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Abstract

In this article we apply the method used in the recent elegant proof by Kiselev, Nazarov and Volberg of the well-posedness
of critically dissipative 2D quasi-geostrophic equation to the super-critical case. We prove that if the initial value satisfies
‖∇θ0‖1−2s

L∞ ‖θ0‖2s
L∞ < cs for some small number cs > 0, where s is the power of the fractional Laplacian, then no finite time

singularity will occur for the super-critically dissipative 2D quasi-geostrophic equation.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The study of global regularity or finite-time singularity of the two-dimensional dissipative/non-dissipative quasi-
geostrophic equation (subsequently referred to as “2D QG equation” for convenience) has been an active research
area in recent years. The 2D QG equation reads

θt + u · ∇θ = −κ(−�)sθ,

u = −
(−R2

R1

)
θ,

θ |t=0 = θ0. (1)

where Ri = ∂xi
(−�)−1/2, i = 1,2, are the Riesz transforms. When κ = 0 the system (1) becomes the 2D non-

dissipative QG equation. When κ > 0, (1) is called “sub-critical” when s > 1/2, “critical” when s = 1/2 and “super-
critical” when s < 1/2.

Ever since the pioneering works by Constantin, Majda and Tabak [7] and Constantin and Wu [9], which revealed
close relations between dissipative/non-dissipative 2D QG equation and the 3D Navier–Stokes/Euler equations regard-
ing global regularity or finite-time singularity, many results have been obtained by various researchers. See e.g. [2–6,
9,10,17–20,22–25,27–29] for the dissipative case, and [8,11–13] for the non-dissipative case. Among them, [9] settled
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the global regularity for the sub-critical case and [2,23] showed that smooth solutions for the critically dissipative QG
equation will never blowup ([23] requires periodicity). On the other hand, whether solutions for the super-critically
dissipative QG equation and the non-dissipative QG equation are globally regular is still unknown.

For the super-critical case, several small initial data results have been obtained. More specifically, global regularity
has been shown when the initial data is small in spaces B2−2s

2,1 [5], Hr with r > 2 [10], or Br
2,∞ with r > 2 − 2s [27],

and when the product ‖θ0‖β
Hr ‖θ0‖1−β

Lp with r � 2 − 2α, and certain p ∈ [1,∞] and β ∈ (0,1] is small [22].
In this article, we derive a new global regularity result for smooth and periodic initial data which is small in certain

sense using the method in [23] combined with a new representation formula for fractional Laplacians discovered by
Caffarelli and Silvestre [1]. Our main theorem is the following.

Theorem 1. For each s ∈ (0,1/2), there is a constant cs > 0 such that the solution to the dissipative QG equation (1)
with smooth periodic initial data remains smooth for all times when the initial data is small in the following sense:

‖∇θ0‖1−2s
L∞ ‖θ0‖2s

L∞ < cs. (2)

Furthermore, when (2) is satisfied, we have the following uniform bound

‖∇θ‖L∞ < 2‖∇θ0‖L∞ (3)

for all t > 0.

Remark 1. Our result is independent of previous small initial data results [5,10,22,27] in the sense that Theorem 1 can
neither imply nor be implied by any of them. Furthermore the smallness condition (2) only involves the first derivative
of θ0 while the smallness conditions in previous works all involve at least 2 − 2s derivatives. On the other hand, all
previous results apply to the case s = 0 as well as non-periodic initial data too while our result does not.

Remark 2. It has been shown [26] that as long as

T∫
0

‖∇θ‖L∞(t)dt < ∞,

the smooth solution θ can be extended beyond T . Therefore all we need to do is to show the uniform bound (3).

Remark 3. It can be shown that the conclusions of Theorem 1 remains true even if the initial data θ0 is not smooth
and periodic. More specifically, we can show that Theorem 1 remains true for θ0 ∈ Ḣ 2−2s . See Remark 5 in Section 8
for more explanation.

Our proof uses the same idea as [23]. More specifically, we show that for any smooth and periodic initial value θ0,
there exists a modulus of continuity ω(ξ), such that ω(ξ) remains a modulus of continuity for θ(x, t) for all t > 0.
Once this is shown, the uniform bound of ‖∇θ‖L∞(t) can simply be taken as ω′(0).

