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In this article we study the global regularity of 2D generalized
magnetohydrodynamic equations (2D GMHD), in which the dis-
sipation terms are −ν(−�)αu and −κ(−�)βb. We show that
smooth solutions are global in the following three cases: α � 1/2,

β � 1; 0 � α < 1/2, 2α + β > 2; α � 2, β = 0. We also show
that in the inviscid case ν = 0, if β > 1, then smooth solutions
are global as long as the direction of the magnetic field remains
smooth enough.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Recent mathematical studies of fluid mechanics have found it beneficial to replace the Laplace op-
erator �, representing molecular diffusion, by fractional powers of −�. For the magnetohydrodynamic
(MHD) equations, this practice results in the generalized MHD (GMHD) system

ut + u · ∇u = −∇p + b · ∇b − νΛ2αu, (1)

bt + u · ∇b = b · ∇u − κΛ2βb, (2)

∇ · u = ∇ · b = 0, (3)
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which is the subject of the present study. Here ν,κ,α,β � 0 and Λ = (−�)1/2 is defined in terms of
Fourier transform by

Λ̂ f (ξ) = |ξ | f̂ (ξ). (4)

Eqs. (1)–(3) have been studied in some detail by Wu [28,29] and Cao and Wu [3], with an emphasis
on the issue of solution regularity.

The generalization of diffusion in the above manner has been implemented to other fluid sys-
tems, including the Navier–Stokes, Boussinesq, and surface quasi-geostrophic equations (see e.g.
[4,5,11,13–15,22]). Studying these generalized equations has enabled researchers to gain a deeper
understanding of the strength and weaknesses of available mathematical methods and techniques,
and, in some cases, motivated and inspired the invention of new methods. An illustrating example of
the latter effect is the recent breakthroughs in the study of the surface quasi-geostrophic equations
[1,7,17,18].

The problem of global well-posedness of the usual n-dimensional (nD) MHD (or GMHD with
α,β � 2) equations, where n � 3, is highly challenging for obvious reasons. One is that the MHD
equations include the Navier–Stokes (or Euler when ν = 0) system as a special case (obtained by set-
ting the initial magnetic field to zero), for which the issue of regularity has not been resolved. Another
is that the quadratic coupling between u and b can introduce additional technical difficulties, even
though this coupling may actually have some regularizing effects (see below). For n = 2, this coupling
invalidates the vorticity conservation, thereby becoming the main reason for the unavailability of a
proof of global regularity for the ideal dynamics. Similar (but probably more manageable) situations
arise when the 2D Euler equations are linearly coupled with the buoyancy equation in the Boussinesq
system or have a linear forcing term [7].

So far the best result for the global regularity of the nD GMHD equations (1)–(3) has been de-
rived in [30], where it has been proved that the system is globally regular as long as the following
conditions

α � 1

2
+ n

4
, β > 0, α + β � 1 + n

2
, (5)

are satisfied. Note that for simplicity of presentation, the above conditions have been given in slightly
stronger forms than the exact result in [30], where the dissipation terms are allowed to be logarith-
mically weaker than −Λ2αu and −Λ2βb. Note also that for the case n = 3, conditions similar to (5)
have been obtained in [31], with β > 0 replaced by β � 1.

When n � 3, the result (5) is unlikely to be improved using current mathematical techniques.
The reason is that the global regularity for the nD generalized Navier–Stokes equations

ut + u · ∇u = −∇p − Λ2αu, ∇ · u = 0 (6)

is still unavailable for α < 1
2 + n

4 (see [25] for a proof of global regularity in the case of logarithmi-
cally weaker dissipation than −Λ1+n/2u). On the other hand, when n = 2, the availability of global
regularity for the generalized Navier–Stokes equations (6) for all α � 0 suggests that the conditions
in (5) could be excessive and may be weakened to some extent. In particular, it can be easily seen
that the smoothness of either u or b guarantees that of the other and therefore of the system as
a whole [26]. Hence, global regularity could intuitively be possible with either ν = 0 or κ = 0 for
suitable conditions on β or α.

In this article, we quantitatively confirm the above observations. More precisely, we show that
when n = 2, the condition α � 1 = 1

2 + n
4 is not needed for the global regularity of the system. In

particular, we focus on the regime α < 1 and show that the GMHD system is globally regular when
0 � α < 1/2, 2α + β > 2 or when α � 1/2, β � 1. We also prove global regularity for the case α � 2,
κ = 0, thereby removing the technical condition β > 0. Furthermore, we study the inviscid case ν = 0,
κ > 0, and show that when β > 1, the GMHD system is globally regular as long as the magnetic lines
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are smooth enough. This result is consistent with numerical and experimental observations of the
MHD dynamics, where the magnetic field appears to have the effect of “suppressing” the appear-
ance of small scales in the fluid (see e.g. [20]), and as a consequence preventing the formation of
singularities. Our finding is also consistent with a number of mathematical results exhibiting the reg-
ularizing effect on the streamlines and vortex lines in Navier–Stokes and Euler dynamics (see e.g.
[6,9,10,27]).

The rest of this article is organized as follows. In Section 2 we summarize the main results and
give a brief overview of the key ideas of their proofs. As these proofs use different methods for each
case, we present them in separate sections. Section 3 features the proof for global regularity when
α � 1/2, β � 1. Sections 4 and 5 contain the proofs for the cases 0 � α < 1/2, 2α + β > 2 and α � 2,
β = 0, respectively. In Section 6 we prove global regularity under the assumption on the smoothness
of magnetic lines.

Throughout this paper, we will set κ = ν = 1 to simplify the presentation. It is a standard exercise
to adjust various constants to accommodate other values of κ , ν , as long as both are positive. We also
identify the cases α = 0 and β = 0 with ν = 0 and κ = 0, respectively.

2. Main results

Our first main result is the following global regularity theorem.

Theorem 1. Consider the GMHD equations (1)–(3) in 2D. Assume (u0,b0) ∈ Hk with k > 2. Then the system
is globally regular for the following α, β:

• α � 1/2, β � 1;
• 0 � α < 1/2, 2α + β > 2;
• α � 2, β = 0.

Remark 1. Combining the above theorem with the main result in [30], we see that the 2D GMHD
system is globally regular for all α + β � 2 except for α = 0, β = 2. Thus we have removed almost all
technical conditions on α and β .

