and Lie conformal algebras

Differential conformal algebras and their forms

The $N = 1, 2, 3$ conformal superalgebras

The small $N = 4$ conformal superalgebra

The large $N = 4$ conformal superalgebra
The $N = 1, 2, 3$ Lie Conformal Superalgebras \mathcal{K}_N

\[\mathcal{K}_N := \mathbb{k}[\partial] \otimes_{\mathbb{k}} \Lambda(N), \]

where $\Lambda(N)$ is the exterior superalgebra over \mathbb{k} in N–variables ξ_1, \ldots, ξ_N.

For $n \in \mathbb{Z}_+$, the n-th product on \mathcal{K}_N is given by

\[f(0)g = (\frac{1}{2}|f| - 1) \partial \otimes fg + \frac{1}{2}(-1)^{|f|} \sum_{i=1}^{N} (\partial_if)(\partial_ig), \]

\[f(1)g = (\frac{1}{2}(|f| + |g|) - 2) fg, \]

\[f(n)g = 0, \quad n \geq 2, \]

where f and g are monomials in ξ_1, \ldots, ξ_N of degree $|f|$ and $|g|$, respectively.
Automorphism group functors: $N = 1, 2, 3$

For a k–differential ring $\mathcal{R} = (R, d)$, we define

$$\text{GrAut}(\mathcal{H}_N)(\mathcal{R}) := \{ \phi \in \text{Aut}(\mathcal{H}_N)(\mathcal{R}) | \phi(\Lambda(N) \otimes R) \subseteq \Lambda(N) \otimes R \}.$$

Fact: $\text{GrAut}(\mathcal{H}_N)$ is a subgroup functor of $\text{Aut}(\mathcal{H}_N)$.

Proposition (Chang, Pianzola, 2011)

For $N = 1, 2, 3$, the following hold:

- $\text{GrAut}(\mathcal{H}_N) \cong O_N \circ f$ as functors k-drng \rightarrow grp, where

 $$f : k$-drng \rightarrow k-rng, \quad \mathcal{R} = (R, d) \mapsto R.$$

- If $\mathcal{R} = (R, d)$ where R is an integral domain, then

 $$\text{GrAut}(\mathcal{H}_N)(\mathcal{R}) = \text{Aut}(\mathcal{H}_N)(\mathcal{R}).$$
Sketch of Proof:

Explicit construction of automorphisms

Let $\mathcal{R} = (R, d)$ be an object in \mathbb{k}-\textbf{drng}.
For each N, we construct a group homomorphism

$$O_N(R) \rightarrow \text{GrAut}(\mathcal{H}_N)(\mathcal{R}) \subseteq \text{Aut}(\mathcal{H}_N)(\mathcal{R})$$

$$A \mapsto \phi_A.$$

$N = 1$:

\triangleright $A = (a)$ where $a^2 = 1$.

\triangleright ϕ_A is given by

$$\phi_A(1) = 1, \text{ and } \phi_A(\xi_1) = \xi_1 \otimes a$$
Sketch of Proof:

Explicit construction of automorphisms

\(N = 2: \)

- \(A = (a_{ij})_{2 \times 2}. \)
- \(\phi_A \) is given by

\[
\begin{align*}
\phi_A(1) &= 1 + \xi_1 \xi_2 \otimes r, \\
\phi_A(\xi_1) &= \xi_1 \otimes a_{11} + \xi_2 \otimes a_{21}, \\
\phi_A(\xi_1 \xi_2) &= \xi_1 \xi_2 \otimes \text{det}(A), \\
\phi_A(\xi_2) &= \xi_1 \otimes a_{12} + \xi_2 \otimes a_{22},
\end{align*}
\]

where

\[
\begin{pmatrix}
0 & r \\
-r & 0
\end{pmatrix} = 2d(A)A^T.
\]
Sketch of Proof:

Explicit construction of automorphisms

\(N = 3: \)