Since our proof uses the same method as [23], and since the only difference between the critically and the super-
critically dissipative QG equations is in the dissipation term, many arguments in [23] still work here. However we
choose to repeat the main steps of these arguments for completeness and better readability of this paper.

2. Preliminaries

2.1. Modulus of continuity

Definition 1 (Modulus of continuity). A modulus of continuity is a continuous, increasing and concave function
ω : [0,+∞) �→ [0,+∞) with ω(0) = 0. If for some function f : R

n �→ R
m∣∣f (x) − f (y)

∣∣ � ω
(|x − y|)

holds for all x,y ∈ R
n, we call ω a modulus of continuity for f .
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Remark 4. There is another definition of modulus of continuity for a function f in the context of classical Fourier
analysis, referring to a specific function

ωM(ξ) = sup
|x−y|�ξ

∣∣f (x) − f (y)
∣∣.

See e.g. [30]. ωM(ξ) is increasing but not necessarily concave so may not satisfy the conditions in Definition 1. It
turns out that when f is periodic there is always a function ω satisfying

1

2
ω(ξ) � ωM(ξ) � ω(ξ),

and furthermore the conditions in Definition 1 hold for ω. See [16].

Note that when ω is a modulus of continuity of θ : R
n �→ R, we always have

|∇θ |(x) � ω′(0)

for all x ∈ R
n. To see this, we take an arbitrary unit vector e. By definition we have∣∣θ(x + he) − θ(x)

∣∣ � ω(h)

for any h > 0. Recalling ω(0) = 0, we have

|e · ∇θ |(x) = lim
h↘0

∣∣∣∣θ(x + he) − θ(x)

h

∣∣∣∣ � lim
h↘0

ω(h) − ω(0)

h
= ω′(0).

The conclusion follows from the arbitrariness of e.
An important class of modulus of continuity is ω(ξ) = Cξα for α ∈ (0,1). It is easy to see that for a fixed α ∈ (0,1),

a function f has a modulus of continuity Cξα for some C > 0 if and only if f is C0,α continuous. Therefore moduli
of continuity can be seen as generalizations of Hölder continuity. In [23] it is shown that, similar to the Hölder semi-
norms, moduli of continuity also enjoy nice properties under singular integral operators. In particular, we can obtain
the following estimate for u = ( −R2

R1

)
θ in the 2D QG equation.

Lemma 1 (Estimate for Riesz transform [23]). If the function θ has modulus of continuity ω, then u = ( −R2
R1

)
θ has

modulus of continuity

Ω(ξ) = A

[ ξ∫
0

ω(η)

η
dη + ξ

∞∫
ξ

ω(η)

η2
dη

]
(4)

with some universal constant A > 0.

Proof. See Appendix of [23]. �
2.2. Representation of the fractional Laplacian

A key observation in [23] is the following representation formula

−(−�)1/2θ = P2,h ∗ θ,

where P2,h is the 2D Poisson kernel.
It turns out that the fractional Laplacian operators −(−�)s for s �= 1/2 also have similar representations, which

have just been discovered by Caffarelli and Silvestre [1]. We summarize results from [1] that will be useful to our
proof here.

Consider the fractional Laplacian (−�)s in R
n for s ∈ (0,1). We define the following kernel

Pn,h(x) = Cn,s

h

(|x|2 + 4s2|h|1/s)
n
2 +s

(5)
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where Cn,s is a normalization constant making
∫

Pn,h(x)dx = 1. Then we have[−(−�)sθ
]
(x) = C

d

dh
[Pn,h ∗ θ ](x)

where C is a positive constant depending only on the dimension n and the power s. The exact value of this constant
C is not important to our proof.

3. The breakthrough scenario

In [23], it is shown that if ω is a modulus of continuity for θ before some time T but ceases to be so after T , then
there exist two points x,y ∈ R

2 such that

θ(x, T ) − θ(y, T ) = ω
(|x − y|)

when ω satisfies

(a) ω′(0) finite, and
(b) ω′′(0+) = −∞, and
(c) ω(ξ) → +∞ as ξ → ∞.

