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We study incompressible magnetohydrodynamic turbulence in both two and three dimensions, with an emphasis
on the number of degrees of freedom N . This number is estimated in terms of the magnetic Prandtl number
Pr, kinetic Reynolds number Re, and magnetic Reynolds number Rm. Here Re and Rm are dynamic in nature,
defined in terms of the kinetic and magnetic energy dissipation rates (or averages of the velocity and magnetic
field gradients), viscosity and magnetic diffusivity, and the system size. It is found that for the two-dimensional
case, N satisfies N � Pr Re3/2 + Rm3/2 for Pr > 1 and N � Re3/2 + Pr−1 Rm3/2 for Pr � 1. In three dimensions,
on the other hand, N satisfies N � (Pr Re3/2 + Rm3/2)3/2 for Pr > 1 and N � (Re3/2 + Pr−1 Rm3/2)3/2 for Pr � 1.
In the limit Pr → 0, Re3/2 dominates Pr−1 Rm3/2, and the present estimate for N appropriately reduces to Re9/4

as in the case of usual Navier-Stokes turbulence. For Pr ≈ 1, our results imply the classical spectral scaling of the
energy inertial range and dissipation wave number (in the form of upper bounds). These bounds are consistent
with the existing predictions in the literature for turbulence with or without Alfvén wave effects. We discuss the
possibility of solution regularity, with an emphasis on the two-dimensional case in the absence of either one or
both of the dissipation terms.
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I. INTRODUCTION

In incompressible magnetohydrodynamic (MHD) turbu-
lence, the total (kinetic plus magnetic) energy is conserved
and transferred from large to small scales (direct transfer).
This dynamical behavior is common to both two and three
dimensions (2D and 3D), making MHD turbulence markedly
different from its Navier-Stokes counterpart, for which the
energy transfer reverses direction upon the reduction of dimen-
sions from three to two. The reason for this difference is that the
dimension reduction removes the vortex stretching mechanism
in both cases, but retains the magnetic stretching mechanism
in the MHD case. Furthermore, the Lorentz force, which is
quadratic in the magnetic field, can act as a strong vorticity
source. In the absence of vortex stretching, this force, together
with the magnetic stretching mechanism, can maintain certain
nonlinear aspects in the dynamics of 2D MHD turbulence. As a
consequence, upon dimension reduction, 2D MHD turbulence
can remain nonlinear, whereas 2D Navier-Stokes turbulence
effectively becomes linearized [1,2]. Hence, it is not surprising
that the energy of 2D MHD turbulence is transferred to small
scales as is the case in its 3D parent system. This direct transfer
of the total energy has been well documented by numerical
simulations and observational data [3–6], although the energy
spectrum in the inertial range by which this transfer takes
place may [4,6] or may not [6–8] be the classical k−5/3 of
Kolmogorov. In addition to the direct energy transfer, the
variance of the 2D magnetic potential is transferred from small
to large scales [9–11].

Given the direct energy transfer by quadratic nonlinearity
and small enough viscosity and magnetic diffusivity, classical
arguments on the basis of Kolmogorov’s phenomenology are
applicable to both 2D and 3D MHD turbulence (see, however,
Refs. [7,8,12,13] for modifications to Kolmogorov’s theory).
Recently, several studies [1,14–17] have used a dynamical

systems approach as an alternative to the classical method,
recovering consistent results in the form of estimates. These
include the system’s number of degrees of freedom, the
slope of the energy spectrum in the inertial range, and the
dissipation wave number. An advantage of the new approach
is that the derived estimates are rigorous and valid whenever
the dynamical quantities involved can be fully controlled.
Another advantage is that the new approach can handle systems
to which Kolmogorov’s phenomenological method fails to
apply. These include, for example, the Burgers equation [15]
and systems having a credible possibility that the energy
dissipation rate depends on viscosity and vanishes in the
inviscid limit [16]. Such a possibility is consistent with
the existing numerical results for surface quasigeostrophic
turbulence [18,19], suggesting no finite-time singularities in
the inviscid dynamics.

In this study, we extend the results of Refs. [1,14–17]
to incompressible MHD turbulence in both 2D and 3D. It
is found that for 3D, the number of degrees of freedom
N satisfies N � (Pr Re3/2 + Rm3/2)3/2 for Pr > 1 and N �
(Re3/2 + Pr−1 Rm3/2)3/2 for Pr � 1. Here Pr is the magnetic
Prandtl number and Re and Rm are the kinetic and magnetic
Reynolds numbers, respectively. These Reynolds numbers are
defined in terms of averages of the velocity and magnetic
field gradients (or energy dissipation-like rates), viscosity
and magnetic diffusivity, and the system’s size. For 2D,
N is found to scale as N � Pr Re3/2 + Rm3/2 for Pr > 1
and N � Re3/2 + Pr−1 Rm3/2 for Pr � 1, where the Reynolds
numbers are defined in a more conventional way using the
actual energy dissipation rates. For Pr ≈ 1, these results
imply the upper bound α � 5/3 for the exponent α of the
power-law energy spectrum k−α in the inertial range. The
bound α � 5/3 is sharp, provided that the estimates for N are
optimal. For α = 5/3, we recover the well-known Kolmogorov
spectrum and dissipation wave number. When these estimates
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are excessive, the upper bound α � 5/3 still holds but is
no longer sharp. This situation may occur in the following
circumstances. One is the case considered by Iroshnikov [7],
Kraichnan [8], and others [12,13], where strong Alfvén waves
can reduce the energy transfer (suppression of turbulence),
thereby rendering overestimates for N and α. The other is
concerned with the extreme limits of the magnetic Prandtl
number, where the dynamics can change in fundamental ways.
The limit Pr → 0 corresponds to the Navier-Stokes regime,
where Re3/2 is expected to predominate Pr−1 Rm3/2. The above
estimate for N appropriately reduces to N � Re9/4 for 3D, but
excessively reduces to N � Re3/2 for 2D. The limit Pr → ∞
corresponds to the passive advection regime, where Rm3/2 is
expected to predominate Pr Re3/2. In this regime, the estimate
for N becomes excessive for each of the 2D and 3D cases.
We discuss the related issue of solution regularity, with an
emphasis on the 2D case in the absence of either one or both
of the dissipation mechanisms.

