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Abstract

Models involving singular perturbation to a non-convex potential energy play a very important
role in describing phase transitions, e.g. the celebrated Cahn–Hillard model where a two-well
potential energy functional (i.e., the potential has two zeros) is perturbed by the L2-norm of the
gradient.

Many variants of this model have been studied. In this paper, we perturb a general multi-well
energy functional by the L2-norm of a higher gradient Hessian of arbitrary order and study
its �(L1)-limit. As expected, the limit functional assigns di3erent surface energy densities to
interfaces between di3erent phases and computes the total energy.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Backgrounds

The singular perturbation of non-convex, multi-well integral functionals appears in
many 7elds of material science and engineering, such as the higher strain-gradient the-
ory of plasticity, the magnetic domain theory of ferromagnetic materials, the surface
energy theory of crystalline materials, etc. For example, in the classical theory of the
phase transition of non-interacting mixture of 8uid (see [14,15]), the stable constitution
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Fig. 1. Picture of W (u) when d = 1; r = 2.

of the 8uid solves the following problem:

min

{∫
�
W (u) dx: u∈L1(�;Rd);

∫
�
u dx = |�|

(
r∑

i=1

�iai

)}
;

where � is the domain containing the 8uid. Non-negative function W stands for the
unit Gibbs free energy, which is related to some properties (e.g. density) of the 8uid,
and {u :W (u) = 0} = {a1; : : : ; ar} ⊂ Rd, where {ai} are the value of those properties
in stable states (see Fig. 1 for a picture of W when d = 1; r = 2). The constraint∫
� u = constant shows the conservation of those characteristic values. The solution to
the above problem shows the stable state distribution of the components of the mixture.
It is easy to see that the solutions to the above problem are far from unique. It

is believed that this non-uniqueness is due to the negligence of some small e3ects in
the mathematical model. Following the idea of the celebrated Van Der Waals–Cahn–
Hilliard model [15], we try to restore the uniqueness by adding some perturbation
terms, which serve as penalties. In general, the perturbation term, which stands for
the energy cost of the formation of interfaces between di3erent phases, involves some
higher order derivatives. Let

J�(u) =
∫
�
(W (u) + h2(�; x; Du; D2u; · · ·)) dx

be the perturbed functional, where h → 0 when � → 0. We hope that a proper limit of
J�(u) can select a unique and reasonable solution from an in7nite number of minimizers
of the original problem. It turns out that the so-called “�-limit” is the right idea to
serve this purpose.
Following the above ideas, many results appeared in the past two decades (see e.g.

[2,4,6,9–12,16,17,19]). All these results proved that the �-limit of J� should be the
minimizer of a functional of the following type:∑

i �=j
16i; j6r

Sijmij : u is a solution to the un-perturbed problem;
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where Sij is the area of the interface—the boundary shared by any two domains, in
which u takes ai and aj respectively, and mij is the “unit surface energy” related to
that interface.
In this paper, following the ideas of [4,11], we generalize the results to d¿ 1; r ¿ 2,

with the perturbation term being �2k
∫
� |Dku|2 dx.

2. Preliminaries

2.1. The space of BV functions

Here we list the de7nition and some properties of BV functions, which we will need
in the following sections of this article.

De�nition 2.1.1. Let � ⊆ RN be open; and f∈L1(�). De7ne∫
�
|Df|= sup

‖g(x)‖L∞(�;RN )61

{∫
�
fDiv g dx

}
;

where g= (g1; : : : ; gn)∈C1
0 (�;RN ).

De�nition 2.1.2. A function f∈L1(�) is called having bounded variation in �; if∫
� |Df|¡∞ as de7ned above. We call the space of all L1(�) functions which have
bounded variation BV(�).

De�nition 2.1.3. Let E be a Borel set in RN ; � an open set in RN . We de7ne as
follows the perimeter of E in �:

Per�(E) =
∫
�
|D�E |;

where �E is the characteristic function of E.

De�nition 2.1.4. If a Borel set E has locally 7nite perimeter; i.e.; Per�(E)¡+∞ for
any bounded open set �; then E is called a Caccioppoli set.

Let E be a Caccioppoli set, then there exists a subset 9∗E of 9E, which has the
following property:
For any open set �∈RN , we have

Per�(E) =HN−1(9∗E ∩ �);

where HN−1 denotes the (N − 1)-dimensional Hausdor3 measure.
Later we will use the following important theorem about BV functions.
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Theorem 2.1.5. For any Caccioppoli set E; there exist a series of C∞ sets Ej; such
that ∫

|�E − �Ej | dx → 0;
∫

|D�Ej | →
∫

|D�E |:

For detailed theory of BV functions and boundary of sets, see e.g. [13].

2.2. �-limit

The theory of �-limit provides a good frame for the study of the asymptotic behavior
of the minimizers of a series of functionals. For the details of this theory, see [8].
Now we state the de7nition of �(L1)-limit.

De�nition 2.2.1. Suppose Fn : L1(�;Rd) → [−∞;∞]; u∈L1(�;Rd). De7ne �-upper
limit and �-lower limit as the following:

�(L1)− lim inf Fn(u):=inf
{
lim inf
n→∞ Fn(un): un → u in1(�;Rd)

}
;

�(L1)− lim supFn(u):=inf
{
lim sup
n→∞

Fn(un): un → u in L1(�;Rd)
}

:

If �(L1) − lim inf Fn(u) = �(L1) − lim supFn(u); then the common limit is called the
�(L1)-limit of Fn at u; and is denoted as �(L1)− lim Fn(u).
Moreover, for a set of functionals F� : L1(�;Rd) → [ − ∞;∞]; �¿ 0, for

u∈L1(�;Rd), we say �(L1) − lim F�(u) = F(u), if for all �n → 0+; F(u) = �(L1) −
lim F�n(u).

Here we should state an important observation. i.e., any minimizer u� of the func-
tional F� is also a minimizer of  �F� for any  � ¿ 0. According to this observation,
we can say that any minimizer of the �-limit of each { �F�} reveals some asymptotic
properties of {u�}. It turns out that there exists a “best” { �}, in the sense that the
�-limit of this  �F� reveals the most.

