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Abstract

Models involving singular perturbation to a non-convex potential energy play a very important
role in describing phase transitions, e.g. the celebrated Cahn—Hillard model where a two-well
potential energy functional (i.e., the potential has two zeros) is perturbed by the L*-norm of the
gradient.

Many variants of this model have been studied. In this paper, we perturb a general multi-well
energy functional by the L?-norm of a higher gradient Hessian of arbitrary order and study
its I'(L')-limit. As expected, the limit functional assigns different surface energy densities to
interfaces between different phases and computes the total energy.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Backgrounds

The singular perturbation of non-convex, multi-well integral functionals appears in
many fields of material science and engineering, such as the higher strain-gradient the-
ory of plasticity, the magnetic domain theory of ferromagnetic materials, the surface
energy theory of crystalline materials, etc. For example, in the classical theory of the
phase transition of non-interacting mixture of fluid (see [14,15]), the stable constitution
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Fig. 1. Picture of W(u) when d =1, r=2.

of the fluid solves the following problem:

. . 1. md _ - a0
mm{/QW(u)dx. uel (Q;R ),/Qudx—|9| (;9,%)},

where Q is the domain containing the fluid. Non-negative function W stands for the
unit Gibbs free energy, which is related to some properties (e.g. density) of the fluid,
and {u:W(u)=0} = {ay,...,a,} C R, where {a;} are the value of those properties
in stable states (see Fig. 1 for a picture of W when d = 1, r = 2). The constraint
Jo u = constant shows the conservation of those characteristic values. The solution to
the above problem shows the stable state distribution of the components of the mixture.

It is easy to see that the solutions to the above problem are far from unique. It
is believed that this non-uniqueness is due to the negligence of some small effects in
the mathematical model. Following the idea of the celebrated Van Der Waals—Cahn—
Hilliard model [15], we try to restore the uniqueness by adding some perturbation
terms, which serve as penalties. In general, the perturbation term, which stands for
the energy cost of the formation of interfaces between different phases, involves some
higher order derivatives. Let

Jy(u) = /Q(W(u) + h*(&,x, Du, D*u, - - -))dx

be the perturbed functional, where # — 0 when ¢ — 0. We hope that a proper limit of
J.(u) can select a unique and reasonable solution from an infinite number of minimizers
of the original problem. It turns out that the so-called “I'-limit” is the right idea to
serve this purpose.

Following the above ideas, many results appeared in the past two decades (see e.g.
[2,4,6,9-12,16,17,19]). All these results proved that the I'-limit of J, should be the
minimizer of a functional of the following type:

Z Sijmj; - u is a solution to the un-perturbed problem,
i#j

1<i,j<r
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where S;; is the area of the interface—the boundary shared by any two domains, in
which u takes a; and a; respectively, and m;; is the “unit surface energy” related to
that interface.

In this paper, following the ideas of [4,11], we generalize the results to d > 1,7 > 2,
with the perturbation term being &% [, [D¥u/? dx.

2. Preliminaries
2.1. The space of BV functions

Here we list the definition and some properties of BV functions, which we will need
in the following sections of this article.

Definition 2.1.1. Let Q C R" be open, and f € L!'(Q). Define

/\Dflz sup {/fDngdx},
Q 9GOl oo (@) < 1 Q

where g = (g1,...,9,) € CL(2; RY).

Definition 2.1.2. A function f €L'(Q) is called having bounded variation in Q, if
fQ |Df| < co as defined above. We call the space of all L!(Q) functions which have
bounded variation BV(£2).

Definition 2.1.3. Let £ be a Borel set in RV, Q an open set in RY. We define as
follows the perimeter of £ in Q:

Pero(E) = / |DyEl,
Q

where yg is the characteristic function of E.

Definition 2.1.4. If a Borel set £ has locally finite perimeter, i.e., Perg(E) < + oo for
any bounded open set £, then E is called a Caccioppoli set.

Let E be a Caccioppoli set, then there exists a subset 0*E of OE, which has the

following property:
For any open set Q € RY, we have

Perg(E) = AV "Y(0*ENQ),

where #V~! denotes the (N — 1)-dimensional Hausdorff measure.
Later we will use the following important theorem about BV functions.
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Theorem 2.1.5. For any Caccioppoli set E, there exist a series of C* sets E;, such

that
/|foxE,,|dHo, /\DXE_,| H/|DXE|.

For detailed theory of BV functions and boundary of sets, see e.g. [13].
2.2. I-limit

The theory of I'-limit provides a good frame for the study of the asymptotic behavior
of the minimizers of a series of functionals. For the details of this theory, see [8].
Now we state the definition of I'(L')-limit.

Definition 2.2.1. Suppose F, : L'(Q; R?) — [ — 00, 00], u € L'(Q; R?). Define I'-upper
limit and I'-lower limit as the following:

[(L') — lim inf F,(u):=inf {nm inf Fy(u,): ty — u in}(Q; IR")} ,

(L") — lim sup F,,(u):=inf {lim sup Fyy(u): u, — u in L'(Q; Rd)} .
If I'(L") — liminf F,,(u) = I'(L") — lim sup F,,(u), then the common limit is called the
I'(L")-limit of F, at u, and is denoted as I'(L') — lim F,,(u).