- For \(A = (a_{ij})_{3 \times 3} \in O_3(R) \), \(\phi_A \) is given by

\[
\phi_A(1) = 1 + \sum_{l=1}^{3} \epsilon_{mnl} \xi_m \xi_n \otimes r_l,
\]

\[
\phi_A(\xi_j) = \sum_{l=1}^{3} \xi_l \otimes a_{lj} + \xi_1 \xi_2 \xi_3 \otimes s_j,
\]

\[
\phi_A(\xi_i \xi_j) = \epsilon_{ijl} \sum_{l'=1}^{3} \epsilon_{mnl'} \xi_m \xi_n \otimes A_{l'l},
\]

\[
\phi_A(\xi_1 \xi_2 \xi_3) = \xi_1 \xi_2 \xi_3 \otimes \det(A),
\]

\(i, j = 1, 2, 3, i \neq j \), where \(A_{l'l} \) is the cofactor of \(a_{l'l} \) in \(A \) and

\[
\begin{pmatrix}
0 & r_3 & -r_2 \\
-r_3 & 0 & r_1 \\
r_2 & -r_1 & 0
\end{pmatrix} = 2d(A)A^T, \quad \begin{pmatrix}
0 & s_3 & -s_2 \\
-s_3 & 0 & s_1 \\
s_2 & -s_1 & 0
\end{pmatrix} = 2(\det A)A^T d(A).
\]
Twisted loop conformal superalgebras: $N = 1, 2, 3$

Theorem (Chang, Pianzola, 2011)

There are exactly two twisted loop conformal superalgebras (up to isomorphism of \mathbb{k}–conformal superalgebras) based on each \mathcal{H}_N, $N = 1, 2, 3$, namely, $L(\mathcal{H}_N, \text{id})$ and $L(\mathcal{H}_N, \omega_N)$, where $\omega_N : \mathcal{H}_N \to \mathcal{H}_N$ is given by

- $\omega_1 : 1 \mapsto 1$, $\xi_1 \mapsto -\xi_1$,
- $\omega_2 : 1 \mapsto 1$, $\xi_1 \mapsto -\xi_1$, $\xi_2 \mapsto \xi_2$, $\xi_1\xi_2 \mapsto -\xi_1\xi_2$,
- $\omega_3 : 1 \mapsto 1$, $\xi_j \mapsto -\xi_j$, $j = 1, 2, 3$, $\xi_i\xi_j \mapsto \xi_i\xi_j$, $i \neq j$, $\xi_1\xi_2\xi_3 \mapsto -\xi_1\xi_2\xi_3$.
Sketch of Proof

- $H^1_{\text{ct}}(\hat{\mathbb{Z}}, \text{Aut}_{\hat{D}-\text{conf}}(\mathcal{K}_N, \hat{D})) \cong H^1_{\text{ct}}(\hat{\mathbb{Z}}, O_N(\hat{D}))$.

- $H^1_{\text{ct}}(\hat{\mathbb{Z}}, O_N(\hat{D}))$ has exactly two elements.
 - There is a split exact sequence of $\hat{\mathbb{Z}}$–groups

 \[
 1 \to \text{SO}_N(\hat{D}) \to O_N(\hat{D}) \xrightarrow{\text{det}} \mathbb{Z}_2 \to 1,
 \]

 which induces an exact sequence of pointed sets

 \[
 H^1_{\text{ct}}(\hat{\mathbb{Z}}, \text{SO}_N(\hat{D})) \to H^1_{\text{ct}}(\hat{\mathbb{Z}}, O_N(\hat{D})) \xrightarrow{\psi} H^1_{\text{ct}}(\hat{\mathbb{Z}}, \mathbb{Z}_2).
 \]

 - ψ is surjective and each fiber of ψ contains exactly one point.

- Centroid trick.
The associated Lie superalgebras

For each of $N = 1, 2, 3$, the two non-isomorphic twisted loop conformal superalgebras $\mathcal{L}(\mathcal{K}_N, \text{id})$ and $\mathcal{L}(\mathcal{K}_N, \omega_N)$ yield two Lie superalgebras

$$\text{Alg}(\mathcal{K}_N, \text{id}) \text{ and } \text{Alg}(\mathcal{K}_N, \omega_N).$$

Proposition (Chang, Pianzola, 2011&2013)

For each $N = 1, 2, 3$, $\text{Alg}(\mathcal{K}_N, \text{id})$ and $\text{Alg}(\mathcal{K}_N, \omega_N)$ are not isomorphic as Lie superalgebras over \mathbb{k}.
Outline