3. Main result

Consider the following problem:
Let �∈RN be a bounded open set, Let the functions u :� → Rd and W :Rd → R

satisfy the following properties:
(H1) W (u)¿ 0; W (u) = 0 ⇔ u∈{a1; : : : ; ar}, where ai ∈Rd; i = 1; : : : ; r.
(H2) W (u) continuous, has no less of order one growth at in7nity, i.e., there exist

C; R¿ 0, such that when |u|¿R, W (u)¿C|u| − 1=C.
We will develop the �-limit of the following series of functionals:

F�(u) =
∫
�

(
W (u)

�
+ �2k−1|Dku|2

)
dx:
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where |Dku|2 ≡∑{i1 ;:::;ik} |9ku=(9xi1 · · · 9xik )2 with the summation taken over all ordered
subsets with cardinal k of {1; 2; : : : ; N}.

3.1. Preparative lemmas

Lemma 3.1.1. Let ’ : (0;+∞) → R be non-decreasing and convex; J a interval with
integer or in;nite length; then for any u∈L1

loc(J;Rd); u(k)∈L1
loc(J;Rd); (k¿2; k∈N);

there exists C = C(k)¿ 0; such that the following holds; if all the involved integrals
are well de;ned:∫

J
’
( |u(l)(t)|
(1 + C)d

)
dt

6
C

C + 1

∫
J
(’(|u|(t)) + ’(|u(k)(t)|)) dt; ∀16 l6 k − 1:

Proof. First we consider the case d=1. For u(t)∈Wk;1(0; 1); we divide (0; 1) equally
into 2l+1 − 1 intervals I1; : : : ; I2l+1−1. Fix 2l points

�0i ∈ I2i−1; i = 1; : : : ; 2l:

Denote �j
i to be the point satisfying

u(j)(�j
i ) =

u(�j−1
2i )− u(�j−1

2i−1)

�j−1
2i − �j−1

2i−1

; i = 1; : : : ; 2l−j;

where j = 1; 2; : : : ; l. Given the positions of �0i ; the absolute value of each divider has
a common lower bound; which depends only on k. Using the mean value theorem; we
have: there exists '∈ (0; 1); C = C(k)¿ 0; such that

|u(l)(')|6C
2l∑
i=1

|u(�0i )|; i = 1; : : : ; 2l;

then for any x∈ (0; 1); we have

|u(l)(x)|6C
2l∑
i=1

|u(�0i )|+
∫ 1

0
|u(l+1)(t)| dt:

Note that this inequality holds for all �0i ∈ I2i−1. Then we integrate �0i on each I2i−1.
We have

|I2i−1|2l |u(l)(x)|6C|I2i−1|2l−1
2l∑
i=1

∫
I2i−1

|u(�0i )| d�0i + |I2i−1|2l
∫ 1

0
|u(l+1)(t)| dt:
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Note that

2l∑
i=1

∫
I2i−1

|u(�0i )| d�0i =
2l∑
i=1

∫
I2i−1

|u(t)| dt6
∫ 1

0
|u(t)| dt:

We have

|u(l)(x)|6C
∫ 1

0
|u(t)| dt +

∫ 1

0
|u(l+1)(t)| dt:

Applying the above argument to u(l+1); we have:

|u(l+1)(x)|6C
∫ 1

0
|u(t)| dt +

∫ 1

0
|u(l+2)(t)| dt:

Putting it into the former formula; we have

|u(l)(x)|6C
∫ 1

0
|u(t)| dt +

∫ 1

0
|u(l+2)(t)| dt:

Repeating the above process; we can 7nd a constant C; depending only on k; such that

|u(l)(x)|6C
∫ 1

0
|u(t)| dt +

∫ 1

0
|u(k)(t)| dt

holds for any 16 l6 k − 1. So we have

1
C + 1

|u(l)(x)|6 C
C + 1

∫ 1

0
|u(t)| dt + 1

C + 1

∫ 1

0
|u(k)(t)| dt:

Due to the Embedding Theorem; u(l) is continuous. So the above holds almost every-
where.
Because ’ is convex and non-decreasing, we have

’
(

1
C + 1

|u(l)(x)|
)
6’

(
C

C + 1

∫ 1

0
|u(t)| dt + 1

C + 1

∫ 1

0
|u(k)(t)| dt

)

6
C

C + 1
’

(∫ 1

0
|u(t)| dt

)
+

1
C + 1

’

(∫ 1

0
|u(k)(t)| dt

)

6
C

C + 1

[∫ 1

0
’(|u(t)|) dt +

∫ 1

0
’(|u(k)(t)|) dt

]

for all x∈ (0; 1). Integrating on x from 0 to 1, we have∫ 1

0
’
( |u|(l)(t)

C + 1

)
dt6

C
C + 1

∫ 1

0
(’(|u(t)|) + ’(|u(k)(t)|)) dt:

Dividing J into intervals with length 1, using the above result on each interval, and
then adding them together, we prove the case d= 1.
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For d¿ 2, let u(t) = (u1(t); : : : ; ud(t)), we have∫
J
’
( |u(l)(t)|
(1 + C)d

)
dt6

∫
J
’

(
d∑

i=1

|u(l)i (t)|
(1 + C)d

)
dt

6
1
d

d∑
i=1

∫
J
’

(
|u(l)i (t)|
C + 1

)
dt

6
C

(C + 1)d

d∑
1

∫
J
[’(|ui(t)|) + ’(|u(k)i (t)|)] dt

6
C

(C + 1)d

d∑
1

∫
J
[’(|u(t)|) + ’(|u(k)(t)|)] dt

=
C

C + 1

∫
J
[’(|u(t)|) + ’(|u(k)(t)|)] dt:

De�nition 3.1.2. We de7ne auxiliary functions Gi :Rkd → R; i∈{1; : : : ; r}; sets Aij ;
Ãij and constants mij; m̃ij for later use:

Gi(z0; : : : ; zk−1):=inf
g

{∫ 1

0
(W (g(t)) + |g(k)(t)|2) dt

}
;

where g(t)∈Ck([0; 1];Rd); g(0) = z0; : : : ; g(k−1)(0) = zk−1; g(1) = ai; g(l)(1) = 0; l=
1; : : : ; k − 1.

Aij := {f∈Wk;2
loc (R;R

d) :∃C ¿ 0; f(t) = ai for t ¡− C; f(t) = aj

for t ¿C; i �= j};

Ãij:=
{
f∈Wk;2

loc (R;R
d) : lim

t→−∞f(t) = ai; lim
t→+∞f(t) = aj

}
;

mij:=inf
f

{∫
R
(W (f) + |f(k)|2) dt : f∈Aij

}
and

m̃ij:=inf
f

{∫
R
(W (f) + |f(k)|2) dt : f∈ Ãij

}
:

Remark 3.1.3. Using polynomials as test functions; we can easily see that when z0 →
ai and zl → 0; l= 1; : : : ; k − 1; there holds Gi(z0; : : : ; zk−1) → 0.