Moreover, for a set of functionals F, : L'(Q;RY) — [ — oo,00],e >0, for
uc L'(Q;RY), we say I'(L') — lim Fy(u) = F(u), if for all ¢, — 0%, F(u)=I'(L") —
lim F,, (u).

Here we should state an important observation. i.e., any minimizer u, of the func-
tional F, is also a minimizer of A.F, for any A, > 0. According to this observation,
we can say that any minimizer of the I'-limit of each {/.F.} reveals some asymptotic
properties of {u,}. It turns out that there exists a “best” {4.}, in the sense that the
I'-limit of this A.F, reveals the most.

3. Main result

Consider the following problem:

Let Q€ RY be a bounded open set, Let the functions u:Q — R? and W:R¢ — R
satisfy the following properties:

(H1) W(u) = 0,W(u)=0<uc{ai,...,a}, where ¢, €R?, i=1,...,r.

(H2) W(u) continuous, has no less of order one growth at infinity, i.e., there exist
C,R > 0, such that when |u| > R, W(u) > C|u| — 1/C.

We will develop the I'-limit of the following series of functionals:

973(14)2/9 (W‘gu)+82k1|Dku|2) dx.
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where [Dful> =3, |6"u/(6x,l - 0x;,)? with the summation taken over all ordered

.....

subsets with cardinal & of {1,2,...,N}.

3.1. Preparative lemmas

Lemma 3.1.1. Let ¢ : (0,400) — R be non-decreasing and convex, J a interval with
integer or infinite length, then for any uelLl (J,R?), u¥eLl (J,R?), (k=2, keN),
there exists C = C(k) > 0, such that the following holds, if all the involved integrals
are well defined:

[uD(1))|
/J“" ((1 +c>d> &

< o7 o)+ o o vi<i<i-t

Proof. First we consider the case d = 1. For u(t) € W*'(0,1), we divide (0, 1) equally
into 2/*! — 1 intervals Iy,...,L1_;. Fix 2/ points

ch_y, i=1,..2".
Denote 0; to be the point satisfying

u(%l )_ (021 1
05[ = %i:l

u(i)(O{) s i=1,...,2l_j,

where j =1,2,...,1. Given the positions of 6?, the absolute value of each divider has
a common lower bound, which depends only on k. Using the mean value theorem, we
have: there exists n€(0,1),C = C(k) > 0, such that

2[

WO < Y- )], i=1,....2",

i=1

then for any x €(0,1), we have
2! 1
6] < € a0 + [ WD)
i=1 0

Note that this inequality holds for all 0? € Ip;—;. Then we integrate 0? on each I;_;.
We have

1 P 1u )| < Clly n“Z /

b

(0%)] d6° + [1or1 / WD) de.
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Note that
Z/ lu(6)| d6? = Z/ u(t)| dr < /|u(t)|dt
bi_ hi—
We have

()| < C/O1 |u(z)|dz+/01 ()| dt.
Applying the above argument to u'+!), we have:
V()] < C/O1 |u(t)|dt—|—/01 W 2(1)| dt.
Putting it into the former formula, we have
luD(x)| < C/O1 |u(t)|dt+/01 [ 2)(1)| dr.
Repeating the above process, we can find a constant C, depending only on k, such that
D (x)| < c/1 |u(t)|dt+/l (1)) dt
0 0
holds for any 1 </ <k — 1. So we have

1 1
uD(x)| < 1)|de / ®)| dt.
s 25 [worars g [

Due to the Embedding Theorem, u(") is continuous. So the above holds almost every-
where.
Because ¢ is convex and non-decreasing, we have

C
10 <C+1 |u(1)(x)|> <C+ T / lu(2)| dz + —/ u(k)(;)|dt)
C 1

1 1
-— u 45
<7 | [ etuonars [ o (r)|>dz]

for all x € (0,1). Integrating on x from 0 to 1, we have

1
Jul D) ®)
[ o (M) ar< 255 [ ot + o wmas

Dividing J into intervals with length 1, using the above result on each interval, and
then adding them together, we prove the case d = 1.
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For d = 2, let u(t) = (ui(t),...,uq(t)), we have

[o(aa) o= [o(Sates) o
BN ")
< 3; /J(p (CI+I> dt
.
S cemrP I AC QIR CRODE

< = CS [t + oD
S(crnds ¢

= &7 tetuon + e omar =

Definition 3.1.2. We define auxiliary functions G;:R¥ — R, i€ {l,...,r}, sets i,
o/;; and constants m;;, m;; for later use:

1
Gi(zo, - .., zg—1):=inf {/ (W (g(1)) + |g(k)(f)2)dt},
g 0

where g(7) € C*([0,1];R?), 9(0) = zo,...,¢*"D(0) =z—15 g(1) = a;, ¢P(1) =0, I =
L...,k—1.

A= {f€WEHRR):3C >0, f(t)y=a; fort<—C, f(t)=a
fort>C, i#j},
- {fe Wee RN : limf(0)=a;, lim f(1)= a,},
mij:if;f{/R(W(fH FAUDIE fG%z/}

and
nz,-,::ir}f {/R(W(f) +1f®2dr: fe ﬁ[j} .