We repeat the argument in [23] here for the completeness of this paper.

• Since ω is a modulus of continuity for θ for t < T , we have the uniform estimate

‖∇θ‖L∞(t) � ω′(0) for all t < T .

Thus θ remains smooth for a short time beyond T , and therefore ω remains a modulus of continuity for θ at t = T

due to the continuity of |θ(x, t) − θ(y, t)| with respect to t .
• Now assume |θ(x, T ) − θ(y, T )| < ω(|x − y|) for any x �= y. There are three cases. Let δ > 0 be a very small

number to be fixed.
1. |x − y| > δ−1. Since ω(ξ) is unbounded, we can take δ so small that

ω
(|x − y|) > ω

(
δ−1) > 2‖θ‖L∞(T ) + ε �

∣∣θ(x, T ) − θ(y, T )
∣∣ + ε0

for some small ε0 > 0. Thus there is T1 > T such that |θ(x, t) − θ(y, t)| � ω(|x − y|) for all t � T1 for all
|x − y| > δ−1.

2. |x −y| < δ. We first show that ω′(0) > ‖∇θ‖L∞(T ). Let x be an arbitrary point and e be an arbitrary direction,
we have∣∣θ(x + he, T ) − θ(x, T )

∣∣ < ω(h) = ω′(0)h + 1

2
ω′′(ξ)h2.

Note that the left-hand side is bounded from below by∣∣e · ∇θ(x, T )
∣∣h − 1

2

∥∥∇2θ
∥∥

L∞(T )h2.

Since ω′′(0+) = −∞, taking h small enough gives |e ·∇θ(x)| < ω′(0). Now taking e = ∇θ(x,T )
|∇θ(x,T )| we conclude

|∇θ(x, T )| < ω′(0) for any x. Since θ is periodic, we have ω′(0) > ‖∇θ‖L∞(T ).
Thus there is T2 > T such that ω′(0) > ‖∇θ‖L∞(t) for all t � T2. Take δ so small that ω′(δ) > ‖∇θ‖L∞(t) for
all t � T2. This gives

ω
(|x − y|) � ω′(δ)|x − y| > ‖∇θ‖L∞(t)|x − y| � ∣∣θ(x, t) − θ(y, t)

∣∣
for all t � T2, where the first inequality is due to the concavity of ω.

3. δ � |x − y| � δ−1. Since |θ(x, T ) − θ(y, T )| is a periodic function in R
4, there is M > 0 such that for any

x,y, there are |x′|, |y ′| � M, |x′ − y′| � δ such that |θ(x, T ) − θ(y, T )| = |θ(x′, T ) − θ(y′, T )|. Thus there
is ε0 > 0 such that∣∣θ(x, T ) − θ(y, T )

∣∣ = ∣∣θ(x′, T ) − θ(y′, T )
∣∣ < ω

(|x′ − y′|) − ε0 � ω
(|x − y|) − ε0

due to the compactness of the region |x′|, |y′| � M, |x′ − y′| � δ in R
2 × R

2.



Author's personal copy

X. Yu / J. Math. Anal. Appl. 339 (2008) 359–371 363

Therefore there is T3 > T such that |θ(x, t) − θ(y, t)| < ω(|x − y|) for all t < T3.
In summary, when |θ(x, T ) − θ(y, T )| < ω(|x − y|) for any x �= y, ω will remain a modulus of continuity for θ

for a short time beyond T .
• Therefore, if ω is a modulus of continuity for t � T but ceases to be so for t > T , there must be two points x,y

such that∣∣θ(x, T ) − θ(y, T )
∣∣ = ω

(|x − y|).
By switching x and y if necessary, we reach

θ(x, T ) − θ(y, T ) = ω
(|x − y|). (6)

We now set out to prove

d

dt

[
θ(x, T ) − θ(y, T )

]
< 0

which implies

θ(x, t) − θ(y, t) > ω
(|x − y|)

for some t < T but very close to T . This gives a contradiction.
Since

d

dt

[
θ(x, T ) − θ(y, T )

] = −[
(u · ∇θ)(x, T ) − (u · ∇θ)(y, T )

] + [−(−�)sθ
]
(x, T ) − [−(−�)sθ

]
(y, T )

all we need are good upper bounds of the convection term −[(u · ∇θ)(y, T ) − (u · ∇θ)(x, T )] and the dissipation
term [−(−�)sθ ](x, T ) − [−(−�)sθ ](y, T ). We perform such estimates in the following two sections.