Lemma 3..1.4. For any 16 i; j6 r; i �= j; we have mij = m̃ij ¿ 0; and m̃ij is attained.

Before proving this lemma, we cite a result of Nirenberg in [18].
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Theorem 3.1.5. Let �∈Rn; suppose u∈Lq(�); its mth derivative Dmu∈Lr(�); 16 q;
r6∞. Then for Dju; 06 j¡m; the following inequality holds:

|Dju|p6C(|Dmu|,r |u|1−,
q + |u|q);

where

1
p

=
j
n
+ ,

(
1
r
− m

n

)
+ (1− ,)

1
q

for all , satisfying j
m 6 ,6 1. where C depends on n; m; j; q; r; ,; �. There are two

exceptions:

1. If j = 0; rm¡n; q = ∞; then we should suppose further either u tends to 0 at
in;nity; or u∈Lq̃; holds for some ;nite q̃¿ 0.

2. If 1¡r¡∞; and m−j−n=r a non-negative integer; then , should satisfy j=m6,¡1.

Remark 3.1.6. We would like to make the following explanations:

1. The original theorem deals with the case � = Rn; the result we cite here is in fact
its 7fth remark.

2. There is also a slight change in notations; in [18] the semi-norm |Dku|p is de7ned
as the maximum of the | · |p norms of all jth order derivatives of u; but obviously
this change would not a3ect the result; as long as we take a larger constant C.

3. The above theorem holds for all p∈R1={0}; as is stated in [18]; with the norms
for p¡ 0 suitably de7ned as some HRolder norm. We will not go into the details
here since all we need in the following is the p¿ 0 case.

4. Although we will not need it; it is worth mentioning that since for any measurable
function u :� → R; when � is bounded; we have

‖u‖L∞ = lim
p→+∞ ‖u‖Lp

so the case p = +∞ needs no special treatment, just let , tend to some ,0 which
causes p to be +∞ would do.

Now we proceed to prove Lemma 3.1.2.

Proof. First we prove mij ¿ 0. Suppose this is not true; that is mij = 0. If fn is a
minimizing sequence; then f(k)

n → 0 in L2. Using Sobolev Embedding Theorem [1];
we have fn ∈Ck−1(R;Rd).

Let S = {y : y∈Rd; |y− ai|= |ai − aj|=2}, then from the de7nition of Aij we have

∃Mn ¿ 0; such that

{
fn = aj; for t ¿Mn;

fn = ai; for t ¡−Mn:

So there exists tn ∈R such that fn(tn)∈ S. It’s easy to see that we can take tn = 0.
Take ,=(j=m); r=2; q=1; m= k in theorem 3.1.3, we have p=2m=(2m− j). So

‖fn‖Wk; 2m=(2m−1) are uniformly bounded on any interval J . Using again the Embedding
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Theorem, we know that there exists a subsequence (still denote as fn) converges on
J under the Wk−1;∞ norm to some f∈Wk;2m=(2m−1)

loc (R;Rd), which satis7es f(k) = 0
in J , f(0)∈ S. Now,

mij = lim
n→∞

∫
R
(W (fn) + |f(k)

n |2) dt

¿ lim sup
n→∞

∫
J
(W (fn) + |f(k)

n |2) dt

¿
∫
J
W (f) dt ¿ 0:

This leads to a contradiction. So we have mij ¿ 0.
Next we prove mij = m̃ij.
Obviously mij¿ m̃ij. Now we prove the opposite direction. Fix /¿ 0 and f∈ Ãij

satisfying m̃ij + /¿
∫
R(W (f)+ |f(k)|2) dt. Now we will construct a sequence of func-

tions in Aij, which approaches m̃ij + /.
Fix 0¡ |aj − ai|=2, consider a non-decreasing convex function ’ :R → [0;+∞),

satisfying

’(t)¡t2; ∀t ∈R;

’(|y|)¡W (y + aj); ∀y∈B(0; 0) \ {0} ⊂ Rd;

’(t) = 0 ⇔ t = 0:

It is easy to prove that such ’ exists.
Take R¿ 0, such that |f(t)−aj|¡0; ∀t ¿R. Using Lemma 3.1 on f−aj we have∫ +∞

R
’
( |f(l)|
(C + 1)d

)
¡

C
C + 1

∫ +∞

R
(W (f) + |f(k)|2)6 C

C + 1
(m̃ij + /);

thus
∑k−1

l=1 ’(|f(l)|=(C+1)d) is integrable on (R;+∞). So there exist xn → +∞ such
that

lim
n→∞

[
k−1∑
l=1

’
( |f(l)(xn)|
(C + 1)d

)
+ |f(xn)− aj|

]
= 0:

Since ’ is monotone, and is 0 only at x = 0, we have
k−1∑
l=1

|f(l)(xn)|+ |f(xn)− aj| → 0:

Similarly, we can prove that there exist yn → −∞ such that
k−1∑
l=1

|f(l)|(yn)|+ |f(yn)− ai| → 0:
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Take gm(t)= g̃m(t− xm), hm(t)= h̃m(t−ym+1), where g̃m, h̃m are admissible functions
to Gj(f(xm); : : : ; f(k−1)(xm)) and Gi(f(ym); : : : ; f(k−1)(ym)), respectively, satisfying∫ 1

0
(W (g̃m) + |g̃(k)m |2) dt6Gj(f(xm); : : : ; f(k−1)(xm)) + /;

∫ 1

0
(W (h̃m) + |h̃(k)m |2) dt6Gi(f(ym); : : : ; f(k−1)(ym)) + /:

Let

f̃ m(t) =




aj t¿ xm + 1;

gm(t) t ∈ [xm; xm + 1];

f(t) t ∈ (ym; xm);

hm(t) t ∈ [ym − 1; ym];

ai t6ym − 1;

we then have

m̃ij + /¿
∫
R
(W (f) + |f(k)|2) dt

¿
∫ ym

xm
(W (f) + |f(k)|2) dt

=
∫
R
(W (f̃ m) + |f̃(k)

m |2) dt −
∫ xm+1

xm
(W (gm) + |g(k)m |2) dt

−
∫ ym

ym−1
(W (hm) + |h(k)m |2) dt

¿mij − Gj(f(xm); : : : ; f(k−1)(xm))− Gi(f(ym); : : : ; f(k−1)(ym))

→mij:

Thus we proved m̃ij¿mij. Finally, we prove that the minimum is attained.
Suppose {fn} is a minimizing sequence of m̃ij. We can safely assume that fn(0)∈ S,

and {fn} converges to f∈Wk;2
loc (R;Rd) in Wk−1;∞. It is easy to see that f(0)∈ S. If f

is admissible, due to Fatou’s Lemma and the convexity of L2 norm, f is a minimizer.
Now we prove that f is indeed admissible, i.e., f∈ Ãij.