II. THEORETICAL BACKGROUND

A. Governing equations and conservation laws

Consider an incompressible electrically conducting fluid
which is under no influence of external field or stirring. The
fluid motion and the evolution of the internally generated
magnetic field are governed by

ut + (u · ∇)u + ∇p = (b · ∇)b + ν�u, (1)

bt + (u · ∇)b = (b · ∇)u + μ�b, (2)

∇ · u = 0 = ∇ · b, (3)

where u(x,t) is the fluid velocity, b(x,t) is the magnetic field
vector, p(x,t) is the total pressure, ν is the viscosity, and μ is
the magnetic diffusivity. For convenience, we consider doubly
and triply periodic domains of size L, and all fields involved
are assumed to have zero average. In Eq. (1), the term (b · ∇)b
represents the Lorentz force, which can act as a strong source
of vorticity. In Eq. (2), the stretching term (b · ∇)u allows
b to be amplified (in the expense of u) by the fluid velocity
gradients. This term survives the reduction of dimensions from
three to two.

The inviscid and diffusionless version of the MHD system
possesses a number of conservation laws. Most important is the
conservation of the total energy density ‖u‖2/2 + ‖b‖2/2 =
〈|u|2〉/2 + 〈|b|2〉/2, where 〈·〉 denotes a spatial average. This
conservation law is a straightforward consequence of the exact
cancellation of the triple-product terms on the right-hand
sides of the following evolution equations for the kinetic and
magnetic energy:

1

2

d

dt
‖u‖2 = 〈u · (b · ∇)b〉 − ν‖∇u‖2, (4)

1

2

d

dt
‖b‖2 = 〈b · (b · ∇)u〉 − μ‖∇b‖2. (5)

The triple-product terms in Eqs. (4) and (5) represent the
conversion from kinetic into magnetic energy (dynamo action)
and vice versa (referred to as antidynamo action in this study).
These processes have become major research subjects [20–22]

for their importance in flows in the liquid core of the earth,
in the sun and stars, and in the interplanetary medium. In
general, dynamo and antidynamo play crucial roles in the
energy transfer. In particular, as vorticity amplification by
vortex stretching is absent in 2D, dynamo action is a priori
responsible for ridding the large scales of kinetic energy, which
would otherwise undergo an inverse transfer. This makes
the direct energy transfer in 2D different from that in 3D
in fundamental ways. Hence, to fully understand 2D MHD
turbulence, a detailed knowledge of dynamo and antidynamo
action is absolutely necessary. Other well-known invariants
include the magnetic helicity 〈a · b〉, where a is the magnetic
vector potential, and cross helicity 〈u · b〉. The latter, together
with the conservation of total energy, further implies the
conservation of 〈|Z±|2〉, where Z± = u ± b are known as the
Elsässer variables, which can be more conveniently used in
the study of Alfvén waves.

For a smooth solution with initial condition (u,b) =
(u0,b0), the decay of energy is governed by

1

2

d

dt
(‖u‖2 + ‖b‖2) = −ν‖∇u‖2 − μ‖∇b‖2

= −εu − εb = −ε. (6)

It follows that∫ ∞

0
ε(t) dt = 1

2
(‖u0‖2 + ‖b0‖2). (7)

The energy dissipation rates εu(t) (kinetic), εb(t) (magnetic),
and ε(t) (total) are key dynamical parameters, and their
detailed behavior is an issue of fundamental importance. Given
(u0,b0), these rates depend on ν and μ, and in the spirit of
Kolmogorov, remain bounded for all ν and μ, including the
limits ν → 0 and μ → 0 taken simultaneously or individually.
Here, we are primarily concerned with their instantaneous
values for ν > 0 and μ > 0, and any assumptions on their
asymptotic behavior, if necessary, will be stated in due course.

B. Preliminary estimates

Let Sn = {e1,e2, . . . ,en} be an orthonormal set of periodic
and zero average vector-valued functions of space variables
x = (x,y) or x = (x,y,z). Here ei = (e1

i ,e
2
i ), where both

e1
i and e2

i are vector fields in 2D or 3D. In other words,
the ei’s are four-vectors and six-vectors for 2D and 3D,
respectively. Orthonormality means that 〈ei · ej 〉 = 〈e1

i · e1
j +

e2
i · e2

j 〉 = δij , where δij is the Kronecker delta symbol. For
the present application, we also assume ∇ · e1

i = 0 = ∇ · e2
i .

The norms of ei and of its gradients are defined by ‖ei‖ =
(‖e1

i ‖2 + ‖e2
i ‖2)1/2 and ‖∇ei‖ = (‖∇e1

i ‖2 + ‖∇e2
i ‖2)1/2. For

the periodic domains of size L under consideration, the
eigenvalues of −� of the first n basic Fourier modes sum up to
approximately n2/L2 and n5/3/L2 for 2D and 3D, respectively.
The Rayleigh-Ritz principle implies that

n∑
i=1

‖∇ei‖2 � c1
n2

L2
for 2D, (8)

n∑
i=1

‖∇ei‖2 � c2
n5/3

L2
for 3D, (9)
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where c1 and c2 are nondimensional constants independent of
the given sets and of their size n. On the other hand, we have
the Lieb-Thirring inequalities [16,17,23–25]∥∥∥∥∥

n∑
i=1

|ei |2
∥∥∥∥∥ � c3L

(
n∑

i=1

‖∇ei‖2

)1/2

for 2D, (10)

∥∥∥∥∥
n∑

i=1

|ei |2
∥∥∥∥∥ � c4L

3/2

(
n∑

i=1

‖∇ei‖2

)3/4

for 3D, (11)

where c3 and c4 are nondimensional constants, which are, as c1

and c2, independent of the given sets and of their size n. Except
possibly for Eq. (11), which has been given for completeness
and for comparison, the analytic estimates (8), (9), and (10)
have been known to provide sharp estimates in their appli-
cation to fluid turbulence. These are used in the subsequent
sections to derive bounds for the number of degrees of
freedom N .

III. LYAPUNOV STABILITY ANALYSIS AND NUMBER
OF DEGREES OF FREEDOM

This section is concerned with the problem of Lyapunov
stability, from which the notion of number of degrees of free-
dom arises and its estimates can be deduced. The mathematical
framework is similar to that in recent studies [1,14–16] on the
same problem for other dynamical systems, differing only in
minor details.

In the early 1980s, a rigorous notion of the number of
degrees of freedom of turbulence emerged from dynamical
systems theory. For a regular forced-dissipative dynamical
system, solutions starting from bounded initial conditions
can asymptotically approach a universal set in phase space
(solution space). Such a set is known as a global attractor,
which is invariant and represents the system’s dynamical
behavior in the long term. In general, an attractor is fractal and
has finite generalized dimensions, such as the Kaplan-Yorke,
Hausdorff, and box-counting dimensions. In the context of
an infinite-dimensional dynamical system, these dimensions
are virtually indistinguishable, and any one of them can
represent the number of degrees of freedom of the system
in question. Several authors have calculated these dimensions
for fluid systems such as the 2D Navier-Stokes and MHD
equations (cf. Ref. [25] and references therein), for which
the existence of global attractors has been well established.
Similar calculations have also been carried out for hypothetical
attractors of other fluid equations, most notably the 3D
Navier-Stokes equations [26,27], whose solution regularity is
unknown.