Remark 3.1.3. Using polynomials as test functions, we can easily see that when zy —
a; and z; — 0, [ =1,...,k — 1, there holds Gi(zy,...,zx—1) — O.

Lemma 3..1.4. For any 1 < <, i# ], we have my; = m;; > 0, and my; is attained.

Before proving this lemma, we cite a result of Nirenberg in [18].
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Theorem 3.1.5. Let Q € R", suppose u € L1(Q), its mth derivative D"u e L"(Q), 1 < g,
r < oo. Then for D/u, 0 < j < m, the following inequality holds:

[Dlulp < C(D" ul}July™ + lulg),

where

o, 1 1
=]+oc(—m)+(1—oc)
p n ron q

for all o satisfying é <o < 1. where C depends on n,m,j,q,r,o,Q. There are two
exceptions:

1. If j=0, rm <n, g =00, then we should suppose further either u tends to 0 at
infinity, or u € L1, holds for some finite § > 0.
2. If 1 <r<oo, and m—j—n/r a non-negative integer, then o should satisfy jim<o<1.

Remark 3.1.6. We would like to make the following explanations:

1. The original theorem deals with the case € = R”, the result we cite here is in fact
its fifth remark.

2. There is also a slight change in notations, in [18] the semi-norm |D*u|, is defined
as the maximum of the |- |, norms of all jth order derivatives of u, but obviously
this change would not affect the result, as long as we take a larger constant C.

3. The above theorem holds for all p € R!/{0}, as is stated in [18], with the norms
for p < 0 suitably defined as some Holder norm. We will not go into the details
here since all we need in the following is the p > 0 case.

4. Although we will not need it, it is worth mentioning that since for any measurable
function u: 2 — R, when Q is bounded, we have

lullge = lim|luf|r
p—+oo

so the case p = +oo needs no special treatment, just let « tend to some oy which
causes p to be 400 would do.

Now we proceed to prove Lemma 3.1.2.

Proof. First we prove m;; > 0. Suppose this is not true, that is m;; = 0. If f, is a
minimizing sequence, then f° ) 0 in L2 Using Sobolev Embedding Theorem [1],
we have f, € CF1(R; R?).

Let S={y:y€R, |y —aj| =|a; — aj|/2}, then from the definition of .«/;; we have
fn=a;, for t > M,,

M, > 0, such that
fon=ua;, fort < — M,.

So there exists #, € R such that f,(#,) €S. It’s easy to see that we can take #, = 0.
Take o= (j/m), r=2, ¢q=1, m=k in theorem 3.1.3, we have p=2m/(2m — j). So
l.f 7|l 7%2men—1) are uniformly bounded on any interval J. Using again the Embedding
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Theorem, we know that there exists a subsequence (still denote as f,) converges on
J under the W*=1> norm to some f € WE2"®"~D(R; R?), which satisfies f*) =0
inJ, f(0)eS. Now,

=M/WMmer
n—oo R

>mwﬂMMHﬁ%m
J

n—oo

>/JW(f)dt > 0.

This leads to a contradiction. So we have m;; > 0.

Next we prove m;; = ;.

Obviously m;; > m;;. Now we prove the opposite direction. Fix 6 > 0 and f € 2 ij
satisfying riv;; +6 > [o(W(f)+|f®|*)dt. Now we will construct a sequence of func-
tions in ./;;, which approaches #;; + J.

Fix 7 < |a; — a;|/2, consider a non-decreasing convex function ¢:R — [0,+00),
satisfying

o(t) <, VIER,
o(ly]) < W(y+a;), VyeB(0,7)\ {0} C RY,

p(t)=0&1t=0.

It is easy to prove that such ¢ exists.
Take R > 0, such that | f(¢)—a;| <1, V¢ > R. Using Lemma 3.1 on f —a; we have

- |f(l)| ¢ " (k)2
/R (p<(c+1)d> < C+1/R WO+ < C+1(m,,+5)

thus Z/ L @(|fP]/(C+1)d) is integrable on (R, +00). So there exist x, — -+00 such
that

FAR(EDN)]
Jim [Z(’)((thl)d /@) —al| =0.
Since ¢ is monotone, and is 0 only at x =0, we have

k—1
Z |f(l)(xn)| + [ f(xn) = aj‘ — 0.

=1
Similarly, we can prove that there exist y, — —oo such that
k-1

Z |f(1)\(yn)

I=1

+ |f(yn) _ai| — 0.
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Take g, (1) =g,,(t —xm), (1) = hy(t — yu + 1), where > h,, are admissible functions
to G,(f(xm),...,f(k’l)(xm)) and G,-(f(ym),...,f(k’l)(ym)), respectively, satisfying

1
/ W@+ 18OPYdE < G Condseves fE D)) + 5,
0

1
/ W () + 1 PYdE < Gilf )= SO () + 6.
0

Let

a; t=x,+1,
Im(t) 1 € Py X + 11,
()= SO 1€ mxn),
h(t) 1€ [Ym = 1, ym),

a; < ym—1,

~

we then have

Ay + 6 > /(W(f)+ | ®2)de
R

Ym
> / W)+ 1 OP)dr

Xm

. . X1
:A(W(fm)+|f(i)\2)dt—/ (W (gm) + g0 P) di

m

Ym
—/ (W () + RO ) de
Y

m—1

> miy = Gi(f s s SED00)) = Gil(f (), ST ()
— m;.