Let L = {l∈Rd|l is a limit point of f(t) as t → +∞}, since W (f) is integrable,
we know that either ai or aj, or both, are in L. No harm to let aj ∈L. If there is
another l �= aj in L, we can suppose l �= ai. (If ai ∈L, then using the continuity of fn,
and the compactness of S, we know that there exists a l∈ S, such that l∈L.) Consider
two increasing sequences {xi}, {zi}, satisfying xi+1 − xi¿ 3, zi ∈ [xi + 1; xi+1 − 1],
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f(xi) → aj, f(zi) → l. For any 0¡/¡min{|l− ai|; |l− aj|} we de7ne

m̂= inf
{∫ y

x
(W (g) + |g(k)|2) dx: y − x¿ 3;∃z ∈ [x + 1; y − 1]; |g(z)− l|6 /

}
;

where g∈Wk;2((x; y);Rd). Now we prove m̂= 0.
Suppose the reverse is true, i.e., m̂¿ 0. From the de7nition of zn there must exist a

n0, such that ∀n¿n0, |f(zn)− l|¡/, so∫
R
(W (f) + |f(k)|2) dx¿

+∞∑
n0

∫ xi+1

xi
(W (f) + |f(k)|2) dx =+∞:

A contradiction!
Suppose gn ∈Wk;2((xn; yn);Rd) minimize m̂, no harm to suppose zn=0, so xn6−1,

yn¿ 1. Then there exists a subsequence (denoted again by {gn}), such that gn → g
in Wk−1;∞(−1; 1). Now we have

∫ 1
−1 W (g) + |g(k)|2 dx = 0 and |g(0) − l|¡/ at the

same time, a contradiction!
So, when t → +∞, fn → aj.
Using similar induction, if ai ∈L, then f(t) → ai; t → +∞. For t → −∞ we

can argue similarly. Now we only need to show that the following does not happen:
f(t) → ai; t → ±∞ or f(t) → aj; t → ±∞.

Suppose lim±∞f(t) = ai, no harm to assume f(0)∈ S. Then there exists xn →
+∞, such that

∑k−1
i=1 |f(l)(xn)|+ |f(xn)− ai| → 0, so we can 7nd a subsequence of

the minimizing sequence {fn}(denoted again by {fn}), such that
∑k−1

i=1 |f(l)
n (xn)| +

|fn(xn)− ai| → 0 and fn(0) → f(0). Now we have

mij =
∫
R
(W (f) + |f(k)|2) dt

= lim
n→∞

∫
R
(W (fn) + |f(k)

n |) dt

= lim
n→∞

(∫ xn

−∞
(W (fn) + |f(k)

n |2) dt +
∫ +∞

xn

(W (fn) + |f(k)
n |2) dt

)

¿ lim sup
n→∞

(∫ xn

−∞
(W (fn) + |f(k)

n |2) + m̃ij − Gi(fn(xn); : : : ; f(k−1)
n (xn))

)

= lim sup
n→∞

∫ xn

−∞
(W (fn) + |f(k)

n |2) + m̃ij:

Since fn(0) → f(0)∈ S, it is easy to know that the 7rst term on the right-hand side
is greater than 0. A contradiction.

Remark 3.1.7. Energy balance: Suppose f is the minimizer in the above theorem;
de7ne f (t) = f( t); then∫

R
(W (f) + |f(k)|2) dt6

∫
R
(W (f ) + |f(k)

 |2) dt
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holds for all  ∈R; let I( ) =
∫
R(W (f ) + |f(k)|2) dt; then  = 1 is a critical point of

I( ); so we have∫
R
W (f) = (2k − 1)

∫
R
|f(k)|2:

Thus we see that in the transition layer between two phase domains; the Gibbs free
energy and the surface energy can be roughly said “equal”.

3.2. Compactness result

In this section we will establish the compactness of the minimizing sequence.

Theorem 3.2.1. Let I be a bounded open interval in R; if u� ∈Wk;2(I ;Rd) satis-
;es lim inf �→0+F�(u�)¡ + ∞; then there exists a subsequence {u�n} and u∈BV(I ;
{a1; a2; : : : ; ar}); such that u�n → u in L1(I ;Rd).

Proof. Let lim inf F�(u�)=K ¡+∞; and it is subsequence {u�n} satisfy limF�n(u�n)=
K; then it is easy to know that {u�n} satis7es the condition of the theorem in [5]; so
there is a subsequence (denoted again by u�n) and a Young measure 3t(y); such that
for any continuous function f; we have

f(t; un(t))
∗
* Wf =

∫
Rd

f(t; y) d3t(y) in L∞(I):

Let f(y) = min{W (y); 1}; then it is easy to see that

3t(y) =
r∑

i=1

�i(t)/y=ai ;

Next we prove �i ∈{0; 1}; i = 1; : : : ; r.
De7ne

Xij =

{
t ∈ I ;

1
2/

∫ t+/

t−/
�k(s) ds∈ (0; 1); k = i; j; ∀/¿ 0

}
;

we will prove the 7niteness of the above set.
Suppose there are l¿ 1 distinct points {s1; s2; : : : ; sl} in Xij, and set /0 =min{|sm −

sm+1|}. Take /1 ¡/0=2, such that for all /¡/1 and all m∈{1; : : : ; l},∫ sm+/

sm−/
�i(s) ds¿ 0;

∫ sm+/

sm−/
�j(s) ds¿ 0:

Fix 0¡'¡ |aj−ai|=2, suppose ’',  ' and 8' :Rd → R are smooth functions, satisfying

supp’' ⊂ B(ai; '); ’'(ai) = 1;

supp  ' ⊂ B(0; ');  '(0) = 1;

supp 8' ⊂ B(aj; '); 8'(aj) = 1:
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From the uniform boundedness of F�n(u�n), we have the uniform boundedness of u�n

and �(2k−1)=2
n u(k)�n in L1(I) and L2(I), respectively. For any i∈{1; : : : ; k−1}, Let ni=2i,

and take , = i=k; r = 2; q = 1 in Theorem 3.1.3, we have �nin u
(i)
�n → 0 in L1(I), so

 '(�nin u
(i)
�n ) →  '(0) in L1(I). Then from the theorem in [5], ’'(u�n) converges weak ∗

in L∞(I) to �i’'(ai) + �j’'(aj) = �i, and 8'(u�n) converges weak ∗ in L∞(I) to �j.
It is easy to see that for each m∈{1; : : : ; l} and each n, there exist x+n;m; x

−
n;m ∈ (sm −

/1; sm + /1), x−n;m ¡x+n;m, such that

u�n(x
+
n;m)∈B(aj; '); u�n(x

−
n;m)∈B(ai; ');

|�nin u(i)�n (x
+
n;m)|¡'; |�nin u(i)�n (x

−
n;m)|¡':

De7ne

gn;m(t) = ĝn;m

(
t − x+n;m

�n

)
; hn;m(t) = ĥn;m

(
t − x−n;m

�n
+ 1
)

;

where ĝn;m, ĥn;m are, respectively, the admissible functions of Gj(u�n(x
−
n;m); �

n1
n u′�n(x

−
n;m);

: : : �nk−1u(k−1)
� (x−n;m)) and Gi(u�n(x

+
n;m); �

n1
n u′�n(x

+
n;m); : : : ; �

nk−1u(k−1)
�n (x+n;m)), satisfying∫ 1

0
(W (ĥn;m) + |ĥ(k)n;m|2)¡Gi(u�n(x

+
n;m); �

n1
n u′�n(x

+
n;m); : : : ; �

nk−1u(k−1)
�n (x+n;m)) + �n;

∫ 1

0
(W (ĝn;m) + |ĝ(k)n;m|2)¡Gj(u�n(x

−
n;m); �

n1
n u′�n(x

−
n;m); : : : ; �

nk−1u(k−1)
� (x−n;m)) + �n:

Now change u�n as follows:

vn;m(t) =




aj t¿
x+n;m
�n

+ 1;

g(t) t ∈ [
x+n;m
�n

;
x+n;m
�n

+ 1];

u�n(�nt) t ∈ [
x−n;m
�n

;
x+n;m
�n

];

h(t) t ∈ [
x−n;m
�n

− 1;
x−n;m
�n

];

ai t6
x−n;m
�n

− 1:

From the value of ni we know that vn;m ∈Wk;2
loc (R), so

K¿ lim inf
�n→0+

l∑
m=1

∫ x+n;m

x−n;m

(
1
�n

W (u�n) + �2k−1
n |u(k)�n |2

)
dt

= lim inf
�n→0+

l∑
m=1

∫ x+n;m
�n

x−n;m
�n

(W (vn;m) + |v(k)n;m|2) dt
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¿min{mij}l− lim sup
�n→0+

l∑
m=1

[Gj(u�n(x
−
n;m); �

n1
n u�n(x

−
n;m); · · ·)

+Gi(u�n(x
+
n;m); �

n1
n u�n(x

+
n;m); · · ·)]:

Let ' → 0+, we have K¿min{mij}l, and the 7niteness of X follows.
So we have u∈BV and u�n → u in L1.

Theorem 3.2.2. If u� ∈Wk;2(�;Rd) satisfy lim inf �→0+ F�(u�)6+∞; then there ex-
ists a subsequence {u�n} and u∈BV(�; {a1; : : : ; ar}); such that

u�n → u in L1(�;Rd):

First we introduce the concept of /-closeness and a lemma [3,11]:

De�nition 3.2.3. Two function sequences {u�}; {v�} are called /-close; if ‖u�−v�‖¡/.

We take u(y; z) : I × J → R as an example to de7ne the “slice function” as follows,
where I; J are open intervals. For any y∈ I we de7ne uy(z):=u(y; z), and for any z ∈ J
we de7ne uz(y):=u(y; z), then we call uy and uz the one-dimensional slices of u.

Lemma 3.2.4. Suppose {un} are equiintegrable [7]; and for any /¿ 0 there exists
sequences {vn}; {wn} /-close to {un}; and {vyn} precompact for almost every y∈ I
in L1(J ;Rd); {wz

n} precompact for almost every z ∈ J in L1(I ;Rd). Then {un} is
precompact in L1(�;Rd).

Now we proceed to prove the theorem.

Proof. No harm to assume N = 2. Assume 7rst that � = I × J ; where I; J are open
intervals. We de7ne the following one-dimensional functional F1

� (u; A):

F1
� (u; A):=



∫
A
(W (u)

� + �2k−1|u(k)|2) dt if u∈Wk;2(A;Rd);

+∞ if u∈L1(A;Rd) \Wk;2(A;Rd);

where u∈L1(A;Rd) and A is an open interval.
Since u∈Wk;2(�;Rd), by approximating it with C∞ functions, we know that for

almost every y∈ I , uy ∈Wk;2(J ), and for almost every z ∈ J , uz ∈Wk;2(I). Furthermore,

9ku
9zk (x) =

dkuy

dzk
(z);

9ku
9yk (x) =

dkuz

dyk (y); for a:e: x∈�:

From this we can easily see that

F�(u)¿
∫
I
F1

� (u
y; J ) dy; F�(u)¿

∫
J
F1

� (u
z; I) dz:
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Now consider a family of functions {u�}, satisfying F�(u�)¡C ¡+∞. Thus
∫
� W (u�)

dx¡C�, then we have W (u�) → 0 in L1. So from (H2) (see the beginning of this
section) we get the equiintegrability of u�. Now 7x /¿ 0, take /′ ∈ (0; /) satisfying

|S|¡/′|J | → sup
�¿0

∫
S
(|u�(x)|+ |a1|) dx¡/:

For �¿ 0, we de7ne as follows v� :� → Rd:

vy� (z):=

{
uy
� (z) = u�(y; z) if F1

� (u
y
� ; J )¡C=/′

a1 elsewhere:

Let Z�:={x : vy� �= uy
� }. Since

C ¿ sup
�¿0

∫
I
F1

� (u
y
� ; J ) dy;

we have

|Z�|6 |{F1
� (u

y
� ; J )¿C=/′}|6 /′

C

∫
I
F1

� (u
y
� ; J ) dy6 /′;

so

‖u� − v�‖1 ¡
∫
Z�×J

|u�(x)− a1| dx¡
∫
Z�×J

(|u�(x)|+ |a1|)¡/

holds for any �¿ 0. We have that {v�} and {u�} are /-close. We can easily get the
precompactness of {vy� } as in [7]. Similarly, we can construct {w�} /-close to {u�},
and for any z ∈ J , {wz

�} is precompact in L1(I ;Rd). Using Lemma 3.2.4, we have the
precompactness of u� in L1(�;Rd).