For unforced-dissipative systems, the concept of an attrac-
tor is irrelevant since the asymptotic dynamics are trivial.

Nevertheless, the notion of the number of degrees of freedom
remains meaningful for the transient dynamics. For a given
solution at a given time, Tran and Blackbourn [14] identified
this number with the dimension of the subspace spanned by a
sufficiently large number of least Lyapunov stable modes of
the system linearized about the solution in question. Here,
“sufficiently large” means that the sum of the Lyapunov
exponents of these modes becomes negative. This formulism
applies to (regular) solutions on the global attractors of forced
systems, as well as to solutions of a general system whose
global regularity is unknown. For the present case, the problem
of Lyapunov stability and number of degrees of freedom is
formulated and further explained.

A. Lyapunov versus Fourier

Given the solution (u,b) starting from some smooth initial
condition (u0,b0), consider an admissible disturbance (u′,b′)
[i.e., one satisfying the same conditions as (u,b)]. The linear
evolution of this disturbance is governed by

u′
t + (u · ∇)u′ + (u′ · ∇)u + ∇p′

= (b · ∇)b′ + (b′ · ∇)b + ν�u′, (12)

b′
t + (u · ∇)b′ + (u′ · ∇)b

= (b · ∇)u′ + (b′ · ∇)u + μ�b′, (13)

where p′ is the perturbed pressure. By multiplying Eq. (12)
by u′ and Eq. (13) by b′ and taking the spatial average of
the resulting equations we obtain the equations governing the
evolution of ‖u′‖2 and ‖b′‖2. These equations are given by

1

2

d

dt
‖u′‖2 = −〈u′ · (u′ · ∇)u〉 + 〈u′ · (b · ∇)b′〉

+ 〈u′ · (b′ · ∇)b〉 − ν‖∇u′‖2, (14)

1

2

d

dt
‖b′‖2 = −〈b′ · (u′ · ∇)b〉 + 〈b′ · (b · ∇)u′〉

+ 〈b′ · (b′ · ∇)u〉 − μ‖∇b′‖2. (15)

Adding up Eqs. (14) and (15), noting the cancellation of two of
the triple-product terms and the notation ‖(u′,b′)‖ = (‖u′‖2 +
‖b′‖2)1/2 yields

‖(u′,b′)‖ d

dt
‖(u′,b′)‖

= 〈b′ · (b′ · ∇)u〉 − 〈b′ · (u′ · ∇)b〉 + 〈u′ · (b′ · ∇)b〉
− 〈u′ · (u′ · ∇)u〉 − ν‖∇u′‖2 − μ‖∇b′‖2. (16)

The exponential growth or decay rate λ of ‖(u′,b′)‖ is
given by

λ = 1

‖(u′,b′)‖
d

dt
‖(u′,b′)‖

= 〈b′ · (b′ · ∇)u〉 − 〈u′ · (u′ · ∇)u〉 + 〈u′ · (b′ · ∇)b〉 − 〈b′ · (u′ · ∇)b〉 − ν‖∇u′‖2 − μ‖∇b′‖2

‖(u′,b′)‖2
. (17)

066323-3



CHUONG V. TRAN AND XINWEI YU PHYSICAL REVIEW E 85, 066323 (2012)

An orthonormal set of n least stable disturbances
{(u1,b1),(u2,b2), . . . ,(un,bn)} and the corresponding greatest
growth rates {λ1,λ2, . . . ,λn} (local Lyapunov exponents) can
be derived by successively maximizing λ with respect to
all admissible disturbances (u′,b′) subject to the following
orthonormality constraint. At each step i in the process,
(u′,b′) is required to satisfy both ‖(u′,b′)‖ = 1 and 〈(u′,b′) ·
(uj ,bj )〉 = 0, for j = 1,2, . . . ,i − 1, where (uj ,bj ) is the
maximizer obtained at the j th step. This process eventually
exhausts all unstable mutually orthogonal disturbances and
reaches the stable regime where λi < 0. It follows that there
exists an integer N satisfying

N∑
i=1

λi � 0 <

N−1∑
i=1

λi. (18)

The orthonormal set {(u1,b1),(u2,b2), . . . ,(uN,bN )} then con-
sists of all unstable modes and a number of stable modes,
which can adequately describe the solution (u,b) at least
locally in time. In other words, the N -dimensional linear
subspace spanned by the N -dimensional “Lyapunov basis”
{(u1,b1),(u2,b2), . . . ,(uN,bN )} adequately “accommodates”
the solution. Indeed, in principle, one can formally express
(u,b) in terms of this basis (instead of the Fourier modes) as

(u,b) ≈
N∑

i=1

ρi(t)(ui ,bi), (19)

with the assurance that the “truncation” mode (uN,bN ) lies
well within the dissipation range (negative and large Lyapunov

exponent). For this obvious reason, N can represent the
system’s number of degrees of freedom.

Estimates for individual λi and for N for 3D Navier-
Stokes turbulence were first derived by Ruelle [28] and then
improved by Lieb [29]. These pioneering studies, together
with that of Babin and Vishik [30], triggered a series
of investigations lasting for nearly two decades into the
attractor dimension of the Navier-Stokes equations. Ruelle’s
formulation made use of the notion of invariant measure and
its properties. Here, this technical detail is unnecessary and
can be circumvented, by allowing the Lyapunov basis and
the associated set of exponents to depend on the solution
and time. The time dependence is largely immaterial for our
purposes and can be removed. Indeed, by considering a general
solution at an arbitrary time, we derive in the next section
upper bounds for N in terms of physical parameters and
time-dependent dynamical quantities of the given solution.
These bounds are globally valid as far as regular solutions
are concerned. Furthermore, they can be readily made valid
uniformly in time when the time-dependent dynamical quan-
tities involved are replaced by their uniform-in-time upper
bounds whose existence is guaranteed for 2D and is assumed
for 3D.

B. Estimates for number of degrees of freedom

Consider n normalized solutions [λi,(ui ,bi)] of the lin-
earized problem discussed in the preceding section. Since each
solution satisfies Eq. (17), we have

n∑
i=1

λi =
n∑

i=1

[〈bi · (bi · ∇)u〉 − 〈bi · (ui · ∇)b〉 + 〈ui · (bi · ∇)b〉 − 〈ui · (ui · ∇)u〉 − ν‖∇ui‖2 − μ‖∇bi‖2]

�
n∑

i=1

[〈(|ui |2 + |bi |2)|∇u|〉 + 2〈|ui‖bi‖∇b|〉 − ν‖∇ui‖2 − μ‖∇bi‖2
]

�
n∑

i=1

[〈(|ui |2 + |bi |2)(|∇u| + |∇b|)〉 − ν‖∇ui‖2 − μ‖∇bi‖2
]
, (20)

where the inequalities are elementary. The above estimate is
applicable to both 2D and 3D. We proceed to treat these cases
separately.