Affine Kac-Moody algebras

Lie algebras and Lie conformal algebras

Differential conformal algebras and their forms

The $N = 1, 2, 3$ conformal superalgebras

The small $N = 4$ conformal superalgebra

The large $N = 4$ conformal superalgebra
The small $N = 4$ conformal superalgebra \mathcal{W}

$\mathcal{W} = \mathcal{W}_0 \oplus \mathcal{W}_1$, where

$\mathcal{W}_0 = \mathbb{k}[\partial]L \oplus \mathbb{k}[\partial]T^1 \oplus \mathbb{k}[\partial]T^2 \oplus \mathbb{k}[\partial]T^3,$

$\mathcal{W}_1 = \mathbb{k}[\partial]G^1 \oplus \mathbb{k}[\partial]G^2 \oplus \mathbb{k}[\partial]\overline{G}^1 \oplus \mathbb{k}[\partial]\overline{G}^2.$

The λ–bracket on \mathcal{W} is given by

\[
\begin{align*}
[L_\lambda L] &= (\partial + 2\lambda)L, \\
[L_\lambda T^i] &= (\partial + \lambda)T^i, \\
[L_\lambda G^p] &= (\partial + \frac{3}{2}\lambda) G^p, \\
[L_\lambda \overline{G}^p] &= (\partial + \rac{3}{2}\lambda) \overline{G}^p, \\
[T^i_\lambda T^j] &= i\epsilon_{ijk} T^k, \\
[T^i_\lambda G^p] &= -\frac{1}{2} \sum_{q=1}^{2} \sigma^i_{pq} G^q, \\
[T^i_\lambda \overline{G}^p] &= \frac{1}{2} \sum_{q=1}^{2} \sigma^i_{qp} \overline{G}^q, \\
[G^p_\lambda G^q] &= 2\delta_{pq}L - 2(\partial + 2\lambda) \sum_{i=1}^{3} \sigma^i_{pq} T^i,
\end{align*}
\]

for $i, j = 1, 2, 3$ and $p, q = 1, 2$, where

\[
\begin{align*}
\sigma^1 &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, & \sigma^2 &= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, & \sigma^3 &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\end{align*}
\]
Known results

Proposition (Kac, Lau, Pianzola, 2009)

\[
\text{Aut}_{\hat{D}\text{-conf}}(\mathcal{W}_{\hat{D}}) \cong \frac{\text{SL}_2(\hat{D}) \times \text{SL}_2(\mathbb{k})}{\langle (-I_2, -I_2) \rangle}.
\]

Proposition (Kac, Lau, Pianzola, 2009)

The set of isomorphism classes of twisted loop conformal algebras based on \(\mathcal{W} \) (up to \(\mathbb{k} \)-isomorphism) is one to one with the set of conjugacy classes of elements of finite order in \(\text{PGL}_2(\mathbb{k}) \).
Automorphism group functor

Fix a subspace

\[V = \text{span}_k \{ L, T^1, T^2, T^3, G^1, G^2, \overline{G}^1, \overline{G}^2 \} \].

Then \(\mathcal{W} = k[\partial] \otimes k V \).

For each \(\mathcal{R} = (R, d) \in k\text{-drng} \), we define a subgroup

\[\text{GrAut}(\mathcal{W})(\mathcal{R}) = \{ \phi \in \text{Aut}(\mathcal{W})(\mathcal{R}) \mid \phi(V \otimes R) \subseteq V \otimes R \} \],

which is functorial in \(\mathcal{R} \).
Automorphism group functor

Theorem (Chang, 2013)

Let $\mathcal{R} = (R, d) \in \kappa$-drng.

- $\text{GrAut}(\mathcal{W})(\mathcal{R}) = \text{Aut}(\mathcal{W})(\mathcal{R})$ if R is an integral domain.
- There is an exact sequence of groups

$$1 \to \mu_2(R) \to \text{SL}_2(R) \times \text{SL}_2(R_0) \overset{\iota_{\mathcal{R}}}{\to} \text{GrAut}(\mathcal{W})(\mathcal{R}),$$

where $R_0 = \ker d$. The sequence is functorial in \mathcal{R}.