In the following analysis we will suppress the time dependence since all estimates are independent of time.

4. Estimate of the convection term

We estimate the convection term in the same way as [23]. For completeness we repeat what they did here. Denote
ξ = |x − y|.

We have

θ
(
x − hu(x)

) − θ
(
y − hu(y)

)
� ω

(|x − y| + h
∣∣u(x) − u(y)

∣∣) � ω
(
ξ + hΩ(ξ)

)
.

Thus

−[
(u · ∇θ)(x) − (u · ∇θ)(y)

] = d

dh

[
θ
(
x − hu(x)

) − θ
(
y − hu(y)

)]∣∣
h=0

= lim
h↘0

1

h

{[
θ
(
x − hu(x)

) − θ
(
y − hu(y)

)] − [
θ(x) − θ(y)

]}
= lim

h↘0

1

h

{[
θ
(
x − hu(x)

) − θ
(
y − hu(y)

)] − ω(ξ)
}

� lim
h↘0

1

h

[
ω

(
ξ + hΩ(ξ)

) − ω(ξ)
]

= Ω(ξ)ω′(ξ).

To summarize, we have the estimate

−[
(u · ∇θ)(x) − (u · ∇θ)(y)

]
� Ω(ξ)ω′(ξ) (7)

for the convection term at the two particular points x,y chosen in Section 3.
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5. Estimate of the dissipation term

Now we estimate the dissipation term. Without loss of generality let x = (
ξ
2 ,0),y = (− ξ

2 ,0) as in [23]

(P2,h ∗ θ)(x) − (P2,h ∗ θ)(y) =
∫ ∫

R2

[
P2,h

(
ξ

2
− η,−ν

)
− P2,h

(
−ξ

2
− η,−ν

)]
θ(η, ν)dη dν

=
∫
R

dν

∞∫
0

[
P2,h

(
ξ

2
− η,−ν

)
− P2,h

(
−ξ

2
− η,−ν

)]
θ(η, ν)dη

+
∫
R

dν

0∫
−∞

[
P2,h

(
ξ

2
− η,−ν

)
− P2,h

(
−ξ

2
− η,−ν

)]
θ(η, ν)dη

=
∫
R

dν

∞∫
0

[
P2,h

(
ξ

2
− η,−ν

)
− P2,h

(
−ξ

2
− η,−ν

)]
θ(η, ν)dη

+
∫
R

dν

∞∫
0

[
P2,h

(
ξ

2
+ η,−ν

)
− P2,h

(
−ξ

2
+ η,−ν

)]
θ(−η, ν)dη

=
∫
R

dν

∞∫
0

[
P2,h

(
ξ

2
− η,−ν

)
− P2,h

(
−ξ

2
− η,−ν

)]
θ(η, ν)dη

−
∫
R

dν

∞∫
0

[
P2,h

(
−ξ

2
+ η,−ν

)
− P2,h

(
ξ

2
+ η,−ν

)]
θ(−η, ν)dη

=
∫
R

dν

∞∫
0

[
P2,h

(
ξ

2
− η,−ν

)
− P2,h

(
−ξ

2
− η,−ν

)][
θ(η, ν) − θ(−η, ν)