For 3D, we follow the treatment of 3D Navier-Stokes
turbulence in Ref. [1] by defining two spatial average quantities
	 and I by

	 = 1

n

n∑
i=1

〈bi · (bi · ∇)u − ui · (ui · ∇)u〉

� 1

n

n∑
i=1

〈(|ui |2 + |bi |2)|∇u|〉,

I = 1

n

n∑
i=1

〈ui · (bi · ∇)b − bi · (ui · ∇)b〉

� 1

n

n∑
i=1

〈(|ui |2 + |bi |2)|∇b|〉. (21)

By their very definition, 	 and I satisfy 	 � ‖∇u‖∞ and I �
‖∇b‖∞ since ‖(ui ,bi)‖ = 1. It is probably the case that 	 ≈
‖∇u‖ and I ≈ ‖∇b‖, even for fully developed turbulence at
small ν and μ, for which one can expect ‖∇u‖ 	 ‖∇u‖∞ and
‖∇b‖ 	 ‖∇b‖∞ (see the discussion below). Substituting 	

and I into Eq. (20) yields

n∑
i=1

λi = n(	 + I ) −
n∑

i=1

(ν‖∇ui‖2 + μ‖∇bi‖2)

� n(	 + I ) − min{ν,μ}
n∑

i=1

‖(∇ui ,∇bi)‖2

� n(	 + I ) − min{ν,μ} c2n
5/3

L2
, (22)

where, in the final step, Eq. (9) with ei replaced by
(ui ,bi) has been used. The condition

∑n
i=1 λi � 0 is satisfied
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when

	 + I � min{ν,μ} c2n
2/3

L2
. (23)

It follows that

N2/3 � L2

min{ν,μ} (	 + I ), (24)

where the constant c2 has been omitted. We define the kinetic
and magnetic Reynolds numbers Re and Rm by

Re = L4/3ε′
u

1/3

ν
= L4/3(ν	2)

1/3

ν
, (25)

Rm = L4/3ε′
b

1/3

μ
= L4/3(μI 2)

1/3

μ
, (26)

where ε′
u = ν	2 and ε′

b = μI 2 are kinetic and magnetic
energy dissipation-like rates, which, as mentioned earlier, are

expected to approximate their corresponding actual dissipation
rates. In terms of Re and Rm Eq. (24) becomes

N � (Pr Re3/2 + Rm3/2)3/2 for Pr > 1,

N � (Re3/2 + Pr−1Rm3/2)3/2 for Pr � 1. (27)

Here again Pr = ν/μ is the magnetic Prandtl number.
For 2D, one could proceed as above until the final step

of Eq. (22), upon which Eq. (8) would be invoked to yield∑n
i=1 λi � (	 + I ) − c1 min{ν,μ}n/L2. From this estimate,

it is easy to see that N satisfies Eq. (27) with the overall
exponent 3/2 removed. However, it turns out that equally
optimal bounds in terms of ‖∇u‖ and ‖∇b‖ instead of 	 and I

can be obtained by utilizing the Lieb-Thirring inequality. The
detailed steps leading to these bounds are described in what
follows.

Recalling the final equation of Eq. (20), we have

n∑
i=1

λi �
n∑

i=1

[〈(|ui |2 + |bi |2)(|∇u| + |∇b|)〉 − ν‖∇ui‖2 − μ‖∇bi‖2
]

�
∥∥∥∥∥

n∑
i=1

|ui |2 + |bi |2
∥∥∥∥∥(‖∇u‖ + ‖∇b‖) −

n∑
i=1

(ν‖∇ui‖2 + μ‖∇bi‖2)

�
∥∥∥∥∥

n∑
i=1

|(ui ,bi)|2
∥∥∥∥∥(‖∇u‖ + ‖∇b‖) − min{ν,μ}

n∑
i=1

‖(∇ui ,∇bi)‖2

�
(

n∑
i=1

‖(∇ui ,∇bi)‖2

)1/2
⎡
⎣c3L(‖∇u‖ + ‖∇b‖) − min{ν,μ}

(
n∑

i=1

‖(∇ui ,∇bi)‖2

)1/2
⎤
⎦

�
(

n∑
i=1

‖(∇ui ,∇bi)‖2

)1/2 (
c3L(‖∇u‖ + ‖∇b‖) − min{ν,μ}c1/2

1

n

L

)
, (28)

where we have used the Cauchy-Schwarz inequality in the
second step, the 2D Lieb-Thirring inequality (10) in the fourth
step, and Eq. (8) in the final step. The condition

∑n
i=1 λi � 0

is satisfied when

n � L2

min{ν,μ} (‖∇u‖ + ‖∇b‖), (29)

where the constants c1 and c3 have been omitted. It follows
that

N � L2

min{ν,μ} (‖∇u‖ + ‖∇b‖). (30)

Let Re and Rm be defined as in Eq. (25), except that 	 and I

are replaced by ‖∇u‖ and ‖∇b‖, respectively. In other words,
ε′

u and ε′
b are, respectively, replaced by the actual dissipation

rates εu and εb. In terms of these more standard Reynolds
numbers, Eq. (30) becomes

N � Pr Re3/2 + Rm3/2 for Pr > 1,

N � Re3/2 + Pr−1Rm3/2 for Pr � 1. (31)

The estimates (27) and (31) can be expected to be sharp for
moderate values of Pr. In the two extreme cases Pr 	 1 and

Pr 
 1, they can become excessive for a number of reasons.
Furthermore, in the Kraichnan picture, they can be excessive
irrespective of the value of Pr. These issues, among other
things, are discussed in the subsequent sections.