The three cases will be proved using different methods, as different types of cancellation of the
2D GMHD system will be exploited. More specifically,

• for α � 1/2, β � 1, we apply standard L2-based energy method, taking advantage of the special
cancellation that occurs for estimates in H1;

• for 0 � α < 1/2, 2α + β > 2, we derive a new non-blow-up criterion in L p norm of the vorticity
ω = ∇⊥ · u = −∂2u1 + ∂1u2 and then show that this criterion is indeed satisfied;

• for α � 2, β = 0, we adapt the idea proposed in [21], carrying out a kind of “weakly nonlinear”
energy estimate which takes advantage of the fact that in this case we have “almost” H1 a priori
bound.

Our second main result is the following theorem dealing with the case ν = 0 (for our purpose this is
the same as α = 0 since we do not impose any restriction on the size of the initial data).

Theorem 2. Consider the GMHD system (1)–(3) in 2D with α = 0 and β > 1. Assume (u0,b0) ∈ Hk with

k > 2. Then the system is globally regular if b̂ := b
|b| ∈ L∞(0, T ; W 2,∞).

Remark 2. The condition on b̂ seems to be independent of the value of β , in the sense that there is
no β0 such that as soon as β > β0, b̂ automatically belongs to L∞(0, T ; W 2,∞).

Notation. In the following we will use the standard function spaces L p , W k,p , Hk whose norms are
defined as
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‖ f ‖L p :=
( ∫
R2

| f |p dx

)1/p

, ‖ f ‖W k,p :=
( ∑

|α|=k

∥∥∂α f
∥∥p

L p

)1/p

, ‖ f ‖Hk := ‖ f ‖W k,2

with standard modifications for the case p = ∞.

3. Proof of Theorem 1 Case I: α � 1/2, β � 1

In this section we prove the first case of Theorem 1. We apply standard L2-based energy estimates.
The key idea here is to carry out the H1, H2, Hk estimates successively to explore possible cancella-
tions at each stage. We would like to mention that the cancellation at the H1 stage has been observed
before by several authors in the case β = 1 [3,21]. The general case β � 1 is almost identical. However
for completeness we still include detailed arguments.

3.1. H1 estimates (L2 estimates for ω, j)

Lemma 1 (H1 estimate). Consider the 2D GMHD equations (1)–(3), where α � 0 and β � 1. Let ω = ∇⊥ ·u =
−∂2u1 + ∂1u2 and j = ∇⊥ · b. Let u0,b0 ∈ H1 . For fixed T > 0 and 0 < t < T , we have

‖ω‖2
L2(t) + ‖ j‖2

L2(t) +
t∫

0

(∥∥Λαω
∥∥2

L2 + ∥∥Λβ j
∥∥2

L2

)
dτ � C(u0,b0, T ). (7)

Proof. We first apply ∇⊥· to the GMHD equations (1)–(3) to obtain the governing equations for the
vorticity ω and the current j:

ωt + u · ∇ω = b · ∇ j − Λ2αω, (8)

jt + u · ∇ j = b · ∇ω + T (∇u,∇b) − Λ2β j. (9)

Here

T (∇u,∇b) = 2∂1b1(∂1u2 + ∂2u1) + 2∂2u2(∂1b2 + ∂2b1). (10)

Note that T is bilinear in ∇u,∇b and therefore for any k � 0 we have

∣∣∂k T (∇u,∇b)
∣∣ � C

k∑
m=0

∣∣∇m+1u
∣∣∣∣∇k−m+1b

∣∣ (11)

for some constant C depending only on k.
Multiplying (8) and (9) by ω and j, respectively, integrating, and adding the resulting equations

together we obtain

1

2

d

dt

∫
R2

(
ω2 + j2)dx =

∫
R2

T (∇u,∇b) j dx −
∫
R2

(
Λαω

)2
dx −

∫
R2

(
Λβ j

)2
dx, (12)

where we have used the following consequences of ∇ · u = ∇ · b = 0:
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∫
R2

(u · ∇ω)ω dx = 0; (13)

∫
R2

(u · ∇ j) j dx = 0; (14)

∫
R2

(b · ∇ j)ω dx +
∫
R2

(b · ∇ω) j dx = 0. (15)

Note that all the terms involving derivatives of ω and j – the “worst” terms from energy estimate
point of view – disappear.

Now recall the standard energy conservation which can be obtained by multiplying (1) and (2) by
u and b respectively, integrating, and applying the incompressibility condition (3):

1

2

d

dt

∫
R2

(
u2 + b2)dx +

∫
R2

[(
Λαu

)2 + (
Λβb

)2]
dx = 0. (16)

This gives

u ∈ L∞(
0, T ; L2) ∩ L2(0, T ; Hα

)
, b ∈ L∞(

0, T ; L2) ∩ L2(0, T ; Hβ
)
. (17)

As β � 1 by Sobolev embedding we easily get

b ∈ L2(0, T ; H1) ⇒ j ∈ L2(0, T ; L2). (18)

On the other hand we have

‖Λ j‖L2 � C‖b‖a
L2

∥∥Λβ j
∥∥1−a

L2 (19)

for

a = β − 1

β + 1
. (20)

Using Young’s inequality we obtain

‖Λ j‖2
L2 � a‖b‖2

L2 + (1 − a)
∥∥Λβ j

∥∥2
L2 ⇒ ∥∥Λβ j

∥∥2
L2 � 1

1 − a
‖Λ j‖2

L2 − a

1 − a
‖b‖L2 . (21)

It is worth emphasizing that the above calculation remains valid even when a = 0, that is β = 1.
This leads us to

d

dt

(‖ω‖2
L2 + ‖ j‖2

L2

)
� C

∫
R2

|∇u||∇b|| j|dx − 1

(1 − a)
‖Λ j‖L2

+ a ‖b‖L2 − 2
∥∥Λαω

∥∥2
L2 − ∥∥Λβ j

∥∥2
L2 . (22)
(1 − a)
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By Hölder’s inequality, the trilinear term satisfies∫
R2

|∇u||∇b|| j|dx � ‖∇u‖L2‖∇b‖L4‖ j‖L4 . (23)

Owing to the relations

∇u = ∇(−�)−1∇⊥ω and ∇b = ∇(−�)−1∇⊥ j (24)

we have, following standard Fourier multiplier theory (see e.g. [24]),

‖∇u‖L2 � C‖ω‖L2 and ‖∇b‖L4 � C‖ j‖L4 (25)

for some absolute constant C . It follows that∫
R2

|∇u||∇b|| j|dx � C‖ω‖L2‖ j‖2
L4 . (26)