Thus we proved #i;; > m;;. Finally, we prove that the minimum is attained.

Suppose { f,} is a minimizing sequence of 7;;. We can safely assume that f,(0) €S,
and {f,} converges to f € WE2(R,R?) in W =12 1t is easy to see that £(0)€S. If f
is admissible, due to Fatou’s Lemma and the convexity of L?> norm, f is a minimizer.
Now we prove that f is indeed admissible, i.e., f €./ ij

Let L ={/€R? is a limit point of f(¢) as t — +oc}, since W(f) is integrable,
we know that either a; or a;, or both, are in L. No harm to let a; € L. If there is
another /#a; in L, we can suppose ! # a;. (If a; € L, then using the continuity of f,,
and the compactness of S, we know that there exists a / € S, such that / € L.) Consider
two increasing sequences {x;}, {z}, satisfying x;11 —x; =3, z;€[x; + Lxipq — 1],
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f(x;) = a;, f(z;) = . For any 0 < 0 < min{|/ — a;|,|/ — a;|} we define
y
rfz:inf{/ W)+ 1g®P)dx: y—x=3,Fzex+ 1,y —11,]g9(z) — | < 5},

where g € WF2((x, y); R?). Now we prove 7 = 0.
Suppose the reverse is true, i.e., m > 0. From the definition of z, there must exist a
ng, such that Vn > no, | f(z,) — I| <9, so

Xit1

+oo
[ora+1r9pax= S [ 0r) + 9P dx = 4.
R no Xi
A contradiction!

Suppose g, € W 2((x,, y,); RY) minimize 7, no harm to suppose z, =0, so x, < — 1,
¥n = 1. Then there exists a subsequence (denoted again by {g,}), such that g, — ¢
in W =1>°(—1,1). Now we have fi1 W(g)+ |g®>dx =0 and |g(0) — [| < § at the
same time, a contradiction!

So, when ¢t — +o00, f, — a;.

Using similar induction, if a; €L, then f(¢) — a;,t — +oo. For t — —o0 we
can argue similarly. Now we only need to show that the following does not happen:
f(t) = aj,t — £oo or f(t) — a;,t — Foo.

Suppose limi f(¢) = a;, no harm to assume f(0)€S. Then there exists x, —
+00, such that Zf:]l | D) + | f(xn) — a] — 0, so we can find a subsequence of
the minimizing sequence {f,}(denoted again by {f,}), such that Zi:ll | ff,[)(x,,)\ +
| fn(xn) —a;] — 0 and f,(0) — f(0). Now we have

myy = /R W)+ /9P de
~ lim / W)+ /P dr
n—oo R

X n +oo
= lim ( /_ W)+ 110 de+ / (W(fn)+fff)|2)dt>

n

n—oo

> lim sup < [ SO+ 1FOPR) iy — Gz-<fn(xn),...,ff,"“(m))

— limsup / W(f) + S OP) + iy

n—oo

Since f,(0) — f(0)€S, it is easy to know that the first term on the right-hand side
is greater than 0. A contradiction. [

Remark 3.1.7. Energy balance: Suppose f is the minimizer in the above theorem,
define f,(¢) = f(At), then

/ W)+ /PP de < / W) + 1 f Py dr
R R
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holds for all A€ R, let 1(2) = [(W(f,)+ |f®|*)de, then A=1 is a critical point of
I(A), so we have

_ _ (k)|2
/RW(f) 2k 1)/le 2

Thus we see that in the transition layer between two phase domains, the Gibbs free
energy and the surface energy can be roughly said “equal”.

3.2. Compactness result
In this section we will establish the compactness of the minimizing sequence.

Theorem 3.2.1. Let I be a bounded open interval in R, if u, € W52(I;R?) satis-
fies liminf, o+ 7 .(u;) < + o0, then there exists a subsequence {u,,} and ueBV(,
{ay,ay,...,a,}), such that u,, — u in L'(I;RY).

Proof. Let liminf % ,(u,)=K <+o00, and it is subsequence {u,, } satisfy limZ, (u,, )=
K, then it is easy to know that {u, } satisfies the condition of the theorem in [5], so
there is a subsequence (denoted again by u,, ) and a Young measure v,(y), such that
for any continuous function f, we have

Pt =7 = [ )iy in 120

Let f(y)=min{W(y), 1}, then it is easy to see that
V(1) =D 0:(1)8 =,
i=1

Next we prove 0, € {0,1}, i=1,...,r.
Define

t—o

1 1+0
Xi-z{tel;zé/ 0r(s)ds€(0,1), k=i,j, V5>O},

we will prove the finiteness of the above set.
Suppose there are / > 1 distinct points {si,s,...,s;} in Xj;, and set dp = min{|s,, —
Sm+1]}. Take 01 < do/2, such that for all 6 < d; and all me {1,...,1},

Sm+0 Sm+0
/ 0:(s)ds > 0, / 0;(s)ds > 0.