3.3. The proof of �-limit

Proposition 3.3.1. If u� ∈Wk;2(I ;Rd); lim inf �→0+F�(u�)¡ +∞; then there exists a
subsequence {u�n} and u∈BV(I ; {ai}); such that u�n → u in L1(I ;Rd); and moreover;

lim inf
�→0+

F�(u�)¿
∑
i; j

mij PerI ({u= ai} ∩ {u= aj}):

Proof. The 7rst half of the theorem has already been proved in the above section; and
the rest is just an easy corollary of the proof of the theorem in the last section.

Theorem 3.3.2. If u∈BV(I ; {a1; : : : ; ar}); then

� − lim sup
�→0+

F�(u)6
∑
i; j

mij PerI ({u= ai} ∩ {u= aj}):

Proof. Denote the jump point of u by S(u) = {s1; : : : ; sl} ⊂ I = (,; =); ,¡s1¡ · · ·
¡sl¡=. Let /0 = min{sj+1 − sj: j = 0; : : : ; l}; where s0 = ,; sl+1 = =; and Ii = [si−1 +
si=2; si + si+1=2]; i = 1; : : : ; l. Fix /∈ (0; /0); and take fij ∈Aij satisfying∫

R
(W (fij) + |f(k)

ij |2) dt6mij + /:
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Take �n → 0+; and n suXciently large; such that /0=2�n ¿maxMij; where Mij is the
constant in the de7nition of Aij.
De7ne

un(t) =




fij((t − si)=�n) t ∈ [(si−1 + si)=2; (si + si+1)=2]; [u](si) = aj − ai;

fij(−(t − si)=�n) t ∈ [(si−1 + si)=2; (si + si+1)=2]; [u](si) = ai − aj;

u(t) elsewhere;

where [u](si):=u(si)− u(si−1). Now we have

lim sup
n→∞

F�(un)6
∑
i; j

mij PerI ({u= ai} ∩ {u= aj}) + l/:

Take /n → 0+, and construct a {un} for each /n, we can prove the desired result.

Theorem 3.3.3. Suppose u∈L1(�;Rd). If �− lim inf �→0+ F�(u)¡+∞; then u∈BV
(�; {a1; : : : ; ar}); and

� − lim inf
�→0+

F�(u)¿
∑

16i¡j6r

mijH
N−1(9∗Si ∩ 9∗Sj ∩ �):

Before we prove this theorem, some preparation is needed.
De7ne

A>1 ;>2 :={g(t) | g∈Wk;2
loc (R);∃M¿0; g(t)=>2 for t¿M ; g(t)=>1 for t¡−M}

and the geodesic distance

d(>1; >2):=inf
{∫

R
(W (r(t)) + |r(k)(t)|2) dt; r(t)∈A>1 ;>2

}
:

We notice that d(ai; aj)=mij with the latter de7ned by De7nition 3.1.2. Then we de7ne
’i(>) = d(>; ai) as the distance function to ai.
Suppose ?, 3 are two positive regular Borel measure, we follow [4] by de7ning as

follows their maximum ? ∨ 3:

(? ∨ 3)(A) = sup{?(A′) + 3(A′′) : A′ ∩ A′′ = @; A′ ∪ A′′ ⊂ A;

A′; A′′ is an open set in �};
where A∈� is an arbitrary open set.
Suppose that u(x) makes W (u(x)) = 0 a.e. in �, then u(x) =

∑r
i=1 ai�Si(x), where

S1; : : : ; Sr ⊂ � with no intersection between any two of them, and |� \ ∪r
1Si|=0. Now

we cite a lemma from [4].

Lemma 3.3.4. Suppose ’i ◦ u∈BV(�); denote ?i to be the following Borel measure:
?i :E → ∫

E |D(’i◦u)|; then we have the fact that Per�(Si)¡+∞ holds for i=1; : : : ; r;
and (

r∨
i=1

?i

)
(�) =

∑
16i¡j6r

d(ai; aj)HN−1(9∗Si ∩ 9∗Sj ∩ �):
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By the de7nition of d(ai; aj), we have(
r∨

i=1

?i

)
(�) =

∑
16i¡j6r

mijH
N−1(9∗Si ∩ 9∗Sj ∩ �):

Now we are going to prove the theorem.

Proof. Suppose �n → 0+; un → u in L1(�;Rd) and F�n(un) converges to � −
lim inf �→0+F�(u)¡+∞. Fix an unit vector 3∈ SN−1; we take no danger to suppose
that un|Ly; 3∩� → u|Ly; 3∩� in L1(Ly;3 ∩ �) holds for almost every Ly;3:={y + s3 : s∈R}
and y∈RN . Let

uy;3
n (t):=un(y + t3) for HN−1 a:e: y∈ 3⊥:

From the above one-dimensional result; we know that for any i∈{1; : : : ; k};

|D(’i ◦ u)y;3(Ly;3 ∩ �)|6 lim inf
n→∞

∫
Ly;3∩�

(
W (uy;3

n )
�n

+ �2k−1
n

∣∣∣∣dkuy;3
n

dtk

∣∣∣∣
)
dt:

Let vi =’i ◦ u; then from Fatou’s lemma and the slicing property of BV functions we
have

|D(vi)|(�) =
∫
y∈3⊥

|Dvy;3i |(Ly;3 ∩ �) dHN−1(y)

6
∫
y∈3⊥

lim inf
n→∞

∫
Ly;3∩�

(
W (uy;3

n )
�n

+ �2k−1
n

∣∣∣∣dkuy;3
n

dtk

∣∣∣∣
)
dt dHN−1

6 lim inf
n→∞

∫
y∈3⊥

∫
Ly;3∩�

(
W (un)