- Assume R is an integral domain. Then, for every $\phi \in \text{GrAut}(\mathcal{W})(\mathcal{R})$,

 there is an étale extension S of \mathcal{R} such that

$$\phi_S \in \text{Im}(\iota_S : \text{SL}_2(S) \times \text{SL}_2(S_0) \overset{\iota_{S}}{\to} \text{GrAut}(\mathcal{W})(S)).$$
Sketch of Proof I:
review the definition relations for \mathcal{W}

$$\mathcal{W} = \mathcal{W}_0 \oplus \mathcal{W}_1,$$
where

$$\mathcal{W}_0 = k[\partial]L \oplus k[\partial]T^1 \oplus k[\partial]T^2 \oplus k[\partial]T^3,$$
$$\mathcal{W}_1 = k[\partial]G^1 \oplus k[\partial]G^2 \oplus k[\partial]\overline{G}^1 \oplus k[\partial]\overline{G}^2.$$

The λ–bracket on \mathcal{W} is given by

$$[L_\lambda L] = (\partial + 2\lambda)L, \quad [L_\lambda T^i] = (\partial + \lambda)T^i,$$
$$[L_\lambda G^p] = (\partial + \frac{3}{2}\lambda)G^p, \quad [T^i_\lambda T^j] = i\epsilon_{ijk}T^k,$$
$$[L_\lambda \overline{G}^p] = (\partial + \frac{3}{2}\lambda)\overline{G}^p, \quad [G^p_\lambda G^q] = [\overline{G}^p_\lambda \overline{G}^q] = 0,$$
$$[T^i_\lambda G^p] = -\frac{1}{2}\sum_{q=1}^{2}\sigma^i_{pq}G^q, \quad [T^i_\lambda \overline{G}^p] = \frac{1}{2}\sum_{q=1}^{2}\sigma^i_{qp}\overline{G}^q,$$
$$[G^p_\lambda \overline{G}^q] = 2\delta_{pq}L - 2(\partial + 2\lambda)\sum_{i=1}^{3}\sigma^i_{pq}T^i,$$

for $i, j = 1, 2, 3$ and $p, q = 1, 2$, where

$$\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
Sketch of Proof II: simplification

Notation:

\[T(x) := (x_{12} + x_{21}) T^1 + i(x_{12} - x_{21}) T^2 + 2x_{11} T^3, \]
\[G(u) := u_{22} G^1 + u_{11} \overline{G}^1 - u_{12} G^2 + u_{21} \overline{G}^2. \]

for \(x = (x_{ij})_{2 \times 2} \in \mathfrak{sl}_2(\mathbb{k}) \) and \(u = (u_{ij})_{2 \times 2} \in \text{Mat}_2(\mathbb{k}) \).

The \(\lambda \)-bracket on \(\mathcal{W} \) is rewritten as follows:

\[
\begin{align*}
[L_\lambda L] &= (\partial + 2\lambda)L, \\
[L_\lambda T(x)] &= (\partial + \lambda)T(x), \quad [T(x) \lambda T(y)] = T([x, y]), \\
[L_\lambda G(u)] &= (\partial + \frac{3}{2}\lambda)G(u), \quad [T(x) \lambda G(u)] = G(xu), \\
[G(u) \lambda G(v)] &= 2\text{tr}(uv^\dagger)L + (\partial + 2\lambda)T(uv^\dagger - vu^\dagger).
\end{align*}
\]

where \(x, y \in \mathfrak{sl}_2(\mathbb{k}) \), and \(u, v \in \text{Mat}_2(\mathbb{k}) \).

\[\dagger : \text{Mat}_2(\mathbb{k}) \to \text{Mat}_2(\mathbb{k}), \quad u = u_{ij} \mapsto u^\dagger := \begin{pmatrix} u_{22} & -u_{12} \\ -u_{21} & u_{11} \end{pmatrix}. \]
Sketch of Proof III: construction of automorphisms

Let \(\mathcal{R} = (R, \text{d}) \in \mathbb{k}\text{-drng} \) and \(R_0 = \ker \text{d} \).
Then every element \((A, B) \in \text{SL}_2(R) \times \text{SL}_2(R_0)\) defines an automorphism \(\theta_{A,B} \) of \(\mathcal{W} \):

\[
\begin{align*}
\theta_{A,B}(L) &= L + T(d(A)A^{-1}), \\
\theta_{A,B}(T(x)) &= T(AxA^{-1}), \\
\theta_{A,B}(G(u)) &= G(AuB^{-1}).
\end{align*}
\]
Outline