Next, application of the Gagliardo–Nirenberg inequality

‖ j‖L4 � C‖ j‖1/2
L2 ‖Λ j‖1/2

L2 (27)

yields ∫
R2

|∇u||∇b|| j|dx � C‖ω‖L2‖ j‖L2‖Λ j‖L2 � C(ε)‖ j‖2
L2‖ω‖2

L2 + ε‖Λ j‖2
L2 , (28)

where Young’s inequality has been used. Here ε is a small positive number that will be chosen later.
Summarizing the above, we have

d

dt

(‖ω‖2
L2 + ‖ j‖2

L2

) + ∥∥Λαω
∥∥2

L2 + ∥∥Λβ j
∥∥

L2

� C(ε)‖ j‖2
L2‖ω‖2

L2 + Cε‖Λ j‖2
L2 − 1

(1 − a)
‖Λ j‖2

L2 + a

(1 − a)
‖b‖L2 . (29)

Taking ε small enough so that Cε < 1
1−a , we obtain

d

dt

(‖ω‖2
L2 + ‖ j‖2

L2

) + ∥∥Λβ j
∥∥2

L2 + ∥∥Λαω
∥∥2

L2 � C(ε)‖ j‖2
L2‖ω‖2

L2 + a

1 − a
‖b‖L2 . (30)

As ‖b‖L2 is uniformly bounded in t , and ‖ j‖2
L2 ∈ L1(0, T ) (17)–(18), the proof is completed. �

Remark 3. Note that the above proof can be shortened by skipping the steps

‖Λ j‖L2 � ‖b‖a
L2

∥∥Λβ j
∥∥1−a

L2 (31)

and
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∥∥Λβ j
∥∥2

L2 � 1

1 − a
‖Λ j‖2

L2 − a

1 − a
‖b‖L2 (32)

and directly applying the Gagliardo–Nirenberg inequality

‖ j‖L4 � ‖ j‖a1
L2

∥∥Λβb
∥∥a2

L2

∥∥Λβ j
∥∥a3

L2 (33)

for appropriate a1, a2, a3, and then use Young’s inequality. However we choose to first reduce the
general situation β � 1 to the particular one β = 1 to illustrate the following observation: For our
problem, to prove regularity for α � α0, β � β0 using energy method, it suffices to do so for α = α0,
β = β0. Such reduction significantly reduces the number of parameters in higher Sobolev norm es-
timates and makes the presentation much more transparent, as we will see in the following H2

estimate.

3.2. H2 estimates (H1 estimates for ω, j)

With H1 estimates at hand, we can move on to H2 estimates. Differentiating (8)–(9) we reach

(∂iω)t + u · ∇(∂iω) = −(∂iu) · ∇ω + (∂ib) · ∇ j + b · ∇(∂i j) − Λ2α(∂iω), (34)

(∂i j)t + u · ∇(∂i j) = −(∂iu) · ∇ j + (∂ib) · ∇ω + b · ∇(∂iω)

+ ∂i
(
T (∇u,∇b)

) − Λ2β(∂i j). (35)

This gives the following integral relation:

d

dt

∫
R2

(∂iω)2 + (∂i j)2

2
dx = −

∫
R2

[
(∂iu) · ∇ω

]
(∂iω)dx +

∫
R2

[
(∂ib) · ∇ j

]
(∂iω)dx

−
∫
R2

[
(∂iu) · ∇ j

]
(∂i j)dx +

∫
R2

[
(∂ib) · ∇ω

]
(∂i j)dx

+
∫
R2

[
∂i

(
T (∇u,∇b)

)]
(∂i j)dx

−
∫
R2

(
Λα∂iω

)2
dx −

∫
R2

(
Λβ∂i j

)2
dx, (36)

after taking advantage of ∇ · u = ∇ · b = 0.
Summing up i = 1,2, we reach

d

dt

(‖∇ω‖2
L2 + ‖∇ j‖2

L2

)
� C(I1 + I2 + I3 + I4 + I5) − 2

∥∥Λα∇ω
∥∥2

L2 − 2
∥∥Λβ∇ j

∥∥2
L2 (37)

with C an absolute constant, and

I1 =
∫
R2

|∇u||∇ω|2 dx; (38)

I2 =
∫

2

|∇b||∇ j||∇ω|dx; (39)
R
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I3 =
∫
R2

|∇u||∇ j|2 dx; (40)

I4 =
∫
R2

|∇b||∇ω||∇ j|dx; (41)

I5 =
∫
R2

[∣∣∇2u
∣∣|∇b| + |∇u|∣∣∇2b

∣∣]|∇ j|dx. (42)

We estimate these quantities one by one. As discussed in Remark 3, we only need to carry out the
estimates for the case α = 1/2, β = 1.

There are four different cases (I2 and I4 are identical).

• Estimating I1 = ∫
R2 |∇u||∇ω|2 dx.

First, by Hölder’s inequality we have

I1 � ‖∇u‖L3‖∇ω‖2
L3 � C‖ω‖L3‖∇ω‖2

L3 . (43)

Consider the following Gagliardo–Nirenberg inequalities

‖∇ω‖L3 � C
∥∥Λ1/2ω

∥∥1/6
L2

∥∥Λ1/2∇ω
∥∥5/6

L2 ; (44)

‖∇ω‖L3 � C‖∇ω‖1/3
L2

∥∥Λ1/2∇ω
∥∥2/3

L2 ; (45)

‖ω‖L3 � C‖ω‖7/9
L2

∥∥Λ1/2∇ω
∥∥2/9

L2 . (46)

Eqs. (44) and (45) imply

‖∇ω‖L3 = ‖∇ω‖2/3
L3 ‖∇ω‖1/3

L3 � C
∥∥Λ1/2ω

∥∥1/9
L2 ‖∇ω‖1/9

L2

∥∥Λ1/2∇ω
∥∥7/9

L2 . (47)

Now (46) and (47) give

I1 � C‖ω‖L3‖∇ω‖2
L3 � C‖ω‖7/9

L2

∥∥Λ1/2ω
∥∥2/9

L2 ‖∇ω‖2/9
L2

∥∥Λ1/2∇ω
∥∥16/9

L2 . (48)

Applying Young’s inequality we get

I1 � C(ε)‖ω‖7
L2

∥∥Λ1/2ω
∥∥2

L2‖∇ω‖2
L2 + ε

∥∥Λ1/2∇ω
∥∥2

L2 . (49)

Here ε can be taken as small as we want and will be specified later.

• Estimating I2 = I4 = ∫
R2 |∇b||∇ j||∇ω|dx.