]
dη

�
∫
R

dν

∞∫
0

[
P2,h

(
ξ

2
− η,−ν

)
− P2,h

(
−ξ

2
− η,−ν

)]
ω(2η)dη

=
∞∫

0

[
P1,h

(
ξ

2
− η

)
− P1,h

(
−ξ

2
− η

)]
ω(2η)dη

where we have used the symmetry of the kernel Pn,h and the fact that

P2,h

(
ξ

2
− η,−ν

)
� P2,h

(
−ξ

2
− η,−ν

)

because | ξ
2 − η| � |− ξ

2 − η| for ξ, η � 0. The last equality is because∫
R

Pn,h(x1, . . . , xn)dxn = Pn−1,h(x1, . . . , xn−1)

which can be checked directly.
Following the same argument as in [23] we have

[−(−�)sθ
]
(x) − [−(−�)sθ

]
(y) = d

dh

[
(P2,h ∗ θ)(x) − (P2,h ∗ θ)(y)

]
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= lim
h↘0

{[(P2,h ∗ θ)(x) − (P2,h ∗ θ)(y)] − [θ(x) − θ(y)]}
h

= lim
h↘0

{[(P2,h ∗ θ)(x) − (P2,h ∗ θ)(y)] − ω(ξ)}
h

= lim
h↘0

1

h

{ ∞∫
0

[
P1,h

(
ξ

2
− η

)
− P1,h

(
−ξ

2
− η

)]
ω(2η)dη − ω(ξ)

}
.

Now we simplify

I =
∞∫

0

[
P1,h

(
ξ

2
− η

)
− P1,h

(
−ξ

2
− η

)]
ω(2η)dη.

We have

I =
∞∫

0

[
P1,h

(
ξ

2
− η

)
− P1,h

(
ξ

2
+ η

)]
ω(2η)dη

=
ξ/2∫
0

P1,h

(
ξ

2
− η

)
ω(2η)dη +

∞∫
ξ/2

P1,h

(
ξ

2
− η

)
ω(2η)dη −

∞∫
ξ/2

P1,h(η)ω(2η − ξ)dη

=
ξ/2∫
0

P1,h(η)ω(ξ − 2η)dη +
∞∫

0

P1,h(η)ω(ξ + 2η)dη −
∞∫

ξ/2

P1,h(η)ω(2η − ξ)dη

=
ξ/2∫
0

P1,h(η)
[
ω(ξ − 2η) + ω(ξ + 2η)

]
dη +

∞∫
ξ/2

P1,h(η)
[
ω(2η + ξ) − ω(2η − ξ)

]
dη.

On the other hand,

ω(ξ) =
∞∫

0

P1,h(η)
[
2ω(ξ)

]
dη =

ξ/2∫
0

P1,h(η)
[
2ω(ξ)

]
dη +

∞∫
ξ/2

P1,h(η)
[
2ω(ξ)

]
dη

due to the fact that
∫ ∞

0 P1,h(η)dη = 1
2

∫
R

P1,h(η)dη = 1
2 .

Combining the above, and recalling the explicit formula (5) of Pn,h, we have

[−(−�)sθ
]
(x) − [−(−�)sθ

]
(y) � lim

h↘0

1

h

ξ/2∫
0

P1,h(η)
[
ω(ξ − 2η) + ω(ξ + 2η) − 2ω(ξ)

]
dη

+ lim
h↘0

1

h

∞∫
ξ/2

P1,h(η)
[
ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

]
dη

= C

ξ/2∫
0

ω(ξ − 2η) + ω(ξ + 2η) − 2ω(ξ)

η1+2s
dη

+ C

∞∫
ξ/2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η1+2s
dη

for some positive constant C depending on s only.
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Thus we obtain the following upper bound for the dissipation term:

Cκ

[ ξ/2∫
0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η1+2s
dη +

∞∫
ξ/2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η1+2s
dη

]
, (8)

where κ is the dissipation constant in (1). Note that since ω is taken to be strictly concave, both terms are negative.