Affine Kac-Moody algebras

Lie algebras and Lie conformal algebras

Differential conformal algebras and their forms

The $N = 1, 2, 3$ conformal superalgebras

The small $N = 4$ conformal superalgebra

The large $N = 4$ conformal superalgebra
The large $N = 4$ superconformal Lie algebras

\[[L_m, L_n] = (m - n)L_{m+n} + \frac{m^3-m}{12} \delta_{m,-n}c, \]
\[[L_m, U_n] = -nU_{m+n}, \]
\[[T^{+i}_m, T^{+j}_n] = \epsilon_{ijk} T^{+k}_{m+n} - \frac{m}{12 \gamma} \delta_{ij} \delta_{m,-n}c, \]
\[[T^{-i}_m, T^{-j}_n] = \epsilon_{ijk} T^{-k}_{m+n} - \frac{m}{12(1-\gamma)} \delta_{ij} \delta_{m,-n}c, \]
\[[L_m, Q^p_{n'}] = -\left(\frac{1}{2} m + n' \right) Q^p_{m+n'}, \]
\[[L_m, G^p_{n'}] = \left(\frac{1}{2} m - n' \right) G^p_{m+n'}, \]
\[[Q^p_{m'}, Q^q_{n'}] = -\frac{\delta_{pq} \delta_{m',-n'}}{12\gamma(1-\gamma)} c, \]
\[[T^{+i}_m, G^p_{n'}] = \alpha^{+i}_{pq} (G^q_{m+n'} - 2(1-\gamma)mQ^q_{m+n'}), \]
\[[T^{-i}_m, G^p_{n'}] = \alpha^{-i}_{pq} (G^q_{m+n'} + 2\gamma mQ^q_{m+n'}), \]
\[[Q^p_{m'}, G^q_{n'}] = \delta_{pq} U_{m'+n'} + 2(\alpha^{+i}_{pq} T^{+i}_{m'+n'} - \alpha^{-i}_{pq} T^{-i}_{m'+n'}), \]
\[[G^p_{m'}, G^q_{n'}] = 2\delta_{pq} L_{m'+n'} + 4(n' - m')(\gamma \alpha^{+i}_{pq} T^{+i}_{m'+n'} + (1-\gamma) \alpha^{-i}_{pq} T^{-i}_{m'+n'}) \]
\[+ \frac{1}{3} \delta_{pq} \delta_{m',-n'} (m'^2 - 1/4)c, \]

for $i, j = 1, 2, 3, p, q = 1, 2, 3, 4, m, n \in \mathbb{Z}$, $m', n' \in \frac{1}{2} + \mathbb{Z}$.
The large $N = 4$ conformal superalgebra

the $\mathbb{k}[\partial]$–module

$$\mathcal{M} = \mathcal{M}_0 \oplus \mathcal{M}_\bar{1},$$

where

$$\mathcal{M}_0 = \mathbb{k}[\partial] \otimes_{\mathbb{k}} (\mathbb{k}L \oplus \mathfrak{sl}_2(\mathbb{k}) \oplus \mathfrak{sl}_2(\mathbb{k}) \oplus \mathbb{k}U),$$

$$\mathcal{M}_\bar{1} = \mathbb{k}[\partial] \otimes_{\mathbb{k}} (\text{Mat}_2(\mathbb{k}) \oplus \text{Mat}_2(\mathbb{k})).$$

Notation:

$$T^+(x) = 1 \otimes (0 \oplus x \oplus 0 \oplus 0) \in \mathcal{M}_0,$$

$$T^-(x) = 1 \otimes (0 \oplus 0 \oplus x \oplus 0) \in \mathcal{M}_0,$$

$$G(u) = 1 \otimes (u \oplus 0) \in \mathcal{M}_\bar{1},$$

$$Q(u) = 1 \otimes (0 \oplus u) \in \mathcal{M}_\bar{1},$$

for $x \in \mathfrak{sl}_2(\mathbb{k})$ and $u \in \text{Mat}_2(\mathbb{k}).$
The large $N = 4$ conformal superalgebra defining relations

