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ABsTRACT. Whether the 3D incompressible Euler equations can develop a fi-
nite time singularity from smooth initial data is an outstanding open problem.
Here we review some existing computational and theoretical work on the pos-
sible finite blow-up of the 3D Euler equations. Further, we show that there is
a sharp relationship between the geometric properties of the vortex filament
and the maximum vortex stretching. By exploring this geometric property of
the vorticity field, we have obtained global existence of the 3D incompressible
Euler equations under some mild localized regularity assumption on vortex fil-
aments. Our assumption on the local geometric regularity of vortex filaments
seems consistent with numerical computations.

1. INTRODUCTION

The well-posedness of the 3D Euler equation in the whole space R®

ug+ (u-Viyu = —Vp
V-u = 0 (1.1)
ul=0 = uo

is one of the most outstanding open problems in applied mathematics. In particular,
the answer to the following “Euler singularity problem” is still missing:

Euler singularity problem: Given a smooth enough initial value ug with finite
energy, will there be a finite time 7 such that the solution u ceases to satisfy the
Euler equation (1.1) in the classical sense at time T*?

Besides being an mathematically intriguing open problem, what adds much
to the importance of the above Euler singularity problem is its possible rela-
tion to the onset of turbulence. Due to its mathematical and physical impor-
tance, many interesting results have been obtained by various mathematicians
for this problem. For example Beale-Kato-Majda [BKM8&84|, Ebin-Fischer-Marsden
[EFM70], Caflisch [Caf93], Constantin-Fefferman-Majda [CFM96], Tadmor [Tad01],
and Babin-Mahalov-Nicolaenko [BMNO1]. In particular, the so-called BKM cri-
terion, proved in Beale-Kato-Majda [BKM84], states that the smooth solution
u (z,t) for the 3D Euler equation blows up at some finite time T* if and only if
fOT lw (-, )|, dt = o0, where w = V X u is the vorticity. In recent years, improve-
ments to the BKM criterion have been obtained. For example Konzono-Taniuchi
[KT00] and Chae [Cha02].
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In light of the BKM criterion, it is important to study the evolution of the vor-
ticity magnitude |w|. In 1994, Constantin derived its evolution equation ([Con94]):

Dilw| = |w|, +u-V|w| = a(z,t) |w] (1.2)

where the stretching factor a (x,t) = £-(Vu)-£, with £ = |:’—| being the unit vorticity
vector.

By the Biot-Savart law, we have Vu = V (—=A)""V x w. Thus we can write
Vu = R(w), with R being a Riesz operator of degree zero. As a result, we know that
a(z,t) is formally of the same order as |w|. This formal argument implies that the
vorticity evolution equation may be subject to quadratic nonlinear growth, which
yields finite time singularities. On the other hand, it was observed by Constantin
in [Con94] that depletion of nonlinearity may occur when the vorticity directions
align with one another. Based on this observation, Constantin-Fefferman-Majda
[CFM96] proved that, for an O (1) region that is carried by the flow, there will be
no blow-up as long as the following three conditions are satisfied:

(1) The maximum velocity ||u|| is uniformly bounded in time.

(2) There is enough alignment of the vorticity directions such that fOT IVel?, dt <
00, where £ = w/ |w].

(3) The maximum vorticity in a larger neighborhood of the O (1) region is
always controlled by the maximum vorticity in a smaller neighborhood,
namely

sup w|<m  sup |w]

B3 (X (Wo,t)) B, (X (Wo,t))
for some constants r and m.

It turned out that the above theorem has little overlap with the observations from
recent numerical computations (Kerr [Ker93, Ker95, Ker96, Ker97, Ker9§|, Pelz
[Pel01], Grauer-Marliani-Germanschewski [GMG98]). In these computations, a
growth rate of (T* —t) ™" is observed for the maximum vorticity. These computa-
tions also reveal that large vorticity resides in small regions which always shrink
to one point. Since alignment of vorticity vectors is observed only inside a region
that shrinks rapidly to a single point, new theorems with localized non-blowup
conditions are needed. In Deng-Hou-Yu [DHY05, DHY04a] we propose one way to
obtain such localized non-blowup theorems.

The key to our approach is the following understanding. When putting the
Euler equation in the Lagrangian form, the growth of |w| is directly related to
the stretching of small vortex line segments transported by the flow. Note that
these vortex line segments are allowed to shrink to one point. Careful study of the
interaction of the stretching of these vortex line segments and local properties of
the velocity and vorticity vector fields reveals subtle cancellations that have not
been observed before. It is these cancellations that would hinder the formation of
finite time singularities.