m—0 m—0

Fix 0 < 17 < |aj—a;|/2, suppose @,, ¥, and 7y, : R? — R are smooth functions, satisfying

supp ¢, C B(ai,n), @y(a;) =1,
supp ¥, C B(0,1), Yy(0)=1,

supp y; C B(a;,n), yy(a;)=1.
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From the uniform boundedness of %, (u,,), we have the uniform boundedness of u,,
and e zuff) in L(1) and L?(1), respectively. For any i € {1,...,k— 1}, Let n; =2i,
and take o =i/k, r =2, ¢ =1 in Theorem 3.1.3, we have b”’ug — 0 in L'(J), so
%(?”'u&,)) — Y4(0) in L'(1). Then from the theorem in [5], ¢,(u,, ) converges weak
in L) to 0;¢,(a;) + 0;9,(a;) = 0;, and y,(u,, ) converges weak * in L>°(/) to 0;.
It is easy to see that for each me {1,...,/} and each n, there exist xzm,x;’m €(sm —
O1ySm + 01), X, ,, <X ., such that

n,m>

usn(x;:,m)eB(aj) 71)7 usn(xn_,m)eB(aia 17)7

|8”'u(’) :zr,m)| <n, |8n’”(1)(xnm)| <7

Define

A xt X,
gn,m(t) = Yn,m (t - n,m> 5 n m(t) = n m ( - =224 l) >
En &n

where g, ., By are, respectively, the admissible functions of G; (e, (X ) e, (X7, )s
gh- lu“‘ D(x,,)) and Gi(us,,(x:,mx e (x5, el (), satisfying

(W(hnm)+ hyon) < Gilu, Cop et (ep s €D Gr ) + s
n,m n & n,m

1
/ (W ) + 1950 P) < G, (e ) 1t (), € a0 (,0) +
0

Now change u,, as follows:

X+

a; t> ;’—1'" + 1,
xt
gt)  te[ wn Tan ],
A+
Dun(1) = e, oal) 1 €[22, ;f;,’”l

h(r) tefte

X
n,m
“mm

én

a; t <

From the value of n; we know that v, , € W{;CZ(R), )

K > lgri)i(%fZ/ ( W(u,,) + e2t = uld)? )

1 n,m
én

= liminf > [, (W (vnm) + 0§ dt
m=1 T

&, —0F
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!
> min{m;}/ — lim sup Z (G (e, (X, 0 ) €0 e, (X3 )5 )
&, —0T
" m=1

+ Gilutg, (3, )5 851105, (3, )5+ )

Let n — 0", we have K > min{m;;}/, and the finiteness of X follows.
So we have u€BV and u,, —u in L'. [

Theorem 3.2.2. If u, € W52(Q; RY) satisfy liminf,_o+ Z,(u,) < + oo, then there ex-
ists a subsequence {u; } and u€ BV(Q;{ay,...,a,}), such that

U, — U in L'(Q; RY).
First we introduce the concept of d-closeness and a lemma [3,11]:
Definition 3.2.3. Two function sequences {u,}, {v.} are called d-close, if |ju,—v,|| < J.

We take u(y,z):1 xJ — R as an example to define the “slice function” as follows,
where [,J are open intervals. For any y € I we define u”(z):=u(y,z), and for any z € J
we define v*(y):=u(y,z), then we call ¥’ and u* the one-dimensional slices of u.

Lemma 3.2.4. Suppose {u,} are equiintegrable [7), and for any 6 > 0 there exists
sequences {v,}, {w,} -close to {u,}, and {vy} precompact for almost every y €l
in L'(J;R?), {w?} precompact for almost every z€J in L'(I;R?). Then {u,} is
precompact in L'(Q; R?).

Now we proceed to prove the theorem.

Proof. No harm to assume N =2. Assume first that Q =7 x J, where [,J are open
intervals. We define the following one-dimensional functional Z ! (u,A):

/(@ + WPy deif ue W4 RY),
Flu,A)y={ Ja °

+00 if ueL'(4;RY)\ Wh2(4; RY),

where u € L'(4; R?) and 4 is an open interval.
Since u € W*2(Q;R?), by approximating it with C> functions, we know that for
almost every y €I, u” € W52(J), and for almost every z € J, u* € W*2(I). Furthermore,
dfuy

oku
a?(x) = U(Z),

k,z

Ak
gT}L/:(x) = T;((y), for a.e. x € Q.

From this we can easily see that

Fo(u) = / Flw,dy, F(u)= / T, Idz.
1 J
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Now consider a family of functions {u,}, satisfying 7 ,(u;) < C <+oo. Thus [, W (u,)
dx < Ce, then we have W(u,) — 0 in L'. So from (H2) (see the beginning of this
section) we get the equiintegrability of u,. Now fix d > 0, take ¢’ € (0,0) satisfying

S| < )| — sup/(|ug(x)| +lar)dx < 6.
e>0J8

For ¢ > 0, we define as follows v,: Q — R?:
u)(z) =uy(y,z) if F(u},J)<C/§
vY(z)=
aj elsewhere.