�n
+ �2k−1

n |Dkun|2
)
dt dHN−1

= lim inf
n→∞

∫
�

(
W (un)

�n
+ �2k−1|Dkun|2

)
dx

= � − lim inf
�→0+

F�(u):

From this we can see that ’i ◦ u∈BV(�). We know from the de7nition of ∨ that∨r
i=1 ?i is the minimum of all measures that are bigger than all ?i; thus

k∨
i=1

vi6� − lim inf F�(u):

Now we know from Proposition 3.4 that

� − lim inf
�→0+

F�(u)¿
∑

16i¡j6r

mijH
N−1(9∗Si ∩ 9∗Sj ∩ �):

Theorem 3.3.5. For any u∈BV(�; {a1; : : : ; ar}); we have

� − lim sup
�→0+

F�(u)6
∑

16i¡j6r

mijH
N−1(9∗Si ∩ 9∗Sj ∩ �):
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First, we prove the case r=2, and take it as a lemma. Denote a=a1, b=a2, m=m12,
E = S1.

Lemma 3.3.6. For any u∈BV(�; {a; b}); we have

� − lim sup
�→0+

F�(u)6mPer�({u= a}):

Proof. Suppose u∈BV(�; {a; b}); i.e.; u=a�E+b(1−�E); where E satis7es Per�(E)=
|D�E |(�)¡ +∞. First we consider the case E = Ẽ ∩ �; where Ẽ is a smooth set in
RN .

Denote 9Ẽ=M . Since M is a smooth surface, there exists /0 ¿ 0, such that for any
/¡/0, there exists a smooth projection from U/:={x∈RN : dist(x;M)¡/} to M . Let
�n → 0, take vn ∈Wk;2

loc (R;Rd) satisfying

vn(t) =

{
a; t ¡− /n=�n;

b; t¿ /n=�n

and limn→∞
∫
R(W (vn) + |v(k)n |2) dt = m. De7ne as follows un :� → Rd:

un(x):=




vn(
d̃M (x)

�n
); x∈Un ∩ �;

a; x∈E \ Un;

b; x∈� \ (E ∪ Un);

where d̃M :RN → R is the signed distance function of M . d̃M is less than 0 in Ẽ, and
Un:=U/n . We select /n by the following condition:

/n → 0; /n=�n → 0:

It is easy to see that the above un are in Wk;2(�). So we have

lim sup
n→∞

F̃�n(un) = lim sup
n→∞

∫
�

(
W (un)

�n
+ �2k−1

n |Dkun|2
)
dx

= lim sup
n→∞



∫
Un

W (vn(d̃M (x)=�n))
�n

dx

+
∫
Un

�2k−1
n

∣∣∣∣∣v(k)n ∇d̃M · · · ∇d̃M =�k +
k−1∑
i=1

1
�i
v(i)n Pi

∣∣∣∣∣
2

dx


 ;

where Pi is the sum of the multiplication of some derivatives of d̃M of order less
than k.
Now we take the following variable transform: x:=F(y; t), where F :M ×

(−/0=2; /0=2) → U/0=2 is a di3erential homotopy, F(y; t):=y+ t3(y), 3(y) is the outer
normal with respect to Ẽ at y of M . We denote the Jacobi of F(y; t) by J (y; t).
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Now

lim supF�n(un)

6 lim sup
n→∞

{∫
M

∫ /n

−/n

(
W (vn(t=�n))

�n
+ �2k−1

n
|v(k)n (t=�n)|2

�2kn

)
J (y; t) dt dHN−1

}

+C lim sup
n→∞

∫ /n

−/n
�2k−1
n

∑
i+j¡2k
16i6k
16j6k

|v(i)|(t=�n)n ‖v( j)n (t=�n)| 1

�i+j
n

dt dHN−1(y)

=lim sup
n→∞

I (n)1 + lim sup
n→∞

I (n)2 :

Here we have used the fact that the norm of the gradient of the distance function is 1,
and its higher order derivatives are bounded due to the compactness of M . Now we
estimate I (n)1 and I (n)2 , respectively,

I (n)1 (u) =
∫
M

∫ /n

−/n

(
W (vn(t=�n))

�n
+

|v(k)n (t=�n)|2
�n

)
J (y; t) dt dHN−1(y)

=
∫
M

∫ /n=�n

−/n=�n
(W (vn(s)) + |v(k)n (s)|2)J (y; s�n) ds dHN−1(y)

6

(
sup

y∈M;t∈(−/n;/n)
J (y; t)

)∫
M

∫
R
(W (vn(s)) + |v(k)n (s)|2) ds dHN−1(y):

Note that since M is compact, we have that J (y; t) converges uniformly to 1 when
t → 0, so we can easily know that

lim sup I (n)1 6mPer�(E):

Next let us prove that I (n)2 → 0. We only need to prove that any term in I (n)2∫ /n

−/n
�2k−1−i−j
n |v(i)n (t=�n)‖v( j)n (t=�n)| dt

tends to zero when n tends to in7nity.

The above =
∫
R
�2k−i−j
n |v(i)n (s)‖v( j)n (s)| dt

6 �2k−i−j
n ‖v(i)n (s)‖L2‖v( j)n (s)‖L2 :
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Now let wn(t):=vn(t=�n)∈Wk;2(−/n; /n), then

lim sup
n→∞

∫ 1

−1

(
1
�n

W (wn) + �2k−1
n |w(k)

n |2
)
dt

=lim sup
n→∞

∫ /n

−/n

(
1
�n

W (wn) + �2k−1
n |w(k)

n |2
)

dx

= lim
n→∞

∫
R
(W (vn) + |v(k)n |2) dt = m:

Here we use Theorem 3.1.3 to get

‖w(i)
n ‖Lp(−1;1)6C‖w(k)

n ‖i=kL2 ‖wn‖1−i=k
L1

6C�−((2k−1)=2k)i
n �1−i=k

n ;

where p = 2k=(2k − i). We have ‖w(k)
n ‖Lp 6C�−(2k−1)=2

n o(1). Using the Sobolev Em-
bedding W 1;p(−1; 1) ,→ L∞(−1; 1), we have

‖w(i)
n ‖L2(−1;1) ¡C�−(2k−1)=2

n o(1);

so that

�k−i
n

(∫
R
|v(i)n |2

)1=2

=�k−i
n �i−1=2

n

(∫ /n

−/n
|w(i)

n |2
)1=2

=o(1) → 0:

Thus the proof for the case when E is smooth is complete.
Next, let us prove the case when E is not smooth. From Theorem 2.6, there exist

a sequence of smooth subsets Ei = Ẽi ∩ �, where Ẽi are bounded smooth sets in RN ,
satisfying

�Ei → �E in L1(�); |D�Ei |(�) → |D�E |(�):
We can construct un

i for each Ei, then by using a diagonal argument, the proof for
non-smooth case is also complete.