Using Hölder’s inequality we have∫
R2

|∇b||∇ j||∇ω|dx � ‖∇b‖L4‖∇ j‖L4‖∇ω‖L2 � C‖ j‖L4‖∇ j‖L4‖∇ω‖L2 . (50)

Applying the Gagliardo–Nirenberg inequalities
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‖ j‖L4 � C‖ j‖1/2
L2 ‖∇ j‖1/2

L2 ; ‖∇ j‖L4 � C‖∇ j‖1/2
L2 ‖Λ∇ j‖1/2

L2 (51)

yields ∫
R2

|∇b||∇ j||∇ω|dx � C‖ j‖1/2
L2 ‖∇ j‖L2‖Λ∇ j‖1/2

L2 ‖∇ω‖L2 . (52)

Applying Young’s inequality further yields∫
R2

|∇b||∇ j||∇ω|dx � C(ε)‖ j‖2
L2 + ‖∇ j‖2

L2‖∇ω‖2
L2 + ε‖Λ∇ j‖2

L2 . (53)

• Estimating I3 = ∫
R2 |∇u||∇ j|2 dx.

Using Hölder’s inequality we have∫
R2

|∇u||∇ j|2 dx � ‖∇u‖L2‖∇ j‖2
L4 � C‖ω‖L2‖∇ j‖2

L4 . (54)

Now using the second Gagliardo–Nirenberg inequality in (51) and Young’s inequality we get

I3 � C‖ω‖L2‖∇ j‖L2‖Λ∇ j‖L2 � C(ε)‖ω‖2
L2‖∇ j‖2

L2 + ε‖Λ∇ j‖2
L2 . (55)

• Estimating I5 = ∫
R2 [|∇2u||∇b| + |∇u||∇2b|]|∇ j|dx.

We write

I5 = I51 + I52 :=
∫
R2

∣∣∇2u
∣∣|∇b||∇ j|dx +

∫
R2

|∇u|∣∣∇2b
∣∣|∇ j|dx. (56)

It is clear that I51 can be estimated similar to I2 while I52 can be estimated similar to I3.

Remark 4. We would like to emphasize that the assumption α � 1/2 is only needed for the estimation
of I1. The estimates I2–I5 only require α � 0, β � 1.

Putting the above results together, we have

d

dt

(‖∇ω‖2
L2 + ‖∇ j‖2

L2

)
� C(ε)

[‖ω‖7
L2

∥∥Λ1/2ω
∥∥2

L2 + ‖ω‖2
L2 + ‖∇ j‖2

L2 + 1
](‖∇ω‖2

L2 + ‖∇ j‖2
L2

)
+ C(ε)‖ j‖2

L2 − 2
∥∥Λ1/2∇ω

∥∥2
L2 − 2‖Λ∇ j‖2

L2

+ Cε
(∥∥Λ1/2∇ω

∥∥2
L2 + ‖Λ∇ j‖2

L2

)
. (57)

Taking ε small enough so that Cε < 1 we have

d

dt

(‖∇ω‖2
L2 + ‖∇ j‖2

L2

)
� C(ε)

[‖ω‖7
L2

∥∥Λ1/2ω
∥∥2

L2 + ‖ω‖2
L2 + ‖∇ j‖2

L2 + 1
](‖∇ω‖2

L2 + ‖∇ j‖2
L2

)
+ C(ε)‖ j‖2

2 − (∥∥Λ1/2∇ω
∥∥2

2 + ‖Λ∇ j‖2
2

)
. (58)
L L L
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Recall that ∥∥Λ1/2ω
∥∥

L2 ,‖∇ j‖L2 ∈ L2(0, T ); ‖ω‖L2 ,‖ j‖L2 ∈ L∞(0, T ) (59)

thanks to the H1 estimate. This, together with (58), implies

∇ω,∇ j ∈ L∞(
0, T ; L2). (60)

Combining with the H1 estimate, we have the following H2 estimate:

‖ω‖H1 + ‖ j‖H1 ∈ L∞(0, T ). (61)

3.3. Hk estimates

An argument which by now is standard (see for example [21]) generalizes the classical BKM-type
blow-up criterion [2] to

The MHD system stays regular beyond T if and only if

T∫
0

(‖ω‖BMO + ‖ j‖BMO
)

dt < ∞. (62)

Using the embedding

H1 ↪→ BMO (63)

in 2D, we see that

‖ω‖H1 + ‖ j‖H1 ∈ L∞(0, T ) ⇒ ‖ω‖BMO + ‖ j‖BMO ∈ L∞(0, T ) (64)

and consequently all Hk norms are bounded. This completes the proof of the first case.

4. Proof of Theorem 1 Case II: 0 � α < 1/2, 2α + β > 2

To prove global regularity in this case, we first derive a blow-up criterion in ‖ω‖Lp for appropri-
ate p, then obtain a priori estimate for ‖ω‖Lp . Note that in this case we have β > 1 and Lemma 1
together with the embedding

Hβ ↪→ L∞ (65)

in 2D already gives j ∈ L2(0, T ; L∞) ↪→ L1(0, T ;BMO).

Lemma 2. Assume 0 < α < 1/2, β > 1. The GMHD system (1)–(3) is regular if ω ∈ L p for any p > 1
α .

Proof. As we have β > 1, we already have the following H1 estimates thanks to Lemma 1:

ω ∈ L∞(
0, T ; L2) ∩ L2(0, T ; Hα

); j ∈ L∞(
0, T ; L2) ∩ L2(0, T ; Hβ

)
. (66)

Now arguing similarly as in Sections 3.2 and 3.3, we see that all we need to do is to bound I1–I5 as
defined in (38)–(42). Furthermore, we note that the estimates for I2–I5 can be done similarly to that
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in Section 3.2, as explained in Remark 4. The only estimate that needs to be done differently is that
of I1 = ∫

R2 |ω||∇ω|2 dx.
For that purpose, we first apply Hölder’s inequality to I1 to obtain∫

R2

|ω||∇ω|2 dx � ‖ω‖L p1 ‖∇ω‖2
L2q1

(67)

for p1, q1 satisfy

p1 >
1

α
,

1

p1
+ 1

q1
= 1. (68)

Next we use the following Gagliardo–Nirenberg type inequalities:

‖∇ω‖L2q1 � C
∥∥Λαω

∥∥ξ

L2

∥∥Λα∇ω
∥∥1−ξ

L2 with ξ = α − 1

p1
= α

(
1 − 1

p1α

)
; (69)

‖∇ω‖L2q1 � C‖∇ω‖η

L2

∥∥Λα∇ω
∥∥1−η

L2 with η = 1 − 1

p1α
. (70)

Note that as long as p1 > 1
α both ξ,η ∈ (0,1). Now setting

a = α

1 + α

(
1 − 1

p1α

)
, (71)

which satisfies 0 < a < 1/3 owing to 0 < α < 1/2 and p1 > 1/α, we have

‖∇ω‖L2q1 = ‖∇ω‖1/(1+α)