C. Discussion

Equations (27) and (31) can be expected on the basis
of existing results in the literature for fluid systems with
quadratic nonlinearities. For the 3D Navier-Stokes and 2D
surface quasigeostrophic systems (which are quadratically
nonlinear) N has previously been found to scale as Re9/4

and Re3/2, respectively. In the former case, Re is defined in
terms of ε′

u = ν	2, where 	 is given by Eq. (21) without
the magnetic component. In the latter case, Re is defined in
terms of εu = ν‖∇θ‖2 = ν‖∇u‖2, where θ is the potential
temperature. The present results are consistent with these
findings as one can expect like contributions to N from the
two types of quadratic nonlinear interactions. It is interesting to
note that the exponents 3/2 and 9/4 of the Reynolds numbers
are characteristic of quadratic nonlinearities in 2D and 3D,
respectively.
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For extreme limits of the magnetic Prandtl number Pr,
the dynamics can change in fundamental ways, and the
estimates (27) and (31) can become excessive. In the regime
Pr 	 1, which can be appropriately called the Navier-Stokes
regime, the magnetic field becomes relatively far more
diffusive and may not be treated on an equal footing with
the velocity field. More precisely, the small scales of the
magnetic field are relatively inactive, so that the Lorentz force
essentially operates at large scales. The quadratic coupling
between u and b becomes crippled at small scales, and the
direct energy transfer is primarily due to the vortex stretching
mechanism alone. As this mechanism is absent in 2D, the
dynamical system is like the usual 2D Navier-Stokes system,
for which N has been known to scale virtually linearly with
the Reynolds number [14]. For 3D, however, the present
treatment remains sound, albeit the magnetic field becomes
largely insignificant. In this case, one expects Pr−1 Rm3/2 to
become negligible compared with Re3/2. In the limit Pr → 0,
Eq. (27) correctly reduces to the result N � Re9/4 for 3D
Navier-Stokes turbulence. Now, for the regime Pr 
 1, which
may be called the passive advection regime, the velocity
field becomes far more diffusive than the magnetic field and
its small scales become relatively inactive. The magnetic
field is effectively advected and stretched by a large-scale
velocity field. This is very much like a linear advection
problem, for which the present analysis is not expected to yield
sharp estimates. This regime is discussed further in the next
section.

The number of degrees of freedom N of a dynamical system
can be considered a measure of its complexity. As far as
complexity generation is concerned, the coupling between the
velocity and magnetic fields complements rather than enhances
the small-scale dynamics of each other. This is reflected
through the fact that Re and Rm are not coupled in the estimates
for N , each making an essentially independent contribution.
An important implication is that the vortex stretching term
and the source term (the curl of the Lorentz force term) in the
vorticity equation do not enhance each other significantly in
their vortex amplification.

The kinetic and magnetic Reynolds numbers Re and Rm
used in this study are dynamic and unconventional. These
nondimensional numbers emerge naturally from our analysis.
There appear to be no obvious relations between Re and Rm
and their conventional counterparts L‖u‖/ν and L‖u‖/μ,
particularly between Rm and L‖u‖/μ. Nonetheless, it is clear
that unless εu (ε′

u) and εb (ε′
b) vanish (or grow without bound)

in the small ν and μ limits, Re and Rm remain asymptotically
the same as the conventional Reynolds numbers. In this case,
our results remain intact when expressed in terms of the
conventional Reynolds numbers.

Finally, there remains the question whether the approxima-
tions 	 ≈ ‖∇u‖ and I ≈ ‖∇b‖ hold in 3D. These approxi-
mations would allow us to replace the nonstandard Reynolds
numbers in Eq. (27) by more standard ones, defined in terms
of ‖∇u‖ and ‖∇b‖. This question is highly challenging.
Nonetheless it appears to be both theoretically and numerically
tractable. On the theoretical side, there exists some evidence
for a positive answer. First, it can be seen that the qualitative
arguments in Ref. [1] in support of the approximation 	 ≈
‖∇u‖ for 3D Navier-Stokes turbulence, where 	 is defined

as in Eq. (21) with bi = 0, can be applied to the present
case. The idea behind these arguments is that weakly unstable
and stable Lyapunov modes may not be strongly spatially
correlated with ∇u, therefore playing a moderating role on
∇u in the spatial average definition of 	, thus giving rise to
the possibility ‖∇u‖ ≈ 	 	 ‖∇u‖∞. Second, we have seen
earlier in this section that for 2D, (	,I ) and (‖∇u‖,‖∇b‖) can
be used interchangeably in the estimation of N , essentially
rendering the same results. The implication is that in 2D,
	 ≈ ‖∇u‖ and I ≈ ‖∇b‖. While the same conclusion may
not be made for 3D without further investigation, there are no
reasons why that should not be the case. On the numerical
side, it appears feasible to (at least) compute the most
unstable mode (u1,b1) and a neutral mode (i.e., one with a
vanishing Lyapunov exponent). These modes are not sufficient
to determine 	 and I with precision, but nonetheless provide
a basis for a quantitative sense of the magnitudes of these
quantities.

IV. ENERGY SPECTRA

We now deduce from the results in the preceding section
constraints on power-law scalings of the energy inertial range.
We consider the case Pr = 1, for which the derived estimates
for N can be sharp, and briefly discuss the regimes Pr 	 1 and
Pr 
 1. Both the 2D and 3D cases are handled simultaneously
since they differ in minor details due to the dependence of N

on (	,I ) for 3D and on (‖∇u‖,‖∇b‖) for 2D.
Consider the Fourier representation of (u,b)

(u,b) =
∑

k

(uk,bk) exp{ik · x}, (32)

where k is the wave vector and uk(t) and bk(t) are the
Fourier transforms of u(x,t) and b(x,t), respectively. The
incompressibility condition requires uk · k = 0 = bk · k while
the reality condition requires (uk,bk) = (u−k,b−k)∗, where
the asterisk denotes the complex conjugate. Let kd be the
dissipation wave number, so that (uk,bk) decays rapidly
(presumably exponentially) for k = |k| > kd . By ignoring the
contribution from the modes in the exponential tail, we can
write

(u,b) ≈
∑
k�kd

(uk,bk) exp{ik · x}. (33)

By comparing Eq. (33) with Eq. (19) we obtain

(u,b) ≈
N∑

i=1

ρi(t)(ui ,bi) ≈
∑
k�kd

(uk,bk) exp{ik · x}. (34)

As in previous studies on Navier-Stokes [1,14] and surface
quasigeostrophic [16] turbulence and Burgers flows [15], N

is assumed to approximate the number of Fourier modes
within the wave number radius kd . This means that the sum
on the right-hand side of Eq. (34) has about N terms. This
assumption is both physically plausible and mathematically
sound. The reason for this is that since volume elements
in the Lyapunov subspace (the space spanned by the above
N -dimensional Lyapunov basis) contract under the dynamics,
all other N -dimensional volume elements do too, including
those in the subspace spanned by the first N Fourier modes.
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Hence this subspace, like its Lyapunov counterpart, is adequate
to accommodate the solutions. In other words, the sum on
the right-hand side of Eq. (34) need not have more than
N terms.