Now we prove the theorem.

Proof. First we prove the case N = 2. The following result is given in [4].

Lemma 3.3.7. Suppose u(x)=
∑k

i=1 ai�Si(x); and Si ⊂ � does not intersect each other;
with ;nite perimeter; and |� \ ∪k

i=1Si|= 0. Then there exist a sequence of division of
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Fig. 2. An illustration of M/.

�:{Sn
1 ; : : : ; S

n
k }; satisfying

(i) Sn
i is polygonal regions; and HN−1(9Sn

i ∩ 9�) = 0 for any i = 1; : : : ; k.
(ii) Let un(x) =

∑k
i=1 ai�Sk

i
(x); then un → u in L1(�).

(iii)
∫
� un(x) dx =

∫
� u(x) dx = m for any n∈N.

(iv) limn→+∞
∨k

i=1

∫
� |D(’i ◦ un)|=

∨k
i=1

∫
� |D(’i ◦ u)|.

From this we can easily construct a family of divisions of �: {En
1 ; : : : ; E

n
k}, satisfying

(i’) For any 16 i¡ j6 k, Lij:=9En
i ∩ 9En

j is a smooth curve, and at the two ends
Lij are straight and conditions (ii)–(iv) in the above lemma.
It is easy to see that if we prove the theorem for {E1; : : : ; En} satisfying (i’), then

by using a diagonal argument we can prove the general case. So now we just prove
the case which satis7es (i’).
Let x∈� be the intersection point of two di3erent Lij and suppose further that the

curves with one end at x are {Li1j1 ; : : : ; Limjm}. Let
Ul

/ = {y : dist(y; Liljl)¡/};
where dist is the unsigned distance function. Let d/ be the maximum of all dist(yi; x),
where {yi} are the set of all corner points of

⋃m
l=1 U

l
/ , which is a star shaped region.

It is easy to see that there exists /0 suXciently small, such that we can construct a
smooth neighborhood M/0 of x, such that (as illustrated in Fig. 2):

1. dist(x; 9M/0 )¿ 2d/0 .
2. 9M/0 ∩ Ul

/0 is a straight line for any l.

By noting that the number of x of the above type is 7nite, we can take a uniform /0
to satisfy the above conditions.
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For other /∈R+, we de7ne M/ by the following scaling:

M/ =
/
/0

(M/0 − x) + x:

Now we can see that, after cut o3 a neighborhood described above at each intersection
point, we can do the same construction as in the r=2 case. So we just need to prove
that, after extending un to M/n , we have

lim
n→∞

∫
M/n

(
W (un)

�n
+ �2k−1

n |Dkun|2
)
dx = 0:

Now we extend it. Take any M/n . Since outside it we have already constructed un, we
just need to construct un ∈Wk;2(M/n) under the following conditions:

un|9M/n
∈Wk;2(9M/n) takes known value;

9lun

93l = 0;

where l = 1; : : : ; k − 1, 3 is the outer normal vector of M/n , and ‖un‖L∞ is uniformly
bounded in n.
From the construction method of M/, we can just solve this problem for M1, then

transform it to M/n by scaling. Now we begin the construction in M1. Denote by
ṽn : 9M1 → Rd the boundary value, which is known, after scaling to 9M1.
Since M1 is a smooth open set, there exists R¿ 0, such that Bx;2R ⊂⊂ M1. De7ne

U := WM 1 \ (Bx;R ∪ L), V :=(0; 1) × [0; 1], where L is a line connecting 9Bx;R and 9M1.
It is easy to know that there exists a one-to-one mapping ’ :U ∪ L → V , such that
’∈C∞, ’−1 ∈C∞, which maps 9Bx;R \L and 9M1 \L to (0; 1)×{0} and (0; 1)×{1},
respectively, and at the same time maps the normal on L to a direction parallel to the
direction (1; 0), such that the derivatives of any order of ’ and ’−1 are bounded.

De7ne f(x) : [0; 1] → Rd as f(x):=ṽ ◦’−1(x; 1). Note that f can be extended to R
with period 1, and f∈Wk;2[0; 1].
Next we take g(y) : [0; 1] → R to be C∞, satisfying

g(0) = 0; g(1) = 1;

g(l)(0) = g(l)(1) = 0; ∀l∈N:

Obviously such a function exists.
Now we construct ũ :M1 → Rd as follows:

ũ(x) =




(g · f) ◦ ’(x); x∈M1 \ Bx;R;

extend by continuity; x∈L;

0; x∈Bx;R:

It is easy to see

‖ũ n‖L∞(M1)6 ‖ṽn‖L∞(9M1);

‖ũ n‖Wk; 2(M1)6C(’; g)‖ṽn‖Wk; 2(9M1);

i.e., such ũ n after extension satis7es our conditions.
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Using scaling, we have∫
M/n

(
W (un)

�n
+ �2k−1

n |Dkun|2
)

dx

=
∫
M1

(
W (ũ n)

�n
+ �2k−1

n |Dkũ n‖2 1
/2kn

)
/2n dx

=
∫
M1

(
/2n
�n

W (ũ n) +
�2k−1

/2k−2 |Dkũ n|2
)
dx:

Thus, by taking /n = o(�1=2n ), we have proved that the 7rst term tends to zero.
Now we estimate the second term:∫

M1

|Dkũ n|2 dx6C
∫
9M1

|ṽ(k)n |2 ds

= C
∑
l

∫
9M1∩Ul

1

|ṽ(k)n |2 ds

6C
∑
l

∫
R

/2kn
�2kn

|vn(k)ij |2 �n
/n

ds′

6C
/2k−1
n

�2k−1
n

;

where vnij is the vn in the r = 2 case, just replacing a; b with ai; aj.
Thus it is easy to see that the second term tends to zero too. This ends the proof.
Note that in [4], Lemma 3.3.7 here applies to any �∈RN , so we can prove the

same result similarly in cases N¿ 3.
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