L2q1
‖∇ω‖α/(1+α)

L2q1
� C

∥∥Λαω
∥∥a

L2‖∇ω‖a
L2

∥∥Λα∇ω
∥∥1−2a

L2 . (72)

Next we apply the following Gagliardo–Nirenberg inequality

‖ω‖L p1 � C‖ω‖1−2a
L p

∥∥Λα∇ω
∥∥2a

L2 , (73)

where a is given by (71) and p < p1. The exact value of p can be written down but what is important
here is that p > 1

α , as can be seen from the following manipulation of the scaling relation:

− 2

p1
= (1 − 2a)

(
− 2

p

)
+ 2aα ⇒ − 1

p1
= (1 − 2a)

(
− 1

p

)
+ aα. (74)

Writing (71) as a = 1
1+α (α − 1

p1
) and then adding α to both sides of (74), we reach

α − 1

p
= 1 − 3α/(α + 1)

1 − 2a

(
α − 1

p1

)
. (75)

Recalling α < 1/2, we see that α − 1/p > 0 if and only if α − 1/p1 > 0.
Combining the above, and applying Young’s inequality, we see that I1 can be bounded as

I1 � ‖ω‖L p1 ‖∇ω‖2
L2q1

� C‖ω‖1−2a
L p

(∥∥Λαω
∥∥a

L2‖∇ω‖a
L2

∥∥Λα∇ω
∥∥1−a

L2

)2

� C(ε)‖ω‖(1−2a)/a
Lp

∥∥Λαω
∥∥2

2‖∇ω‖2
2 + ε

∥∥Λα∇ω
∥∥2

2 . (76)
L L L
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Now it is clear that once ‖ω‖Lp ∈ L∞(0, T ), we can obtain H2 estimate as in Section 3.2, and global
regularity follows as in Section 3.3.

Finally, if ‖ω‖Lq is bounded for some q > 1
α > 2, then together with the H1 estimate ω ∈

L∞(0, T ; L2) we see that

‖ω‖Lr ∈ L∞(0, T ), ∀r ∈ [2,q]. (77)

Now we can simply take p1 = q in the above inequalities, then since p < p1 we have the uniform
boundedness of ‖ω‖Lp and global regularity follows. �
Remark 5. The case α = 0 (which we identify with the case ν = 0) is trivial. By our assumption
2α + β > 2 we have β > 2, which gives ∇ j ∈ L2(0, T ; L∞). This result, together with the vorticity
equation

ωt + u · ∇ω = b · ∇ j, (78)

implies ω ∈ L∞(0, T ; L∞). Global regularity then follows from the BKM type criterion in [2].

In light of Lemma 2, all we need to do is to show that when 2α + β > 2, there is indeed p > 1
α

such that ‖ω‖Lp remains uniformly bounded over (0, T ).
Recall the equation for ω:

ωt + u · ∇ω = b · ∇ j − Λαω. (79)

Multiply both sides by p|ω|p−2ω and integrate we reach

d

dt

∫
R2

|ω|p dx � p

∫
R2

|b||∇ j||ω|p−1 dx − p

∫
R2

(
Λαω

)|ω|p−2ω dx, (80)

after taking advantage of ∇ · u = 0.
For the dissipation term, it is well-known that∫

R2

(
Λαω

)|ω|p−2ω dx � 0. (81)

This is originally proved in [23], and has later been refined in [8,16].
Taking into account the above “positivity” property and using Hölder’s inequality, we obtain

d

dt
‖ω‖L p � ‖b · ∇ j‖L p � ‖b‖L∞‖∇ j‖L p . (82)

Now as β > 1, we have H1 estimate as in Section 3.1. In particular we have

j ∈ L2(0, T ; Hβ
)
. (83)

Sobolev embedding then gives

j ∈ L2(0, T ; Hβ
) ⇒ ∇ j ∈ L2(0, T ; Lp)

and b ∈ L2(0, T ; L∞)
, (84)
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with p > 1
α satisfying

p � 2

2 − β
when β < 2, and p < ∞ when β � 2. (85)

As α + β > 2, such p exists. Now we have

‖ω‖L p � ‖ω0‖L p +
t∫

0

‖b‖L∞‖∇ j‖L p dτ � ‖ω0‖L p + ‖b‖L2(0,T ;L∞)‖∇ j‖L2(0,T ;L p)

� C(ω0, T ). (86)

Therefore ‖ω‖Lp ∈ L∞(0, T ) and global regularity follows from Lemma 2.

5. Proof of Theorem 1 Case III: α � 2, β = 0

In this section we prove global regularity in the case α � 2, β = 0. As we identify β = 0 with
κ = 0, the GMHD equations now read

ut + u · ∇u = −∇p + b · ∇b − Λ2αu, (87)

bt + u · ∇b = b · ∇u, (88)

∇ · u = ∇ · b = 0. (89)

In what follows we will only present the proof for the case α = 2, β = 0. The case α > 2 can be dealt
with using the idea in Remark 3. In fact it can also be proved following standard energy estimates
similar to that in Section 3, as when α > 2 we immediately have ω ∈ L2(0, T ; L∞). This leads to a
priori H1 bounds which are sufficient to prove a priori H2 bounds.

We will show that when α � 2, the H2 norms of ω and j must stay finite for any T > 0. Once this
is proved, Sobolev embedding immediately gives the finiteness of ‖ω‖L∞ and ‖ j‖L∞ and regularity
follows. The H2 bound is proved by contradiction: Assume lim supt↗T ‖ω‖H2 + ‖ j‖H2 = ∞ for some
finite time T > 0. The idea is to start from a time T0 close enough to T and show that under such
assumption ‖ω‖H2 + ‖ j‖H2 remains uniformly bounded for T0 < t < T , thus reaching a contradiction.

First observe that in this case, energy conservation gives

u,b ∈ L∞(
0, T ; L2), �u ∈ L2(0, T ; L2)

⇒ ∇u,ω ∈ L2(0, T ;BMO) ↪→ L1(0, T ;BMO). (90)

5.1. H1 estimates

Similar to Section 3.1, we have

1

2

d

dt

(‖ω‖2
L2 + ‖ j‖2

L2

) + ‖�ω‖2
L2 �

∣∣∣∣ ∫
R2

T (∇u,∇b) j dx

∣∣∣∣. (91)

Recalling (10)

T (∇u,∇b) = 2∂1b1(∂1u2 + ∂2u1) + 2∂2u2(∂1b2 + ∂2b1) (92)
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and using

‖∇b‖L2 � C‖ j‖L2 , (93)

we have ∣∣∣∣ ∫
R2

jT (∇u,∇b)dx

∣∣∣∣ � C‖∇u‖L∞‖ j‖2
L2 . (94)

This gives

d

dt

(‖ω‖2
L2 + ‖ j‖2

L2

) + 2‖�ω‖2
L2 � C‖∇u‖L∞

(‖ω‖2
L2 + ‖ j‖2

L2

)
. (95)

Here we make use of the following Gronwall-type inequality, which is a variant of the standard Gron-
wall’s inequality as presented in [12, Appendix B.j].