6. Construction of the modulus of continuity

The task now is to choose a special ω(ξ) such that dissipation dominates, that is

A

[ ξ∫
0

ω(η)

η
dη + ξ

∞∫
ξ

ω(η)

η2
dη

]
ω′(ξ)

+ Cκ

[ ξ/2∫
0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η1+2s
dη +

∞∫
ξ/2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η1+2s
dη

]
< 0

for all ξ � 0.
We construct ω in the following way

ω(ξ) = ξ − ξ r when 0 � ξ � δ, (9)

and

ω′(ξ) = γ

(ξ/δ)α
when ξ > δ, (10)

where r ∈ (1,1+2s) and α ∈ (2s,1) are arbitrary constants. The other two constants 0 < δ � 1 and 0 < γ < 1−rδr−1

are taken to be small enough.
We first check that ω satisfies the conditions in Definition 1. It is clear that ω is continuous and increasing. It

is also clear that ω(0) = 0. Since ω′(ξ) is decreasing in [0, δ] and (δ,∞) respectively, ω is concave as long as
ω′(δ−) � ω′(δ+). We compute

ω′(δ−) = 1 − rδr−1

and

ω′(δ+) = γ.

Thus the concavity of ω is guaranteed when γ < 1 − rδr−1.
We notice that |ω′(ξ)| � 1 for all ξ , therefore ω(ξ) � ξ for all ξ . Also note that for the simplicity of formulas our

γ corresponds to the quantity γ /δ in [23]. We would also like to remark that our construction here does not extend to
the critical case or the case s = 0.

We discuss the cases 0 � ξ � δ and ξ > δ separately.

6.1. The case 0 � ξ � δ

• Convection term.

We have
ξ∫

0

ω(η)

η
dη = ξ − 1

r
ξ r � ξ,

and
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∞∫
ξ

ω(η)

η2
dη =

δ∫
ξ

ω(η)

η2
dη +

∞∫
δ

ω(η)

η2
dη =

δ∫
ξ

η − ηr

η2
dη −

∞∫
δ

ω(η)d

(
1

η

)

� log
δ

ξ
+ ω(δ)

δ
+

∞∫
δ

ω′(η)

η
dη � log

δ

ξ
+ 1 +

∞∫
δ

γ δα

η1+α
dη

= log
δ

ξ
+ 1 + γ

α
� log

δ

ξ
+ 2

if we take γ � α ∈ (2s,1).
Thus the convection term

A

[ ξ∫
0

ω(η)

η
dη + ξ

∞∫
ξ

ω(η)

η2
dη

]
ω′(ξ)

can be estimated from above by

Aξ

(
3 + log

δ

ξ

)
(11)

since 0 < ω′(ξ) � 1.

• Dissipation term.

We have

ξ/2∫
0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η1+2s
� Cξ2−2sω′′(ξ) = −Cξξr−(1+2s)

for some constant C > 0 when δ is small enough, where the first inequality comes from Taylor expansion and the fact
that ω′′ is increasing for the ω defined by (9)–(10).

Since the other term is always negative, the dissipation term

Cκ

[ ξ/2∫
0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η1+2s
dη +

∞∫
ξ/2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η1+2s
dη

]

can be estimated from above by

−κξξr−(1+2s). (12)

Now combining the above, we see that the sum of the convection and the dissipation terms for ξ � δ can be
estimated from above by

ξ

[
A

(
3 + log

δ

ξ

)
− κξr−(1+2s)

]
.

This is negative when δ and consequently ξ is small enough since r − (1 + 2s) < 0.

6.2. The case ξ > δ

• Convection term.

We have
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ξ∫
0

ω(η)

η
dη =

δ∫
0

ω(η)

η
dη +

ξ∫
δ

ω(η)

η
dη � δ +

ξ∫
δ

ω(ξ)

η
dη = δ + ω(ξ) log

ξ

δ
� ω(ξ)

(
2 + log

ξ

δ

)

where in the last step we have used ω(ξ) � ω(δ) = δ − δr > δ/2 when δ is small enough.
On the other hand,

∞∫
ξ

ω(η)

η2
dη = −

∞∫
ξ

ω(η)d

(
1

η

)
= ω(ξ)

ξ
+

∞∫
ξ

ω′(η)

η
dη = ω(ξ)

ξ
+ γ δα

∞∫
ξ

1

η1+α
dη = ω(ξ)

ξ
+ γ

α
δαξ−α

= 1

ξ

[
ω(ξ) + γ

α
δαξ1−α

]
.