More specifically, we assume that at each time ¢ there exists some vortex line
segment L; on which the maximum vorticity is comparable to the global maximum
vorticity. A vortex line is defined as a 3D curve whose tangential vector is parallel
to the vorticity direction. We denote by L (¢) the arc length of this vortex line
segment. We prove non-blowup assuming the time integrability of the maximum
normal and tangential velocity components, and the boundedness of both || L, V-€ds
and L (t) maxy, |k| where k denotes the curvature. Here the tangential and normal
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velocity components refer to the velocity components that are tangential or normal
to the vorticity direction respectively. It is worth mentioning that the length of the
local vortex line segment, L (t), is allowed to shrink to zero. As we will see later,
these localized non-blowup conditions are essentially consistent with the numerical
observations.

2. LocALIZED NON-BLOWUP CONDITIONS FOR THE 3D EULER EQUATIONS

In this section we present our results on the non-blowup of the 3D Euler equa-
tions. We use (2 (t) to denote the global maximum vorticity, and consider, at time
t, a single vortex line segment L; along which the maximum vorticity is compa-
rable to Q2 (t). Denote by L (t) the arc length of L;, and &,n the tangential and
normal unit vectors of L; respectively. Note that by the definition of vortex lines,
€ = w/|w|. We further define Ug (t) = maxy yer, |(u- &) (2,t) — (u- &) (y,t)], and
U, (t) = maxz, |u - n|.

We should point out that in general L; is just a subset of the flow map image of
Ly for t' < t. This can be illustrated by the following plot.

FIGURE 2.1. Tlustration of L;

A?

As we can see from the above figure, we consider a family of shrinking regions
in which maximum vorticity resides and certain alignment occurs. We illustrate
the regions at times ¢; and ¢ by the dotted ellipsis. Then we consider L; to be
the vortex line segment that passes the maximum vorticity. Let X («,g,t) be the
Lagrangian flow map defined as follows:

0X

W ZU(X,t), X(Oé,to,t)|t:t0 = Q.
Instead of taking L;, to be the flow image of Ly, (that would be A'B’' = X (L4, , t1,t2)),
we take it to be the small section of Ly, ’s flow image that is contained in the shrink-

ing region (that is we take Ly, = C'D' instead of A'B’).
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With the above settings, we present our main theorem in Deng-Hou-Yu [DHY05].

Theorem 2.1. Assume that there is a family of vortex line segments Ly and Ty €
[0,T*), such that X (L, ,t1,t2) D Ly, for all Ty < t; < to < T*. Also assume
that Q (t) is monotonically increasing and Qr (t) = maxy, |w| > coQ () for some
co > 0 when t € [Ty, T*). Furthermore, we assume that there are positive constants
Cu, Co,cr, such that

(1) th |V - €| ds, L(t)maxy, |k| < Co.

(2) Ue (t) + CoU, (t) < Cy (T — t)_A for some A >0,

(3) L(t) > cr (T* —t)” for some B > 0.
Then, as long as A+ B < 1, there will be no blowup in the 3D incompressible Euler
flow up to time T*.

Remark 2.2. In most numerical observations, Q () ~ (T* —t)~", which bounds
the maximum velocity by (T* — t)73/ ® according to Lemma 4 in Deng-Hou-Yu
[DHYO05]. Therefore in those cases, A would be no more than 3/5. On the other
hand, intuitively L (¢t) should shrink at the same rate as the size of the region

containing maximum vorticity.

Theorem 2.1 allows the length of the vortex line segment L (t) to shrink and
the maximum velocity to blow-up. However, in some numerical computations, the
scaling B = 1— A = 1/2 is observed, which is a critical case for Theorem 2.1
(e.g., Kerr [Ker93, Ker95, Ker96, Ker97, Ker98]). In Deng-Hou-Yu [DHY04a], we
improved Theorem 2.1 to cover this critical case. We proved that no blow-up can
occur when A = B = 1/2 as long as the scaling constants, Cyp, Cy and cr, satisfy
an algebraic inequality. More specifically, we have the following theorem.

Theorem 2.3. Under the same assumptions as in Theorem 2.1, there will be no
blow-up in the 8D incompressible Fuler flow up to time T* in the case B=1—A =
1/2, as long as

Cu < f(Co,co,cL) -
Here the function f is defined as

f(Co,co,c1) =267 3%crcd -1 <20(1)/26_CO/2/33/2) ,

where y1 (m) denotes the smallest positive y such that
vy _
(v +1)°"?