Consider the general power-law energy spectra E(k) =
Ck−α in the inertial range k0 	 k 	 kd , where the dimen-
sional parameter C and the exponent α are to be determined.
For Pr = 1, we have

ε ≈ ν

∫ kd

k0

k2E(k) dk = νC

∫ kd

k0

k2−α dk ≈ νC

3 − α
k3−α
d ,

(35)

where we have assumed α < 3. The number N ′ of Fourier
modes within the wave number radius kd is given by N ′ ≈
(Lkd )2 for 2D and N ′ ≈ (Lkd )3 for 3D. It follows that

N ′ ≈ L2

(
(3 − α)ε

νC

)2/(3−α)

for 2D, (36)

N ′ ≈ L3

(
(3 − α)ε

νC

)3/(3−α)

for 3D. (37)

By comparing N ′ with the derived estimates for N we obtain

ε(
ε

1/2
u + ε

1/2
b

)(3−α)/2 � Cν(3α−5)/4 for 2D, (38)

ε(
ε′1/2

u + ε′1/2
b

)(3−α)/2 � Cν(3α−5)/4 for 3D, (39)

where constant prefactors of order unity have been
omitted.

In the limit ν → 0, the right-hand sides of Eqs. (38) and (39)
vanish if α > 5/3 and diverge if α < 5/3, only remaining
positive and finite for the critical value α = 5/3. This means
that for 2D, spectra steeper than k−5/3 can be ruled out, unless
ε vanishes as a power law of ν. This result holds even if the
estimate for N is excessive. The same conclusion is valid for
3D, provided that ε′

b < ∞ and ε′
b < ∞. Now, if ε remains

bounded and nonzero or vanishes less rapidly than a power law
in ν, then the left-hand sides of Eqs. (38) and (39) remain so
(again for ε′

b < ∞ and ε′
b < ∞ in 3D), thereby requiring

α = 5/3, provided that the estimates for N are optimal.
With α = 5/3, the parameter C is given by C ≈ ε/(ε1/2

u +
ε

1/2
b )2/3 ≈ ε2/3 for 2D (and also for 3D if ε ≈ ε′

u + ε′
b). Hence

we can write E(k) ∝ ε2/3k−5/3, thus recovering the classical
spectrum by the present method. Finally, the regime α < 5/3,
which includes the Iroshnikov and Kraichnan spectrum k−3/2,
is permissible, simply corresponding to excessive estimates for
N . In this picture, strong Alfvén waves undermine nonlinear
effects, giving rise to more stable solutions or equivalently
reducing N . This is consistent with a recent study [16]
suggesting that a reduction in nonlinear effects allows for
shallower spectra to develop.

From C ≈ ε2/3 and α = 5/3, one can immediately deduce
that

kd ∝ ε1/4

ν3/4
, (40)

which is another classical result by Kolmogorov’s phe-
nomenology.

The above calculations and conclusions apply to the special
case Pr = 1 and are expected to hold for moderate Pr. In
the Navier-Stokes regime (i.e., Pr 	 1), this result remains
valid for 3D but not for 2D. For the passive advection
regime (i.e., Pr 
 1), the theory of Batchelor [31], which
predicted the scaling k−1 for the viscous-advective range
between the viscous dissipation wave number and the magnetic
diffusion wave number, is applicable. A rigorous version of this
prediction can be found in Ref. [32].

In passing, we briefly elaborate on the Iroshnikov [7] and
Kraichnan [8] theory, which predicted a k−3/2 inertial range.
This prediction has gained considerable support over the years,
nonetheless, the spectral scaling of the inertial range of MHD
turbulence has always been a matter of debate. Furthermore,
the Iroshnikov and Kraichnan theory has not been widely
accepted without challenge [12,13]. In any case, the k−3/2

spectrum was proposed for turbulence with strong Alfvén
waves and does not contradict our result (and the classical
prediction), which has been derived in broad generalities.
As argued by Kraichnan, strong Alfvén waves can decrease
the energy transfer (suppression of turbulence or reduction of
nonlinear effects), thereby giving rise to his k−3/2 spectrum,
which is slightly shallower than the classical spectrum of
Kolmogorov. A similar turbulence suppression by an external
uniform magnetic field was later considered in detail by
Moffatt [33]. Moffatt’s result is consistent with Kraichnan’s
theory as the turbulence in this theory could be considered
being driven by a strong external magnetic field at large scales.
While detailed numerical studies with high resolutions appear
necessary to determine the precise conditions under which
what spectra become realizable, the case Pr 	 1 discussed
earlier is clearly in favor of the Kolmogorov spectrum. In a
recent study, Beresnyak [4] has demonstrated the realizability
of this spectrum by numerically integrating the governing
equations for Z± with a forcing that provides a constant energy
injection rate at large scales.

V. REGULARITY

Whether the 3D and 2D MHD equations possess global
smooth solutions is one of the outstanding open problems
in mathematical fluid mechanics. Owing to the coupling
between the induction and Navier-Stokes or Euler equations,
mathematical results for the MHD system are often weaker
than those for the Navier-Stokes or Euler equations. Like the
3D Navier-Stokes system, it is not known whether solutions
to the 3D MHD equations starting from smooth initial
conditions remain smooth for all time. For 2D, the answer
to this problem is positive (just like the 2D Navier-Stokes
or surface quasigeostrophic equations). However, unlike the
2D Navier-Stokes case, the global smoothness of solutions
becomes questionable as soon as either ν = 0 or μ = 0, despite
the fact that the presence of a strong magnetic field has
been observed both experimentally and numerically to have
regularizing effects on solutions. This is due to the suppression
of turbulence (reduction of energy transfer) by Alfvén waves
as suggested by the theory of Iroshnikov [7] and Kraichnan [8].
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In any case, it is easy to recognize that the smoothness
of u alone is sufficient for the system’s smoothness since,
once u remains smooth, the magnetic field, being advected
and stretched by the smooth velocity and velocity gradient
fields, must remain smooth also. Therefore the smoothness of
u guarantees that of b and hence of the system as a whole. From
the regularizing effects of the magnetic field discussed above,
one may expect the reverse to hold also, that is, the smoothness
of b leads to the smoothness of u. However, this is not known,
except for the 2D case, which we now discuss in detail. For
simplicity of presentation we consider the case ν = μ = 0,
that is, the ideal MHD system. The same conclusion holds for
more general situations with either ν > 0 or μ > 0, albeit the
proof becomes more involved.

The ideal 2D MHD system can be conveniently written in
the form

ωt + J (ψ,ω) = J (a,�a), (41)

at + J (ψ,a) = 0. (42)

Here ω is the vorticity, ψ the stream function, a the magnetic
potential, and J (·,·) is the Jacobian. Note that a is a materially
conserved quantity whose variance is known to undergo an
inverse transfer. This transfer is in the opposite sense to that
for other scalars (passive or active) and can be understood from
the total energy conservation law. We would like to emphasize
that in 3D no conserved positive-definite quadratic quantity is
known to undergo an inverse transfer.