Let Z,:={x : v #u?}. Since

C > sup / F ) dy,
1

e>0

we have
5/
2] < (F ) > Y < G [ Fladdy <3,
1
SO

||ug—vs|\1</ \u8<x>—a1\dx</ (a0 + Jan]) < 8
Z;XJ Z.xXJ

holds for any & > 0. We have that {v;} and {u} are d-close. We can easily get the
precompactness of {v; } as in [7]. Similarly, we can construct {w,} d-close to {u.},
and for any z€J, {w?} is precompact in L'(/; R?). Using Lemma 3.2.4, we have the
precompactness of u, in L'(Q,R?). O

3.3. The proof of I'-limit
Proposition 3.3.1. If u, € W52(I;RY), liminf,_¢+% ,(u,) < + 0o, then there exists a

subsequence {u,} and u€ BV(I;{a;}), such that u,, — u in L'(I; R?), and moreover,
lisrg%r}f Fo(u) = Zmi‘j Per;({u =a;} N {u=a;}).
ij

Proof. The first half of the theorem has already been proved in the above section, and
the rest is just an easy corollary of the proof of the theorem in the last section. [J
Theorem 3.3.2. If ucBV(l;{ay,...,a,}), then
I' — limsup 7 ,(u) < Zmii Per;({u =a;} N {u=a;}).
iJ

&—0+

Proof. Denote the jump point of u by S(u) = {s1,...,s;} CI=(a,f), a<s;<---
<s;<p. Let g =min{s;; —s;: j=0,...,1}, where so =0, 5,41 = f, and I; = [s;—; +
si/2,si +Si+1/2], i=1,...,1. Fix 56(0, 5()), and take f.,‘jEC,Q{ij satisfying

/ W(fi)+ £ PR de < myy + 6.
R
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Take ¢, — 07, and n sufficiently large, such that d9/2¢, > max M;;, where M;; is the
constant in the definition of .¢7;;.
Define

St —si)/en)  tE€[(sim1 +50)/2,(si + si41)/2] [ul(si) = a; — ai,
un(t) = fii(—(t = s:)/en) 1€ [(si-1 +5:)/2, (i + 5:41)/2] [ul(s:) = ai — ay,
u(t) elsewhere,
where [u](s;):=u(s;) — u(s;—1). Now we have

lim sup Z ;(u,,) < E mi; Per;({u=a;} N {u=a;})+ I0.
n—oo ..
ij

Take 6, — 0", and construct a {u,} for each J,, we can prove the desired result. [

Theorem 3.3.3. Suppose uc L'(Q;R?). If I' — liminf,_ o+ F,(u) < + oo, then uc BV
(@2 {ai,...,a,}), and
I — liminf % > fij44 * Q. *S. N Q).
im in Fo(u) Z m;j (0*S;No*s; N Q)

1<i<j<r

Before we prove this theorem, some preparation is needed.
Define

A e ={g(t) | gEWLA(R), IM >0, g(t)=¢, for t>M; g(t)=¢ for t<—M}

loc

and the geodesic distance
d(él,fz):zinf{/(W(V(t))+ Ir(k)(f)lz)dt,r(f)6&/51,52}-
R

We notice that d(a;,a;)=m;; with the latter defined by Definition 3.1.2. Then we define
0i(&)=d(& a;) as the distance function to a;.

Suppose u, v are two positive regular Borel measure, we follow [4] by defining as
follows their maximum u V v:

(uVv)(A)=sup{u(d ) +v(d"): A/ nA" =¢, A/ UuA" C A,

A’,A" is an open set in Q},

where 4 € Q is an arbitrary open set.

Suppose that u(x) makes W(u(x)) =0 a.e. in Q, then u(x) =Y., a;xs,(x), where
Sy,..., 8 C Q with no intersection between any two of them, and |2\ U}S;| =0. Now
we cite a lemma from [4].

Lemma 3.3.4. Suppose ¢; oucBV(Q), denote ; to be the following Borel measure:
Wi E — fE |D(@;ou)|, then we have the fact that Perq(S;) < +oo holds for i=1,...,r,
and

(\/m) Q)= Z d(a;,a) AN 1 (0*S; N 8*S; N Q).
i=1

I<i<j<r
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By the definition of d(a;,a;), we have
(\/ m) @)= > myA"TN(@* 5NN Q).
i=1 1<i<j<r

Now we are going to prove the theorem.

Proof. Suppose &, — 0%, u, — u in L'(Q;R?) and Z, (u,) converges to I' —
liminf, o+ % ,(u) < + oo. Fix an unit vector vE S¥~!, we take no danger to suppose
that u,|r, ,ne — |z, ,ne In Ll(Ly,‘, N ) holds for almost every L, ,:={y +sv:secR}
and y€RN. Let

w (t):=u,(y +tv) for #VN " ae yecvt.