Note that for ξ > δ we have

ω(ξ) = δ − δr +
ξ∫

δ

γ δα

ηα
dη = δ − δr + γ

1 − α
δαξ1−α − γ

1 − α
δ

�
[

1

2
− γ

1 − α

]
δ + γ

1 − α
δαξ1−α = γ

1 − α
δαξ1−α

if we take γ to be less than 1−α
2 > 0 so that 1

2 − γ
1−α

> 0.
Thus we have

δαξ1−α � 1 − α

γ
ω(ξ). (13)

Therefore
∞∫

ξ

ω(η)

η2
dη = 1

ξ

[
ω(ξ) + γ

α
δαξ1−α

]
� 1

α

ω(ξ)

ξ
.

Now we can estimate the convection term

A

[ ξ∫
0

ω(η)

η
dη + ξ

∞∫
ξ

ω(η)

η2
dη

]
ω′(ξ)

as follows:

A

[ ξ∫
0

ω(η)

η
dη + ξ

∞∫
ξ

ω(η)

η2
dη

]
ω′(ξ) � ω(ξ)

(
C + log

ξ

δ

)
ω′(ξ) = γω(ξ)

(
C + log

ξ

δ

)(
ξ

δ

)−α

. (14)

• The dissipation term.

To estimate the dissipation term we notice that

ω(2η + ξ) − ω(2η − ξ) � ω(2ξ) = ω(ξ) +
2ξ∫

ξ

γ δα

ηα
dη = ω(ξ) + γ (21−α − 1)

1 − α
δαξ1−α

� ω(ξ) + (
21−α − 1

)
ω(ξ) � 21−αω(ξ),

where we have used (13).
Notice that 21−α < 2 since α ∈ (2s,1), there is C > 0 such that ω(2ξ) − 2ω(ξ) � −Cω(ξ) for all ξ > δ.
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Thus the dissipation term

Cκ

[ ξ/2∫
0

ω(ξ + 2η) + ω(ξ − 2η) − 2ω(ξ)

η1+2s
dη +

∞∫
ξ/2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η1+2s
dη

]

is bounded from above by

Cκ

∞∫
ξ/2

ω(2η + ξ) − ω(2η − ξ) − 2ω(ξ)

η1+2s
dη � Cκ

∞∫
ξ/2

ω(2ξ) − 2ω(ξ)

η1+2s
dη

� −Cκω(ξ)

( ∞∫
ξ/2

dη

η1+2s

)

= −Cκξ−2sω(ξ). (15)

for some positive constant C.
Combining the above, we see that the sum of the convection and the dissipation terms for ξ > δ is

ω(ξ)

[
γ

(
C′ + log

ξ

δ

)(
ξ

δ

)−α

− κCξ−2s

]
= ω(ξ)

[
γ

(
C′ + log

ξ

δ

)(
ξ

δ

)−α

− κCδ2s

(
ξ

δ

)−2s]

which is negative if γ � κCδ2s and δ is small enough since α > 2s. Here we use C′ for the constant in the convection
estimate. Note that since the constants are all independent of γ , we are free to make γ small.

7. Global regularity

We have shown that the if θ0 has a modulus of continuity ω(ξ) as defined by (9)–(10), then ω(ξ) will remain
to be a modulus of continuity for θ for all t . We now show that, due to the special scaling invariance θ(x, t) �→
μ2s−1θ(μx,μ2s t) of the super-critically dissipative QG equation, there is cs > 0 such that whenever (2) is satisfied,
i.e., ‖∇θ0‖1−2s

L∞ ‖θ0‖2s
L∞ < cs , we can find μ such that a re-scaling of θ0 has modulus of continuity ω(ξ), thus proving

Theorem 1.

7.1. Scaling invariance of super-critical dissipative QG equation

We first recall that the super-critical dissipative QG equation has the following scaling invariance:

θ(x, t) �→ μ2s−1θ
(
μx,μ2s t

)
.

More specifically, if θ0(x) = μ2s−1θ̃0(μx,μ2s t), and θ̃ solves

θ̃t + ũ · ∇ θ̃ = −(−)s θ̃

for some s ∈ (0, 1
2 ) with initial data θ̃0, then

θ(x, t) = μ2s−1θ̃
(
μx,μ2s t

)
solves the same equation with initial data θ0. Thus in particular, if θ̃ is globally regular, so is θ .