Now consider a fluid particle trajectory emanating from
x0 at t = 0 and reaching some x at a later time t = T . The
vorticity ω(x,T ) is given in terms of ω0 = ω(x0,0) and the
source term J (a,�a) by

ω(x,T ) = ω0 +
∫ T

0
J (a,�a) dt, (43)

where the integral is along the particle trajectory. Equation (43)
means that if the magnetic field remains smooth up to t =
T [i.e., |J (a,�a)| < ∞ for t � T ] then |ω(x,T )| < ∞. By
the regularity criterion of Caflisch, Klapper, and Steele [34],
which is the MHD analog of the celebrated Beale-Kato-Majda
criterion [35] for the Euler equations, no singularity (of any
type) of the velocity field can develop for t � T . So a smooth
solution of the 2D MHD system persists as long as the magnetic
field remains smooth.

On the other hand, as discussed above, if the velocity field
remains smooth up to t = T then so does the magnetic field.
So a smooth solution of the 2D MHD system persists as long
as the velocity field remains smooth. Thus, the smoothness of
one field implies that of the other and is sufficient for global
regularity. We would like to mention that the smoothness of
solutions for all time does not mean the solutions remain
bounded as t → ∞. In particular, the velocity gradient may
grow without bound.

The above analysis suggests that one dissipation mecha-
nism, either mechanical or magnetic, should be capable of
regularizing the whole system. However, such a result is
still unavailable due to the limitation of available tools from
the theory of nonlinear partial differential equations. That
said, if strong enough hyperdissipation is applied to either

the momentum or the induction equation, a proof of global
regularity is possible. This proof is somewhat technical and
will be presented elsewhere.

VI. CONCLUDING REMARKS

We have studied incompressible MHD turbulence in both
2D and 3D by using a dynamical systems approach, which has
been employed in recent studies of fluid turbulence [1,14–17].
The new approach allows us to recover key predictions
(in the form of bounds) in the literature on the basis of
Komolgorov’s phenomenology. These predictions include the
number of degrees of freedom, the slope of the energy
spectrum in the inertial range, and the dissipation wave
number, all of which are intimately related. Estimates for
the number of degrees of freedom N have been derived in
terms of key dynamical quantities and physical parameters.
In 2D, it has been found that N scales as Pr Re3/2 + Rm3/2

for Pr > 1 and as Re3/2 + Pr−1 Rm3/2 for Pr � 1, where
Pr is the magnetic Prandtl number and Re and Rm are,
respectively, the kinetic and magnetic Reynolds numbers.
These Reynolds numbers are dynamic in nature, defined in
terms of the time-dependent kinetic and magnetic energy
dissipation rates, viscosity and magnetic diffusivity, and the
system size. In 3D, N scales as (Pr Re3/2 + Rm3/2)3/2 for
Pr > 1 and as (Re3/2 + Pr−1 Rm3/2)3/2 for Pr � 1, where the
Reynolds numbers are similarly defined. These results have
been argued to be consistent with those in the literature for fluid
systems with quadratic nonlinearities. In particular, the result
for 3D appropriately reduces to that for 3D Navier-Stokes
turbulence as Pr → 0. For Pr ≈ 1, the derived estimates for
N implies the bound α � 5/3 for the exponent α of the
energy spectrum E(k) = Ck−α in the inertial range. The
value α = 5/3 corresponds to optimal bounds for N . In this
case, E(k) reduces to the classical form E(k) ∝ ε2/3k−5/3,
which extends to the Kolmogorov dissipation wave number
kd ∝ ε1/4/ν3/4.

For the usual Navier-Stokes turbulence, the reduction of
dimension from three to two removes the vortex stretching
mechanism, effectively rendering the small-scale dynamics
approximately linear. The reduction in the scaling of N with
the Reynolds number is from highly superlinear (namely
Re9/4) to virtually linear. For MHD turbulence, the dimension
reduction also removes the vortex stretching term. However,
the quadratic coupling between the velocity and magnetic
fields via the Lorentz force and magnetic stretching terms
does maintain certain aspects of quadratic nonlinearity for
the system as a whole. This makes it possible to apply
Kolmogorov’s phenomenological theory to derive the classical
spectrum k−5/3. Our alternative method has recovered this
result, among other things.

It is remarkable that the respective 2D and 3D MHD
turbulence may not be necessarily “more turbulent” than 2D
surface quasigeostrophic and 3D Navier-Stokes turbulence,
as was implied by Kraichnan’s theory of energy transfer
suppression. This theory is based on the physics of Alfvén
waves, which undermines nonlinear effects, and has gained
considerable support from both theoretical and numerical
investigation [36] and, to some extent, observational data
from the solar wind [37]. These waves are “invisible” to
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Kolmogorov’s phenomenology, which therefore unsurpris-
ingly fails to account for the Kraichnan spectrum. In the present
approach, Alfvén waves’ effects render overestimates for N

and α. It is not clear how to capture these effects to the precise
extent that sharp estimates for N and α can be obtained.

The direct energy transfer in 2D can be better understood
by examining how it takes place at the modal level. For this
purpose, one can ignore the velocity self-advection term (the
simultaneous conservation of energy and enstrophy by the
advection term prohibits a direct energy transfer) and focus
on the detailed behavior of the energy conversion, which
plays a key role in the direct energy transfer. As dynamo
action necessarily drains kinetic energy off the fluid and
weakens the advecting velocity field, the direct energy transfer
is not as self-sustained as that in 3D Navier-Stokes or 2D
surface quasigeostrophic turbulence. This is evident from the

dynamical nature of the interacting triads responsible for the
energy transfer (and conversion). These triads are linear in
the velocity field, each involving one mode from u and two
modes from b. It turns out that the dynamics of these triads
are quite simple and mathematically assessable. In fact, one
can show that dynamo triads (those converting kinetic into
magnetic energy) are associated with a direct magnetic energy
flux, while antidynamo triads (those converting magnetic into
kinetic energy) are associated with an inverse magnetic energy
flux [38]. For a persistent direct energy flux, the u mode in
a dynamo triad, upon losing energy, must be replenished.
Such an energy recharge can be accomplished only through
antidynamo interactions with other b modes, thereby involving
some inverse energy transfer and resulting in a reduced direct
energy flux. A quantitative analysis of these triads is given in
Ref. [38].

[1] C. V. Tran, Phys. Fluids 21, 125103 (2009).
[2] C. V. Tran, D. G. Dritschel, and R. K. Scott, Phys. Rev. E 81,

016301 (2010).
[3] S. A. Orszag and C.-H. Tang, J. Fluid Mech. 90, 129 (1979).
[4] A. Beresnyak, Phys. Rev. Lett. 106, 075001 (2011).
[5] L. Sorriso-Valvo, R. Marino, V. Carbone, A. Noullez, F. Lepreti,

P. Veltri, R. Bruno, B. Bavassano, and E. Pietropaolo, Phys. Rev.
Lett. 99, 115001 (2007).

[6] M. K. Verma, D. A. Roberts, M. L. Goldstein, S. Ghosh, and
W. T. Stribling, J. Geophys. Res. 101, 21619 (1996).