In the following we will discuss how we can apply Theorem 2.3 to Kerr’s nu-
merical computations. In a series of papers ([Ker93, Ker95, Ker96, Ker97, Ker98|),
Kerr reported several observations for finite singularity formation of the Euler flow

which can be summarized as follows.
(1) Large vorticity (> 0.6 ||w||,,) concentrates in small “active regions” in which
vortex lines are “relatively straight”.
(2) “Active regions” look like two vortex sheets, each scaling like (T* — t)l/ % x

(T* — t)l/2 x (T* —t), meeting at an angle. In particular, the scaling in
the vorticity direction is (T* — t)l/ 2

(3) The maximum velocity ||lu||,, also blows up, at the rate (T* — t)_1/2.
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By (1), V&, when rescaled to an O (1) plot, should be bounded by some small
constant Cy. Therefore we have V - £,k < Cy/L (t) in the original frame. This
implies [, |V -¢| ds < Co and L (t) maxz, & < Co. (2) implies that the length of

the vortex line segment that we can take should scale like (T* — )'/2, which means

L(t) > e (T* - t)l/ ? for some constant cr,. Finally, since Uz and U, are bounded
by ||ul|5, up to a constant factor, we immediately have Ug+CoU, < Cy (T — t)*l/2
for some constant Cyy. Thus we see that our major assumptions are essentially
consistent with Kerr’s numerical computations. If we consider the case L; passing
through the maximum vorticity, and take Cy = 0.1 as a reasonable interpretation
of vortex lines being “relative straight” inside the active regions, simple calculations
based on our algebraic constraint on the scaling constants implies no blow-up up
to time T if

Cu

— < 0.4341.

CcL
In [DHYO05], we argue that U is smaller than the maximum velocity field due to
the local cancellation in the velocity kernel. Thus it is reasonable to expect that Cy
is small. Currently there are no numerical measurements of Cy and ¢y, available.
Whether the above condition is satisfied is still unknown. In a subsequent work,
we plan to perform careful numerical studies to obtain accurate measurements for
these scaling constants.

3. PROOF OF MAIN THEOREMS

In this section, we present the sketch of the proof of Theorem 2.1. The proof of
Theorem 2.3 argues in a similar way, but is much more technical.

The key idea of our analysis is the representation of vorticity growth by the
stretching of vortex line segments. A first step is the following lemma:

Lemma 3.1. Let s and 3 be the arc length parameters of a vortex line at time t
and to. Then for any point a € R® at time to < t such that w (o, tg) # 0, we have

ﬁ o _ |w (X (Oé,to,t) ,t)l
6,8 (X( 7t07t)7t)_ |w(a,t0)|

Proof. The key to this proof is the following well-known representation of the vor-
ticity (Chorin-Marsden [CM93]):

(3.1)

w (X (OL, to, t) 7t) =VaX (Oé, to, t) TwW (Ot, tO) .
Defining the short hand w (t) = w (X (a, to, 1) ,t), we have

lw® = &£@)-w(t)=£() VaX-w(0)
£(t) - VaX - £(0) |w (0)]
)

Il
Y
—~

~

Il
~~

Thus ends the proof. O
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The next step is to develop the evolution equation of sg. By (3.1) it is clear that

D D
;—:5 = % Therefore we have

Disg = asp

where « is the same stretching factor defined in (1.2). Instead of treating it as
a singular integral operator on w, as the conventional approach does, we take a
detour and give a an alternative formulation, namely

a = (§-Vu)-¢§
= - V)(w-§-u-(£-V)¢
= (-8, —r(u-n).

Thus we obtain an alternative evolution equation for sg:
Disg = (u-€) 5 — (u-n)Ksg. (3.2)

The next step is crucial in our analysis. We integrate (3.2), first along any vortex
line segment L, for 7 € [to,t], and then from ¢y to ¢t. Let I(¢) denote the arclength
of the vortex line segment in between X (31,t0,t) and X (82, to,t) with 1 and B
being the end points of the vortex line segment Iy at t = tg. We obtain the following
estimate for the stretching of /;:

¢
o) <100+ [ [Ug (1) + Un ()1 () max|w| dr, (3.3)
to t
where Ue (1) = |(u - &) (X (B2,t0,7)) — (v- &) (X (B1,t0,7))| and Uy, (1) = max;, |u-n| (7).
Note that in (3.3), no term of order Vu appears.
To take advantage of this property of (3.3), we need to estimate the growth of
vorticity by [ (t). This is fulfilled by the following lemma.

Lemma 3.2. Let l; be a vortez line segment that is carried by the flow. Denote its
length by I (t). Also denote ; (t) = max;, |w|. Then we have

— [, IV€| ds O (t) 1(t) S, |V €l ds W (t)
e % (o) < <e (3.4)

where the integration is along l;.