From the above one-dimensional result, we know that for any i€ {1,...,k},
, .. W (uy" dfuy”
[D(@; o u)”"(Ly, N Q)| < lim 1nf/ <(u") + eﬁk_' LZ ) dr.
- n—o0 L‘an &n dt

Let v; = ¢, ou, then from Fatou’s lemma and the slicing property of BV functions we
have

|D(”i)|(9)=/ D |(Lyy N Q) AN ()

yevL

o W (uy" _
< lim inf W) + g2k —!
yevt 10 Jpwng én

. /4
< hmmf/ / (w”) + Sik1|Dkun|2> dt doV 1
n—=00 Joeyt L,,NQ &n

W (uy _
zliminf/ ( E” e 1|Dku,,|2> dx
Q )

dcul”
dek

) dedoN !

n—oo n
= I — liminf 7, (x).
e—0F

From this we can see that ¢; o u € BV(). We know from the definition of V that
V/'_; ; is the minimum of all measures that are bigger than all y;, thus

k

\/ v <T —liminf 7 (u).

i=1
Now we know from Proposition 3.4 that

I —lim inf 7 (u) > S ompANTl @S nesne). O

I<i<j<r

Theorem 3.3.5. For any ue BV(Q;{ay,...,a,}), we have
r—limsup Z,(u) < Y myAV"'(0°;N0"S;N Q).

s
¢—0 1<i<j<r
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First, we prove the case =2, and take it as a lemma. Denote a=a;, b=a,, m=my;,
E=S5.

Lemma 3.3.6. For any u€BV(Q;{a,b}), we have

I —limsup 7 .(u) < mPerg({u=a}).

e—0F

Proof. Suppose u € BV(Q;{a,b}), i.e., u=ayg+b(1—yr), where E satisfies Pero(E)=
|Dye|(2) < + oco. First we consider the case £ = E N Q, where E is a smooth set in
RY.

Denote 0E =M. Since M is a smooth surface, there exists 5y > 0, such that for any
d < Jy, there exists a smooth projection from Us:={x € R" :dist(x, M) < §} to M. Let
&, — 0, take v, € WA(R; R?) satisfying

loc

a, t<-— 51’!/8n1
un(t) =

b, t=0,/e,

and lim, o [(W(v,) + |v§,k)\2)dt = m. Define as follows u,: Q — R?:

(D) xeU,NQ,
up(x):= 4 a, x€E\ U,
b, x€Q\(EUU,),

where dy; i RY — R is the signed distance function of M. dy is less than 0 in £, and
U,:=U;,. We select 6, by the following condition:

0p — 0, 0,/e, — 0.

It is easy to see that the above u, are in W*2(Q). So we have

. ~ . W
hmsupj?gﬂ(un):hmsup/ (W+8§k1Dkun|2> dx
Q

n—oo n—oo n

— lim sup W(vn(dM(x)/gn)) dx

n— 00 U, En

+ / 82k_1

n

2
dx

k—1
~ ~ 1 ..
oOVdy - Vdy /et 4+ :Equ’)P,»
i=1

where P; is the sum of the multiplication of some derivatives of JM of order less
than k.

Now we take the following variable transform: x:=F(y,t), where F:M X
(—=00/2,00/2) — Uy, is a differential homotopy, F(y,¢):=y + tv(y), v(») is the outer
normal with respect to £ at y of M. We denote the Jacobi of F(y,t) by J(y,1).
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Now

limsup 7, (uy)

(k)
< limsup { / / <W(vn(r/sn)) i I (r/sn)P) J(y,t)d,d%m}

on
+Climsup/ gty |v(’)‘(t/‘g")||v(f)(t/z,,,)| 7 ded AN ()

n—oo S =g, itj<2k
1<i<k
1<j<k

—lim sup 1" + lim sup 1"
n—o0o n—oo

Here we have used the fact that the norm of the gradient of the distance function is 1,
and its hi her order derivatives are bounded due to the compactness of M. Now we
estimate /," ) and 12("), respectively,

b (k)
1" () = /M/_b (W(U”(t/g")) 4 Lo (Z'g”w)J(y,t)dzd%N‘l(y)

&n

On/en
/ / (W (0a(5)) + [oO(5) )T (3, 560) ds d#™V 71 ()

On/en

<< sup J(y,t)>//(W(u,1(s))+|v£,">(s)|2)dsdyf’v—'(y).
M JR

YEM,1E(—64,0,)

Note that since M is compact, we have that J(y,t) converges uniformly to 1 when
t — 0, so we can easily know that

lim sup I(") < mPerg(E).

Next let us prove that 12(”) — 0. We only need to prove that any term in 12(")

6/1
/ 1) o (1) i
—d,

tends to zero when n tends to infinity.

The above = / 217100 ()]0 (s)| de
R

< e ()] 21095 2
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Now let w,(t):=v,(t/e,) € W*2(—6,,6,), then

1
1
lim Sup/ (8 W(wn) + 8ﬁk_l|wg,k)2) dt
—1

n—o0o n

1)
"1
=lim sup/ ( W(wy,) + Sﬁk_] |W,(1k)2> dx

n— o0 —0n n

= lim /(W(u,,)+|u§,k>|2)dt:m.
n—oQo R

Here we use Theorem 3.1.3 to get
) ) i
W r—11y < ClIwSO N wall "
< CS”—((Zk—l)/Zk)iS’II—i/k’

where p = 2k/(2k — i). We have ||w§,k)||Lp < Cey ®Y25(1). Using the Sobolev Em-
bedding W'P(—1,1) — L>®(—1,1), we have

||W£zi)||L2(—1,1) < CeyPF=Do(1),

so that

([ 1e)
R
PR 5” o 1/2
R

=o(1) — 0.

Thus the proof for the case when E is smooth is complete.