[7] P. S. Iroshnikov, Sov. Astron. 7, 566 (1964).
[8] R. H. Kraichnan, Phys. Fluids 8, 1385 (1965).
[9] D. Fyfe and D. Montgomery, J. Plasma Phys. 16, 181

(1976).
[10] A. Pouquet, J. Fluid Mech. 88, 1 (1978).
[11] D. Biskamp and U. Bremer, Phys. Rev. Lett. 72, 3819 (1994).
[12] S. Sridhar and P. Goldreich, Astrophys. J. 432, 612 (1994).
[13] P. Goldreich and S. Sridhar, Astrophys. J. 483, 763 (1995).
[14] C. V. Tran and L. A. K. Blackbourn, Phys. Rev. E 79, 056308

(2009).
[15] C. V. Tran and D. G. Dritschel, Phys. Fluids 22, 037102 (2010).
[16] C. V. Tran, L. A. K. Blackbourn, and R. K. Scott, J. Fluid Mech.

864, 427 (2011).
[17] C. V. Tran and L. A. K. Blackbourn, Fluid Dyn. Res. 44, 031417

(2012).
[18] K. Ohkitani and M. Yamada, Phys. Fluids 9, 876 (1997).
[19] P. Constantin, Q. Nie, and N. Schörghofer, Phys. Lett. A 241,

168 (1998).
[20] E. R. Priest, Solar Magnetohydrodynamics (Reidel, Dordrecht,

1982).

[21] S. Galtier, A. Pouquet, and A. Mangeney, Phys. Plasmas 12,
092310 (2005).

[22] S. Tobias and F. Cattaneo, J. Fluid Mech. 601, 101 (2008).
[23] E. Lieb and W. Thirring, “Inequalities for the moments of the

eigenvalues of the Schrödinger Hamiltonian and their relation
to Sobolev inequalties, ”in Studies in Mathematical Physics
(Princeton University Press, Princeton, NJ, 1976), pp. 269–303.

[24] A. A. Ilyin, Proc. London Math. Soc. s3–67, 159 (1993).
[25] R. Temam, Infinite-Dimensional Dynamical Systems in Mechan-

ics and Physics, 2nd ed., (Springer-Verlag, New York, 1997).
[26] P. Constantin, C. Foias, O. P. Manley, and R. Temam, J. Fluid

Mech. 150, 427 (1985).
[27] J. D. Gibbon and E. S. Titi, Nonlinearity 10, 109 (1997).
[28] D. Ruelle, Commun. Math. Phys. 87, 287 (1982).
[29] E. H. Lieb, Commun. Math. Phys. 92, 473 (1984).
[30] A. V. Babin and M. I. Vishik, Russian Math. Surveys 38(4), 151

(1983).
[31] G. K. Batchelor, J. Fluid Mech. 5, 113 (1959).
[32] C. V. Tran, Phys. Rev. E 78, 036310 (2008).
[33] K. H. Moffatt, J. Fluid Mech. 28, 571 (1967).
[34] R. E. Caflisch, I. Klapper, and G. Steele, Commun. Math. Phys.

184, 443 (1997).
[35] J. T. Beale, T. Kato, and A. Majda, Commun. Math. Phys. 94,

61 (1984).
[36] J. Pietarila Graham, P. D. Mininni, and A. Pouquet, Phys. Rev.

E 84, 016314 (2011).
[37] G. Li, B. Miao, Q. Hu, and G. Qin, Phys. Rev. Lett. 106, 125001

(2011).
[38] L. A. K. Blackbourn and C. V. Tran, J. Fluid Mech. doi:

10.1017/jfm.2012.210.

066323-9

http://dx.doi.org/10.1063/1.3276295
http://dx.doi.org/10.1103/PhysRevE.81.016301
http://dx.doi.org/10.1103/PhysRevE.81.016301
http://dx.doi.org/10.1017/S002211207900210X
http://dx.doi.org/10.1103/PhysRevLett.106.075001
http://dx.doi.org/10.1103/PhysRevLett.99.115001
http://dx.doi.org/10.1103/PhysRevLett.99.115001
http://dx.doi.org/10.1029/96JA01773
http://dx.doi.org/10.1063/1.1761412
http://dx.doi.org/10.1017/S0022377800020158
http://dx.doi.org/10.1017/S0022377800020158
http://dx.doi.org/10.1017/S0022112078001950
http://dx.doi.org/10.1103/PhysRevLett.72.3819
http://dx.doi.org/10.1086/174600
http://dx.doi.org/10.1086/175121
http://dx.doi.org/10.1103/PhysRevE.79.056308
http://dx.doi.org/10.1103/PhysRevE.79.056308
http://dx.doi.org/10.1063/1.3327284
http://dx.doi.org/10.1017/jfm.2011.310
http://dx.doi.org/10.1017/jfm.2011.310
http://dx.doi.org/10.1088/0169-5983/44/3/031417
http://dx.doi.org/10.1088/0169-5983/44/3/031417
http://dx.doi.org/10.1063/1.869184
http://dx.doi.org/10.1016/S0375-9601(98)00108-X
http://dx.doi.org/10.1016/S0375-9601(98)00108-X
http://dx.doi.org/10.1063/1.2052507
http://dx.doi.org/10.1063/1.2052507
http://dx.doi.org/10.1017/S002211200800044X
http://dx.doi.org/10.1112/plms/s3-67.1.159
http://dx.doi.org/10.1017/S0022112085000209
http://dx.doi.org/10.1017/S0022112085000209
http://dx.doi.org/10.1088/0951-7715/10/1/007
http://dx.doi.org/10.1007/BF01218566
http://dx.doi.org/10.1007/BF01215277
http://dx.doi.org/10.1070/RM1983v038n04ABEH004209
http://dx.doi.org/10.1070/RM1983v038n04ABEH004209
http://dx.doi.org/10.1017/S002211205900009X
http://dx.doi.org/10.1103/PhysRevE.78.036310
http://dx.doi.org/10.1017/S0022112067002307
http://dx.doi.org/10.1007/s002200050067
http://dx.doi.org/10.1007/s002200050067
http://dx.doi.org/10.1007/BF01212349
http://dx.doi.org/10.1007/BF01212349
http://dx.doi.org/10.1103/PhysRevE.84.016314
http://dx.doi.org/10.1103/PhysRevE.84.016314
http://dx.doi.org/10.1103/PhysRevLett.106.125001
http://dx.doi.org/10.1103/PhysRevLett.106.125001
http://dx.doi.org/10.1017/jfm.2012.210