\[
\begin{align*}
[L_\lambda L] &= (\partial + 2\lambda)L, \\
[L_\lambda U] &= (\partial + \lambda)U, \\
[T^\pm (x)_\lambda T^\pm (y)] &= T^\pm ([x, y]), \\
[L_\lambda Q(u)] &= (\partial + \frac{1}{2} \lambda) Q(u), \\
[L_\lambda G(u)] &= (\partial + \frac{3}{2} \lambda) G(u), \\
[T^+ (x)_\lambda G(u)] &= G(xu) - \lambda Q(xu), \\
[T^- (x)_\lambda G(u)] &= -G(ux) - \lambda Q(ux), \\
[Q(u)_\lambda G(v)] &= 2\text{tr}(uv^\dagger)U - T^+(uv^\dagger - vu^\dagger) + T^- (u^\dagger v - v^\dagger u), \\
[G(u)_\lambda G(v)] &= 4\text{tr}(uv^\dagger)L + (\partial + 2\lambda) \left(T^+(uv^\dagger - vu^\dagger) + T^- (u^\dagger v - v^\dagger u) \right),
\end{align*}
\]

for $x, y \in \mathfrak{sl}_2(\mathbb{K})$ and $u, v \in \text{Mat}_2(\mathbb{K})$.
Automorphism group

Proposition (Chang, Pianzola, 2013)

\[\text{Aut}_{\tilde{D}-\text{conf}}(\mathcal{M}_{\tilde{D}}) \cong \left(\frac{\text{SL}_2(\hat{D}) \times \text{SL}_2(\hat{D})}{\langle (-I_2, -I_2) \rangle} \times \mathbb{G}_a(\hat{D}) \right) \rtimes \mathbb{Z}_2. \]
Sketch of Proof I

There is a group homomorphism

$$\mathbf{SL}_2(\hat{D}) \times \mathbf{SL}_2(\hat{D}) \to \text{Aut}_{\hat{D}\text{-conf}}(\mathcal{M}_{\hat{D}}), \quad (A, B) \mapsto \theta_{A,B},$$

where $\theta_{A,B}$ is defined by

$$L \mapsto L + T^+(d_t(A)A^{-1}) + T^{-1}(d_t(B)B^{-1}),$$

$$T^+(x) \mapsto T^+(AxA^{-1}),$$

$$T^-(y) \mapsto T^-(ByB^{-1}),$$

$$U \mapsto U,$$

$$G(u) \mapsto G(AuB^{-1}) - Q(d_t(A)uB^{-1} - Aud_t(B^{-1})),$$

$$Q(u) \mapsto Q(AuB^{-1}),$$

for $x \in \mathfrak{sl}_2(\mathbb{k})$ and $u \in \text{Mat}_2(\mathbb{k}).$
Sketch of Proof II

- There is a group homomorphism

\[G_a(\widehat{D}) \to \text{Aut}_{\widehat{D}\text{-conf}}(\mathcal{M}_{\widehat{D}}), \quad s \mapsto \tau_s, \]

where \(\tau_s \) is defined by

- \(L \mapsto L + U \otimes s \),
- \(T^\pm(x) \mapsto T^\pm(x) \),
- \(U \mapsto U \),
- \(G(u) \mapsto G(u) + Q(su) \),
- \(Q(u) \mapsto Q(u) \),

for \(x \in \mathfrak{sl}_2(\mathbb{k}) \) and \(u \in \text{Mat}_2(\mathbb{k}) \).
Sketch of Proof III

There is an element \(\omega \in \text{Aut}_{\hat{D}\text{-conf}}(\hat{\mathcal{M}}) \) of order 2 given by

\[
\begin{align*}
\omega(L) &= L, \\
\omega(T^{\pm}(x)) &= T^{\mp}(x), \\
\omega(U) &= -U, \\
\omega(G(u)) &= G(u^\dagger), \\
\omega(Q(u)) &= -Q(u^\dagger),
\end{align*}
\]

for \(x \in \mathfrak{sl}_2(\mathbb{k}) \) and \(u \in \text{Mat}_2(\mathbb{k}) \).