Lemma 3. Let η(·) be a nonnegative, absolutely continuous function on [0, T ], which satisfies for a.e. t the
inequality

η′(t) + ψ(t) � φ(t)η(t), (96)

where φ(t) and ψ(t) are nonnegative, summable functions on [0, T ]. Then

η(t) +
t∫

0

ψ(τ )dτ � η(0)exp

[ t∫
0

φ(τ )dτ

]
. (97)

Proof. The proof follows the same idea as that presented in [12] and is omitted. �
Taking η := ‖ω‖2

L2 +‖ j‖2
L2 and ψ := 2‖�ω‖2

L2 in Lemma 3, then integrating from T0 to t , we obtain

t∫
T0

‖�ω‖2
L2 dτ � ‖ω‖2

L2 + ‖ j‖2
L2 +

t∫
T0

‖�ω‖2
L2 dτ

�
(‖ω0‖2

L2 + ‖ j0‖2
L2

)
exp

[
C

t∫
T0

‖∇u‖L∞(τ )dτ

]
. (98)

Here T0 ∈ (0, T ) will be fixed later and we denote ω0 := ω(·, T0), j0 := j(·, T0).
Now applying the logarithmic inequality (see e.g. [19])

‖∇u‖L∞ � C
(
1 + ‖u‖L2 + ‖ω‖BMO

(
1 + log

(
1 + ‖ω‖2

H2 + ‖ j‖2
H2

)))
(99)

and setting

M(t) := max
τ∈(T ,t)

(‖ω‖2
H2 + ‖ j‖2

H2

)
(τ ) (100)
0
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we reach

t∫
T0

‖�ω‖2
L2 dτ �

(‖ω0‖2
L2 + ‖ j0‖2

L2

)
exp

[
C
(
1 + ‖u‖L2

)]

× exp

[
C

( t∫
T0

‖ω‖BMO dτ

)(
1 + log

(
1 + M(t)

))]
. (101)

Note that thanks to the energy estimate ‖u‖L2 � ‖u(0)‖L2 so exp(C(1 + ‖u‖L2)) is bounded by a
constant independent of T0.

As ‖ω‖BMO ∈ L1(T0, T ), we can take T0 close enough to T so that

C

t∫
T0

‖ω‖BMO dτ � 2δ (102)

for some small positive number δ to be fixed later. With such choice of T0 we have

t∫
T0

‖�ω‖2
L2 dτ � C(T0)

(
1 + M(t)

)2δ
. (103)

Now Hölder’s inequality gives

t∫
T0

‖�ω‖L2 dτ � C(T0)
(
1 + M(t)

)δ
. (104)

Before proceeding, we fix T0 by the following requirements:

C

t∫
T0

‖ω‖BMO dτ � 2δ, log
(
1 + M(T0)

)
> 1. (105)

At the end of Section 5.2 we will show that δ can be taken as 1/24.

5.2. H3 estimate (H2 estimate for ω, j)

In this subsection we prove the uniform boundedness of M(t) for all T0 < t < T , thus reaching
contradiction.

Let ∂2 denote any double partial derivative (such as ∂12, ∂11 etc.). Taking ∂2 of (8) and (9) and
multiplying the resulting equations by ∂2ω and ∂2 j respectively, we reach, after using ∇ ·u = ∇ ·b = 0,

1

2

d

dt

∫
R2

[(
∂2ω

)2 + (
∂2 j

)2]
dx � A + B + C + D + E −

∫
R2

(�∂2ω
)2

dx, (106)

with
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A =
∣∣∣∣ ∫
R2

[
∂2(u · ∇ω) − u · ∇∂2ω

](
∂2ω

)
dx

∣∣∣∣
�

∫
R2

∣∣∇2u
∣∣|∇ω|∣∣∇2ω

∣∣ dx +
∫
R2

|∇u|∣∣∇2ω
∣∣2

dx; (107)

B =
∣∣∣∣ ∫
R2

[
∂2(b · ∇ j) − b · ∇∂2 j

](
∂2ω

)
dx

∣∣∣∣
�

∫
R2

∣∣∇2b
∣∣|∇ j|∣∣∇2ω

∣∣ dx +
∫
R2

|∇b|∣∣∇2 j
∣∣∣∣∇2ω

∣∣ dx; (108)

C =
∣∣∣∣ ∫
R2

[
∂2(u · ∇ j) − u · ∇(

∂2 j
)](

∂2 j
)

dx

∣∣∣∣
�

∫
R2

∣∣∇2u
∣∣|∇ j|∣∣∇2 j

∣∣dx +
∫
R2

|∇u|∣∣∇2 j
∣∣2

dx; (109)

D =
∣∣∣∣ ∫
R2

[
∂2(b · ∇ω) − b · ∇(

∂2ω
)](

∂2 j
)

dx

∣∣∣∣
�

∫
R2

∣∣∇2b
∣∣|∇ω|∣∣∇2 j

∣∣dx +
∫
R2

|∇b|∣∣∇2ω
∣∣∣∣∇2 j

∣∣dx; (110)

E =
∣∣∣∣ ∫
R2

∂2T (∇u,∇b)
(
∂2 j

)
dx

∣∣∣∣
�

∫
R2

∣∣∇3u
∣∣|∇b|∣∣∇2 j

∣∣dx +
∫
R2

∣∣∇2u
∣∣∣∣∇2b

∣∣∣∣∇2 j
∣∣dx +

∫
R2

|∇u|∣∣∇3b
∣∣∣∣∇2 j

∣∣dx. (111)

Adding up all such partial derivatives, we obtain

d

dt

(∥∥∇2ω
∥∥2

L2 + ∥∥∇2 j
∥∥2

L2

)
� C(I1 + I2 + I3 + I4 + I5 + I6) − 2

∥∥∇4ω
∥∥2

L2 , (112)

with

I1 =
∫
R2

∣∣∇2u
∣∣|∇ω|∣∣∇2ω

∣∣ dx; (113)