On the other hand, if ω̃(ξ) is a modulus of continuity for θ̃0(x), then

ω(ξ) ≡ μ2s−1ω̃(μξ)

is a modulus of continuity for θ0(x) = μ2s−1θ̃0(μx,μ2s t).
Therefore, to establish global regularity for certain smooth and periodic initial data θ0, it suffices to find a scaling

constant μ such that

ωμ(ξ) = μ2s−1ω(μξ)

is a modulus of continuity for θ0(x), where ω(ξ) is the particular modulus of continuity defined by (9)–(10).



Author's personal copy

370 X. Yu / J. Math. Anal. Appl. 339 (2008) 359–371

7.2. Rescaling ω(ξ)

Recall that ω(ξ) is defined by

ω(ξ) = ξ − ξ r when 0 � ξ � δ

and

ω′(ξ) = γ δα

ξα
when ξ > δ.

We can easily compute

ωμ

(|x − y|) =
{

μ2s |x − y| − μ2s−1+r |x − y|r when μ|x − y| � δ,

γ δα

1−α
μ2s−α|x − y|1−α + μ2s−1[δ − γ

1−α
δ − δr ] when μ|x − y| > δ.

Now we take μ2s = 2‖∇θ0‖L∞ . Then for x,y such that |x − y| � δ/μ, we have

∣∣θ0(x) − θ0(y)
∣∣ � ‖∇θ0‖L∞|x − y| = 2‖∇θ0‖L∞|x − y|1

2
= μ2s |x − y|1

2
� μ2s |x − y|(1 − δr−1) � μ2s |x − y|(1 − μr−1|x − y|r−1) = ωμ

(|x − y|)
according to our choice of δ.

On the other hand, for any x,y with |x − y| > δ/μ, we have∣∣θ0(x) − θ0(y)
∣∣ � 2‖θ0‖L∞ .

So it is clear that ωμ is a modulus of continuity of θ0 as long as

2‖θ0‖L∞ � ωμ

(
δ

μ

)
= μ2s−1(δ − δr

) = 2
2s−1

2s ‖∇θ0‖
2s−1

2s

L∞
(
δ − δr

)
.

This can be simplified to

‖∇θ0‖1−2s
L∞ ‖θ0‖2s

L∞ � 1

2

(
δ − δr

)2s
.

Now taking

cs = 1

2

(
δ − δr

)2s

we see that

‖∇θ0‖1−2s
L∞ ‖θ0‖2s

L∞ � cs

is sufficient for θ to stay smooth for all time.

8. Final remarks

Theorem 1 can be generalized to the case with non-periodic initial data. The smallness condition can also be
improved slightly when the level sets are smooth around the “breakthrough” points.

Remark 5. In [14], the author proved that when the initial data θ0 ∈ Ḣ 2−2s , the solution exists at least for finite time
[0, T ), and furthermore the following decay estimates hold:

sup
0<t<T

tβ/(2s)‖θ‖H 2−2s+β < +∞ ∀β � 0.

Using this and similar argument as in [15], one can prove that the breakthrough scenario as in Section 3 remains true
for general non-periodic θ0. With the breakthrough scenario true, the conclusions of Theorem 1 can be established for
general non-periodic initial data with the same argument as for the periodic case.



Author's personal copy

X. Yu / J. Math. Anal. Appl. 339 (2008) 359–371 371

Remark 6. When the level sets around the two “breakthrough” points x,y, which satisfy (6), stay smooth, for exam-
ple, when the unit tangent vector field around x,y stays Lipschitz continuous, we can show that no finite singularity
can occur when the Hölder semi-norm |θ0|Ċ1−2s is small, thus weakening the smallness condition (2). Very recently
Ju [21] proved global regularity for the 2D QG equation with critical dissipation under similar Lipschitz assumption
on the unit tangent vector field in regions with large |∇θ |. Although the result there holds for all initial data including
non-periodic ones, the method there cannot be applied to the super-critical case.
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