Next, let us prove the case when E is not smooth. From Theorem 2.6, there exist
a sequence of smooth subsets E; =FE; N Q, where E; are bounded smooth sets in RY,
satisfying

7g — 76 in L'(Q), Dy |(Q) — |Dys|(Q).

We can construct u for each E;, then by using a diagonal argument, the proof for
non-smooth case is also complete. [J

Now we prove the theorem.
Proof. First we prove the case N =2. The following result is given in [4].

Lemma 3.3.7. Suppose u(x):Zf:1 aiys,(x), and S; C Q does not intersect each other,
with finite perimeter, and |Q\ U*_,S;| = 0. Then there exist a sequence of division of
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Fig. 2. An illustration of M.
Q:{S],....8!'}, satisfying

(i) SI is polygonal regions, and #N~1(0S! N3Q) =0 for any i =1,...,k.
(if) Let u,(x) = Y1) airs (), then uy — u in L'(Q).
(iii) [, un(x)dx = [,u(x)dx =m for any neN.
(iv) 1My o0 Vi) Jo 1D 0 1) = Vi, J 1D 0 ).

From this we can easily construct a family of divisions of Q: {E},...,E}'}, satisfying

(i’) For any 1 <i <j <k, L;;=0E] N 0E] is a smooth curve, and at the two ends
L;; are straight and conditions (ii)—(iv) in the above lemma.

It is easy to see that if we prove the theorem for {Ei,...,E,} satisfying (i’), then
by using a diagonal argument we can prove the general case. So now we just prove
the case which satisfies (i*).

Let x € Q be the intersection point of two different L;; and suppose further that the
curves with one end at x are {L;;,...,L;,, }. Let

Ué — {y: dist(y,Liz_//) < 5}’

where dist is the unsigned distance function. Let ds be the maximum of all dist(y;,x),
where {y;} are the set of all corner points of [J;", U}, which is a star shaped region.

It is easy to see that there exists dy sufficiently small, such that we can construct a
smooth neighborhood M5, of x, such that (as illustrated in Fig. 2):

1. dist(r,0Mj, ) > 2ds,.
2. 0Ms, N U} is a straight line for any /.

0

By noting that the number of x of the above type is finite, we can take a uniform J
to satisfy the above conditions.
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For other § € R", we define M;s by the following scaling:
0
Ms = 7(M50 —X)+X.
do

Now we can see that, after cut off a neighborhood described above at each intersection
point, we can do the same construction as in the » =2 case. So we just need to prove
that, after extending u, to M;,, we have

W (u, _
lim <(”) + 2 1|Dku,,|2) dx =0.
Ms,

n—oo n

Now we extend it. Take any M;,. Since outside it we have already constructed u,, we
just need to construct u, € W*2(Mj,) under the following conditions:

1

0'u
Unlom,, € W*2(3Ms,) takes known value, av[" =0,

where / =1,...,k — 1, v is the outer normal vector of Ms, , and ||u,|| < is uniformly
bounded in 7.

From the construction method of Mj, we can just solve this problem for M, then
transform it to M;s, by scaling. Now we begin the construction in M;. Denote by
b, 9M; — R? the boundary value, which is known, after scaling to 0M;.

Since M; is a smooth open set, there exists R > 0, such that B,z CC M,. Define
U:=M\ (B,g UL), V:=(0,1) x [0,1], where L is a line connecting 0B, and M.
It is easy to know that there exists a one-to-one mapping ¢:U UL — V, such that
p€C>®, ¢~ € >, which maps 0B,z \ L and 0M; \ L to (0,1) x {0} and (0,1) x {1},
respectively, and at the same time maps the normal on L to a direction parallel to the
direction (1,0), such that the derivatives of any order of ¢ and ¢~' are bounded.

Define f(x):[0,1] — R? as f(x):=8o ¢ '(x,1). Note that f can be extended to R
with period 1, and f € W*2[0,1].

Next we take g(¥):[0,1] — R to be C*°, satisfying

9(0)=0,  g(1)=1,

gP(0)=¢P(1)=0, VieN.

Obviously such a function exists.
Now we construct i : M; — R? as follows:

(g- ) o o), X €M \ Byg,
ii(x) = { extend by continuity, x € L,
0, X e Bx,R~

It is easy to see

2 nllzoo @ty < 1 Bnll Lo @n)s

N nll w2y < C(@s @ Bnll wezonn)s

i.e., such 7, after extension satisfies our conditions.
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Using scaling, we have

W (u, _
/ < (u )Jreﬁk 1|Dku,,|2> dx
M,

on n

W) et s
:/ <8+sﬁk Dk, | 52k)52dx
M, n

3 Pl
_/M1 <8n Wi, + e 55 [D | )dx.

Thus, by taking o, = 0(8,1,/ 2 ), we have proved that the first term tends to zero.
Now we estimate the second term:

/ |Dk12,,|2dx<C/ 15512 ds
Ml aMl

=C / k)|2ds
> Lo

(k) 8,,
<cy [

2%—1
< C52k71 ’
&n
where v} is the v” in the » =2 case, just replacing a,b with a;,qa;.
Thus it is easy to see that the second term tends to zero too. This ends the proof.
Note that in [4], Lemma 3.3.7 here applies to any Q€ R", so we can prove the
same result similarly in cases N > 3. [
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