I2 =
∫
R2

|∇u|∣∣∇2ω
∣∣2

dx +
∫
R2

|∇u|∣∣∇2 j
∣∣2

dx +
∫
R2

|∇u|∣∣∇3b
∣∣∣∣∇2 j

∣∣dx; (114)

I3 =
∫

2

∣∣∇2b
∣∣|∇ j|∣∣∇2ω

∣∣ dx; (115)
R
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I4 =
∫
R2

|∇b|∣∣∇2 j
∣∣∣∣∇2ω

∣∣ dx +
∫
R2

∣∣∇3u
∣∣|∇b|∣∣∇2 j

∣∣dx; (116)

I5 =
∫
R2

∣∣∇2u
∣∣|∇ j|∣∣∇2 j

∣∣dx; (117)

I6 =
∫
R2

∣∣∇2b
∣∣|∇ω|∣∣∇2 j

∣∣dx +
∫
R2

∣∣∇2u
∣∣∣∣∇2b

∣∣∣∣∇2 j
∣∣dx. (118)

We remark that the integrals in each Ik can be estimated similarly, therefore in the following we only
show how to estimate the first integral in each Ik .

• I1. For I1 we write

I1 �
∥∥∇2u

∥∥
L4‖∇ω‖L4

∥∥∇2ω
∥∥

L2

� C‖∇ω‖2
L4

∥∥∇2ω
∥∥

L2

� C‖u‖L2

∥∥∇4ω
∥∥

L2

∥∥∇2ω
∥∥

L2 , (119)

where we have used the following Gagliardo–Nirenberg inequality

‖∇ω‖L4 � C‖u‖1/2
L2

∥∥∇4ω
∥∥1/2

L2 . (120)

Now by Young’s inequality we have, after using ‖u‖L2 � ‖u0‖L2 ,

I1 � C(ε)‖u‖2
L2

∥∥∇2ω
∥∥2

L2 + ε
∥∥∇4ω

∥∥2
L2 � C(ε)

∥∥∇2ω
∥∥2

L2 + ε
∥∥∇4ω

∥∥
L2 , (121)

with ε as small as necessary.

• I2. We have∫
R2

|∇u|∣∣∇2ω
∣∣2

dx � ‖∇u‖L∞
∥∥∇2ω

∥∥2
L2

� C
(
1 + ‖u‖L2 + ‖ω‖BMO

(
1 + log

(
1 + ‖ω‖2

H2 + ‖ j‖2
H2

)))∥∥∇2ω
∥∥2

L2

� C
(
1 + ‖ω‖BMO

(
1 + log

(
1 + ‖ω‖2

H2 + ‖ j‖2
H2

)))∥∥∇2ω
∥∥2

L2 , (122)

where we have used the logarithmic inequality (99).

• I3. We have ∫
R2

∣∣∇2b
∣∣|∇ j|∣∣∇2ω

∣∣ dx �
∥∥∇2b

∥∥
L4‖∇ j‖L4

∥∥∇2ω
∥∥

L2

� C‖∇ j‖2
L4

∥∥∇2ω
∥∥

L2

� C‖b‖1/3
L2

∥∥∇2 j
∥∥5/3

L2

∥∥∇2ω
∥∥

L2 , (123)
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where we have used the following Gagliardo–Nirenberg inequality

‖∇ j‖L4 � C‖b‖1/6
L2

∥∥∇2 j
∥∥5/6

L2 . (124)

As a consequence (recall the definition of M(t) in (100))

I3 � C
∥∥∇2ω

∥∥
L2 M(t)5/6. (125)

Here we have used the energy conservation ‖b‖L2 � ‖b0‖L2 + ‖u0‖L2 .

• I4. We have ∫
R2

|∇b|∣∣∇2 j
∣∣∣∣∇2ω

∣∣ dx � ‖∇b‖L∞
∥∥∇2 j

∥∥
L2

∥∥∇2ω
∥∥

L2

� C‖b‖1/3
L2

∥∥∇2 j
∥∥5/3

L2

∥∥∇2ω
∥∥

L2 , (126)

where we have used the following Gagliardo–Nirenberg inequality

‖∇b‖L∞ � C‖b‖1/3
L2

∥∥∇2 j
∥∥2/3

L2 . (127)

Therefore

I4 � C
∥∥∇2ω

∥∥
L2 M(t)5/6. (128)

• I5. We have

I5 =
∫
R2

∣∣∇2u
∣∣|∇ j|∣∣∇2 j

∣∣dx

�
∥∥∇2u

∥∥
L4‖∇ j‖L4

∥∥∇2 j
∥∥

L2

� C‖u‖1/6
L2

∥∥∇2ω
∥∥5/6

L2 ‖b‖1/6
L2

∥∥∇2 j
∥∥11/6

L2 , (129)

where we have used the following Gagliardo–Nirenberg inequalities∥∥∇2u
∥∥

L4 � C‖u‖1/6
L2

∥∥∇2ω
∥∥5/6

L2 ; ‖∇ j‖L4 � C‖b‖1/6
L2

∥∥∇2 j
∥∥5/6

L2 . (130)

Hence

I5 � C
∥∥∇2ω

∥∥5/6
L2 M(t)11/12 � C

(
1 + ∥∥∇2ω

∥∥
L2

)
M(t)11/12. (131)

• I6. We have ∫
R2

∣∣∇2b
∣∣|∇ω|∣∣∇2 j

∣∣dx �
∥∥∇2b

∥∥
L4‖∇ω‖L4

∥∥∇2 j
∥∥

L2

� C‖∇ j‖L4‖∇ω‖L4

∥∥∇2 j
∥∥

L2

� ‖b‖1/6
L2 ‖u‖1/6

L2

∥∥∇2ω
∥∥5/6

L2

∥∥∇2 j
∥∥11/6

L2 , (132)
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where we have used the following Gagliardo–Nirenberg inequalities

‖∇ω‖L4 � C‖u‖1/6
L2

∥∥∇2ω
∥∥5/6

L2 ; ‖∇ j‖L4 � C‖b‖1/6
L2

∥∥∇2 j
∥∥5/6

L2 . (133)

Hence

I6 � C
∥∥∇2ω

∥∥5/6
L2 M(t)11/12 � C

(
1 + ∥∥∇2ω

∥∥
L2

)
M(t)11/12. (134)

Summarizing, we have

d

dt

(∥∥∇2ω
∥∥2

L2 + ∥∥∇2 j
∥∥2

L2

)
� C(T0)

[
M(t) + (

1 + ∥∥∇2ω
∥∥

L2

)
M(t)11/12

+ ‖ω‖BMO M(t) log
(
1 + M(t)

)]
. (135)