Q (to)’

Proof. The proof relies on Lemma 3.1 as well as the following property of the
vorticity field: For any two points z,y € I; such that w (z) ,w (y) # 0,

v as) L W@ v as), (3.5)
w (9)]
We first prove (3.5). Since by definition w is divergence free, we have
0 = Vow=V- (¢
= (£ V)|wl+(V-§) v
9 |w|

= W+(V'§)|W|-

Integrating along the vortex line segment between x and y gives (3.5).
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Now we are ready to prove (3.4). We have

B2
l@::/ 55 dB

_ /ﬁ2 o (X (ayt0,1), 1)

1 |w (Oé,to)|

g

B2
[
1 e Mo  (to)
S 1761 ds ()
e’'to I (to),
o0
where we have used Lemma 3.1 and (3.5). O

Now dividing both sides of (3.3) and applying Lemma 3.2, we obtain the following
estimate for the growth of maximum vorticity along the vortex line segment [;:

1
I (to)

t
0 (0) < V49 |14 s [0 () 4 max el 1) U ()] ] 0 t0) (30

where  (t) = max;, |w|. (3.6) will be the key to our proof of Theorems 2.1 and
2.3.

Now we are ready to sketch the proof of Theorem 2.1.

We prove by contradiction. Assume that the solution blows up at time 7*, then
according to the BKM criterion, we must have

.
l Q (1) = oo, (3.7)

for any to < T*. Therefore fixing to, we can divide [tg,T*) into an infinite number
of intervals [tg, tr+1) such that Q (tg+1) = rQ (¢x) for some constant r to be fixed
later. Tt is easy to see that Q(tz11) = r*t1Q(¢y). Now by the monotonicity of Q (t)
we have

*

oo oo
Q) dt <D Q(ter) (berr —ts) STQ(t) Y ¥ (T* — ).
to k=0 k=0

We will show that there exists one particular r such that 7% (T* — ;) < a* for some
constant a < 1. This would lead to a contradiction.

To this end, we fix k, and take Iy, ,, = Ly, ,,. For any t € [ty,tx41) we define [; to
be the image of I, ,, under the inverse flow map, i.e., ly, ., = X (I;,t,tx41). We can
show that Iy C L; and its length [ (¢) is bounded from below by él (tx+1) = ¢L (tg+1)
for some constant ¢.

Now the key estimate (3.6) with the assumption Q; (tg41) = Qp (tg+1) > o (tkr1)
yields

Q (tes) < C 14C(T = tyyn) ® / Tt a Q@)  (38)
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where we have used the assumptions of Theorem 2.1, i.e.,
Ue () + CoU, (1) < Cy (T* — )4,

|V - €|, max|s[- L (t) < Co,
L, L.

L(t)>cp (T*—t)".

Take 7 = e“0/cy + 1. Recall that Q(tgy1) = rQ(t,). After some calculations we
obtain the following estimate

(T* —tes1) < C(T" = 1)’ (T* = ty)
where 6 = (1 — A) /B — 1 > 0. This implies
R (T* — tppy) < [Cr (T* — tk)é] R (T* —ty).

Finally, since t; / T* as k — oo, we are guaranteed to have Cr (T* — t;)° < a
for some constant a < 1 when k is large. Therefore r* (T —t;) < a* for k large,

and ftf* Q(t)dt is bounded from above by a convergent geometric series. This

contradicts with the assumption that |, tf* Q(t)dt = co. This proves the theorem.

4. LocALIZED NON-BLOWUP CONDITIONS FOR THE 2D QUASIGEOSTROPHIC
EQUATION

In the above, we have shown that subtle cancellations in the 3D Euler flow can
be revealed by taking a Lagrangian point of view and focusing on curves that are
tangent to the vorticity vectors (i.e., vortex lines). It turns out that this new
approach is effective for other incompressible fluid equations too. One example is
the following 2D quasigeostrophic equation.

The 2D quasigeostrophic equation reads

D = 6,+u-VO=0
u = (=8:,0,) (=A)""?9 (4.1)

where @ is a scalar function defined on R?.
It has been shown in Constantin-Majda-Tabak [CMT94] that (4.1) is analogous
to the 3D Euler equations. In particular, the possible blowup of (4.1) is controlled

by
T*
| 1wl
0

similar to the BKM criterion for the 3D Euler equations, and furthermore the level
sets of @ act similarly to the vortex lines in the 3D Euler dynamics in the sense that
they are tangent to V6 and are carried by the flow.

In Deng-Hou-Yu [DHY04b], it is proved that as long as [, |V -] and L () max, ||
are both bounded for an O (1) segment of the level set passing through the maxi-
mum V=46, the growth of V14 is bounded from above by double exponential and
consequently no blowup can occur. This result is sharp in the sense that so far
the most singular behavior observed in numerical computations of the 2D quasi-
geostrophic equation exhibits just double exponential growth of V4. Furthermore,
the existence of such an O (1) segment can be verified in this most singular situation
under mild assumptions. For details, see Deng-Hou-Yu [DHY04b].
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