These automorphisms satisfy

\[
\begin{align*}
\theta_{A,B} \circ \tau_s &= \tau_s \circ \theta_{A,B}. \\
\omega \circ \theta_{A,B} \circ \omega &= \theta_{B,A}. \\
\omega \circ \tau_s \circ \omega &= \tau_{-s}.
\end{align*}
\]

Hence, we get the group homomorphism

\[
(\text{SL}_2(\hat{D}) \times \text{SL}_2(\hat{D}) \times G_a(\hat{D})) \rtimes \mathbb{Z}_2 \rightarrow \text{Aut}_{\hat{D}\text{-conf}}(\hat{\mathcal{M}}),
\]

which is surjective and has kernel \(\langle (-I_2, -I_2, 0, 0) \rangle \).
Twisted loop conformal superalgebras based on \mathcal{M}

Theorem (Chang, Pianzola, 2013)

There are exactly two twisted loop conformal superalgebras based on \mathcal{M} (up to isomorphism of \mathbb{k}–conformal superalgebras), namely, $\mathcal{L}(\mathcal{M}, \text{id})$ and $\mathcal{L}(\mathcal{M}, \omega)$.

Sketch of Proof.

- $H^1_{\text{ct}} \left(\widehat{\mathbb{Z}}, \left(\frac{\text{SL}_2(\widehat{D}) \times \text{SL}_2(\widehat{D})}{\langle (-I_2, -I_2) \rangle} \right) \rtimes \mathbb{G}_a(\widehat{D}) \right) \rtimes \mathbb{Z}_2$ has exactly two elements.
- Centroid trick.
The associated Lie superalgebras

The two non-isomorphic Lie conformal superalgebras

\[\mathcal{L}(\mathcal{M}, \text{id}) \text{ and } \mathcal{L}(\mathcal{M}, \omega) \]

yield two Lie superalgebras

\[\text{Alg}(\mathcal{M}, \text{id}) \text{ and } \text{Alg}(\mathcal{M}, \omega). \]

Proposition (Chang, Pianzola, 2013)

The two Lie superalgebras \(\text{Alg}(\mathcal{M}, \text{id}) \text{ and } \text{Alg}(\mathcal{M}, \omega) \) *are not isomorphic.*
Reference

B. Allison, S. Berman, J. Faulkner, and A. Pianzola.
Multiloop realization of extended affine Lie algebras and Lie tori.

V. Chernousov, V. Egorov, P. Gille, and A. Pianzola.
A cohomological proof of Peterson-Kac’s theorem on conjugacy of Cartan subalgebras of affine Kac-Moody Lie algebras.

V. Chernousov, P. Gille, and A. Pianzola.
Conjugacy theorems for loop reductive group schemes and Lie algebras.

V. Chernousov, P. Gille, and A. Pianzola.
Torsors over the punctured affine line.

Z. Chang.
The automorphism group functor of the $N = 4$ Lie conformal superalgebra.

Z. Chang and A. Pianzola.
Automorphisms and twisted forms of the $N = 1, 2, 3$ Lie conformal superalgebras.
Reference

Z. Chang and A. Pianzola.
On twisted large $N = 4$ conformal superalgerbas.

P. Gille and A. Pianzola.
Isotriviality of torsors over Laurent polynomial rings.

P. Gille and A. Pianzola.
Galois cohomology and forms of algebras over Laurent polynomial rings.

P. Gille and A. Pianzola.
Isotriviality and étale cohomology of Laurent polynomial rings.

P. Gille and A. Pianzola.
Torsors, reductive group schemes and extended affine Lie algebras,
Reference

V. G. Kac.

V. G. Kac, M. Lau, and A. Pianzola.

M. Lau.

M. Lau and A. Pianzola.

E. Neher, D. Prelat, and A. Pianzola.
Invariant bilinear forms of algebras given by faithfully flat descent. *Preprint*, 20??.

A. Pianzola.
Reference

A. Pianzola.
Vanishing of H^1 for Dedekind rings and applications to loop algebras.

A. Pianzola.
Derivations of certain algebras defined by étale descent.

Descent constructions for central extensions of infinite dimensional Lie algebras.

A. Schwimmer and N. Seiberg.
Comments on the $N = 2, 3, 4$ superconformal algebras in two dimensions.

J. Sun.
Universal central extensions of twisted forms of split simple Lie algebras over rings.
Thank You!