Using our assumption on T0 (105) and the monotonicity of M(t), we have log(1 + M(t)) > 1 and
therefore

d

dt

(∥∥∇2ω
∥∥2

L2 + ∥∥∇2 j
∥∥2

L2

)
� C(T0)

[(
1 + ∥∥∇2ω

∥∥
L2

)
M(t)11/12

+ (
1 + ‖ω‖BMO

)
M(t) log

(
1 + M(t)

)]
. (136)

Integrating, we have

M(t) � C(T0)

[
M0 +

( t∫
T0

(
1 + ∥∥∇2ω

∥∥
L2

)
dτ

)
M(t)11/12

+
t∫

T0

[(
1 + ‖ω‖BMO

)
M(τ ) log

(
1 + M(τ )

)]
dτ

]
, (137)

with M0 := ‖ω‖2
H2(T0) + ‖ j‖2

H2(T0).
Now taking δ = 1/24, we have

t∫
T0

(
1 + ∥∥∇2ω

∥∥
L2

)
dτ � C(T0)

(
1 + M(t)

)1/24
, (138)

which leads to

M(t) � C(T0)

[
M0 + M(t)11/12(1 + M(t)

)1/24

+
t∫

T0

[(
1 + ‖ω‖BMO

)
M(τ ) log

(
1 + M(τ )

)]
dτ

]
. (139)

This in turn gives
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1 + M(t) � C(T0)

[
(1 + M0) + (

1 + M(t)
)23/24

+
t∫

T0

[(
1 + ‖ω‖BMO

)(
1 + M(τ )

)
log

(
1 + M(τ )

)]
dτ

]
. (140)

Now we set N(t) := (1 + M(t))1/24, N0 := (1 + M0)
1/24 and divide both sides by (1 + M(t))23/24, using

the monotonicity of M(t) we reach

N(t) � C(T0)

[
(1 + N0) +

t∫
T0

(
1 + ‖ω‖BMO

)
N(τ ) log

(
N(τ )

)
dτ

]
. (141)

Application of the standard Gronwall’s inequality now gives the following bound of N

N(t) �
[
C(T0)(1 + N0)

]exp[C(T0)
∫ t

T0
(1+‖ω‖BMO) dτ ]

, (142)

which gives

M(t) �
[
C(T0)(1 + N0)

]24 exp[C(T0)
∫ t

T0
(1+‖ω‖BMO) dτ ]

. (143)

Since
∫ t

T0
‖ω‖BMO(τ )dτ remains bounded as t ↗ T , (143) contradicts our assumption that M(t) ↗ ∞

as t ↗ T and ends the proof.

5.3. Hk estimate

As we have already proved that the H2 norms of ω and j have to remain bounded as t ↗ T ,
thanks to the embedding H2 ↪→ L∞ in R

2, we have

ω, j ∈ L∞(
0, T ; L∞)

(144)

as a result of the argument in Sections 5.1 and 5.2. The Hk estimate and global regularity is now a
simple consequence of the BKM-type criterion in [2].

6. Global regularity when the magnetic lines are smooth

This section proves Theorem 2, which states that the system

ut + u · ∇u = −∇p + b · ∇b, (145)

bt + u · ∇b = b · ∇u − Λ2βb, (146)

∇ · u = ∇ · b = 0, (147)

with β > 1 and (u0,b0) ∈ Hk for some k > 2, is globally regular if b̂ := b
|b| ∈ L∞(0, T ; W 2,∞).

Proof of Theorem 2. As β > 1, following Lemma 1 we already have H1 estimate which in particular
gives
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j ∈ L2(0, T ; Hβ
)
↪→ L2(0, T ; L∞)

(148)

since Hβ ↪→ L∞ . Thanks to the BKM-type criteria in [2], all we need to prove is that ω ∈ L1(0, T ; L∞).
For a proof of ω ∈ L1(0, T ; L∞), let us examine the vorticity equation

ωt + u · ∇ω = ∇⊥ · (b · ∇b), (149)

where the “forcing” term has been given in its raw form instead of b · ∇ j for the very purpose of this
proof. By writing

b = b̂|b| (150)

and using the divergence free condition ∇ · b = 0, we have

b̂ · ∇|b| = −(∇ · b̂)|b|. (151)

It follows that

b · ∇b = |b|[b̂ · ∇(
b̂|b|)] = [

b̂ · ∇b̂ − (∇ · b̂)b̂
]|b|2. (152)

Therefore the vorticity equation can be written as

ωt + u · ∇ω = ∇⊥ · {[b̂ · ∇b̂ − (∇ · b̂)b̂
]|b|2} = A(x, t)|b|2 + B(x, t) · (b · ∇⊥b

)
, (153)

where

A(x, t) = ∇⊥ · [b̂ · ∇b̂ − (∇ · b̂)b̂
]
, B(x, t) = b̂ · ∇b̂ − (∇ · b̂)b̂. (154)

As b̂ ∈ W 2,∞ by our assumption, we readily deduce that

A(x, t), B(x, t) ∈ L∞(
0, T ; L∞)

. (155)

Now since β > 1, the earlier estimates in H1 mean

j ∈ L2(0, T ; Hβ
) ⇒ ∇b ∈ L2(0, T ; Hβ

) ⇒ ∇b ∈ L2(0, T ; L∞)
. (156)

It follows that

|b|2,b · ∇⊥b ∈ L1(0, T ; L∞)
. (157)

Putting things together, we see that

ωt + u · ∇ω = F (x, t) := A(x, t)|b|2 + B(x, t) · (b · ∇⊥b
)
, (158)

with F (x, t) ∈ L1(0, T ; L∞). Since we are dealing with smooth solutions here, this immediately leads
to

ω ∈ L∞(
0, T ; L∞)

↪→ L1(0, T ; L∞)
(159)

and the proof is completed. �
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Remark 6. For solutions not smooth enough, we can argue as follows. First note that j ∈ L2(0, T ; Hβ)

implies ∇b ∈ L2(0, T ; Lq) for any q, and furthermore ‖∇b‖L2(0,T ;Lq) is uniformly bounded in q. Conse-
quently F ∈ L1(0, T ; Lq) for any q with uniformly bounded norms. Now we multiply the equation by
|ω|p−2ω and integrate. After simplification we get

d

dt
‖ω‖p

L p � p

∣∣∣∣ ∫
R2

F (x, t)|ω|p−2ω dx

∣∣∣∣ � p‖F‖L p ‖ω‖p−1
Lp , (160)

which implies

d

dt
‖ω‖L p � ‖F‖L p . (161)

This gives a uniform bound on ‖ω‖Lp and consequently a bound on ‖ω‖L∞ .
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