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Well-posedness for fractional Navier–Stokes
equations in the largest critical spaces
PB�.2ˇ�1/
1,1 .Rn/
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This note studies the well-posedness of the fractional Navier–Stokes equations in some supercritical Besov spaces as well
as in the largest critical spaces PB�.2ˇ�1/

1,1 .Rn/ for ˇ 2 .1=2, 1/. Meanwhile, the well-posedness for fractional magnetohydro-
dynamics equations in these Besov spaces is also studied. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

In this note, we will study the well-posedness of mild solutions to the fractional Navier–Stokes equations (also called generalized
Navier–Stokes equations) on the half-space R1Cn

C D .0,1/�Rn, n� 2:8̂̂<
ˆ̂:
@tuC .�4/ˇuC .u � r/u�rpD 0, in R1Cn

C ;

r � uD 0, in R1Cn
C ;

u.0, x/D u0.x/, in Rn

(1.1)

with ˇ 2 .1=2, 1/ in the largest critical spaces PB�.2ˇ�1/
1,1 .Rn/. The mild solution to (1.1) is defined as the fixed point of the operator

.Au/.t, x/D e�t.�4/ˇu0.x/�

Z t

0
e�.t�s/.�4/ˇPr.u˝ u/.s, x/ds :D e�t.�4/ˇu0.x/� B.u, u/. (1.2)

Here,

e�t.�4/ˇ f .x/ :D Kˇt .x/ � f .x/ with
c
Kˇt .�/D e�tj�j2ˇ

and P is the Helmholtz–Weyl projection onto divergence free vector fields:

PD fPj,kgj,kD1,��� ,n D fıj,k C RjRkgj,kD1,��� ,n

where ıj,k is the Kronecker symbol and Rj D @j.�4/
�1=2 are the Riesz transforms.

An important property of the fractional Navier–Stokes equations is its invariance under the following time and space scaling:

u�.t, x/D �2ˇ�1u.�2ˇ t,�x/, p�.t, x/D �4ˇ�2p.�2ˇ t,�x/, .u0/�.x/D �
2ˇ�1u0.�x/. (1.3)

This scaling invariance naturally leads to the following notion of critical spaces. A function space is critical for (1.1) if it is invariant under
the same spatial scaling

f .x/ �! �2ˇ�1f .�x/.
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In other words, a function space is critical for (1.1) when it is homogeneous and of degree �.2ˇ � 1/. Examples include Ln=.2ˇ�1/

(ˇ > 1=2), BMO�.2ˇ�1/, and PB�.2ˇ�1/
1,1 , the space that will be discussed in this note. Non-critical spaces are further classified into super-

critical and subcritical. A space is said to be supercritical for (1.1) if it is of degree ˛ > �.2ˇ � 1/ and subcritical if it is of degree
˛ < �.2ˇ � 1/. A general understanding in the study of nonlinear PDEs is that one can expect local well-posedness in supercritical
spaces. However, the issue is much more complicated for critical spaces, as we will see in the following discussion.

When ˇ D 1, Equation (1.1) becomes the classical incompressible Navier–Stokes equations. In this case, the theory of mild solutions
is pioneered by Kato and Fujita [1, 2] where they transformed the classical incompressible Navier–Stokes equations into an integral
equation and proved the local existences in some Lebesgue and Sobolev spaces. These works inspired extensive study in the following
years on the well-posedness of Navier–Stokes equations in various critical spaces. Kato in [3] proved the existence of mild solutions in
Lp.Rn/ for p � n. Existence of solutions for initial values in Lp spaces had also been studied by Fabes et al. [4] and by Giga [5]. The local

well-posedness in PB
�1C 3

p
p,1 .R3/was studied by Cannone in [6]. Giga and Miyakawa [7], Kato [8], and Taylor [9] studied the well-posedness

in certain Morrey spaces. Koch and Tataru in [10] proved the well-posedness of classical incompressible Navier–Stokes equations in the
space BMO�1.Rn/ D r � .BMO.Rn//n. Xiao in [11] generalized the result of Koch and Tataru [10] to Q�1

˛;1.R
n/ for ˛ 2 .0, 1/. Chen

and Xin in [12] studied the classical incompressible Navier–Stokes equations in several critical spaces. All these works naturally lead
to the question of whether the 3D classical incompressible Navier–Stokes equations is well posed in PB�1

1,1.R
3/, whose significance

is due to the fact that it is the largest critical space in the sense that all other critical spaces are continuously embedded in it (see,
e.g., Cannone [13], Frazier et al. [14], and Meyer [15]). In fact, this question was proposed as conjectures in Cannone [13] and Meyer
[15]. The answer to this question is most likely negative in light of several recent results. In [16], Montgomery-Smith constructed a 1D
model equation with the same scaling invariance as the Navier–Stokes equations, but is ill posed in its largest critical space, which is of
course PB�1

1,1.R
3/, the same as that of the 3D Navier–Stokes equations. Later, Bourgain and Pavlović studied in [17] the Navier–Stokes

equations itself and constructed a class of initial values whose PB�1
1,1.R

3/ norm can grow arbitrarily fast, a.k.a. the phenomenon of

‘norm inflation’. This result is later generalized by Yoneda [18] to a generalized Besov space, which is smaller than PB�1
1,q for all q > 2.

Recently, Cheskidov and Shvydkoy in [19] showed that there are initial values for which the solution map of Leray–Hopf solutions in
B�1
1,1 to the 3D Navier–Stokes equations is not continuous at tD 0.

For the general case (1.1), Lions [20] proved the global existence of the classical solutions when ˇ � 5
4 in a 3D case. Wu in [21]

obtained a similar result for ˇ � 1
2 C

n
4 in dimension n. For the important case ˇ < 1

2 C
n
4 , Wu in [22, 23] considered the existence

of solution to Equation (1.1) in PB
1C n

p�2ˇ
p,q .Rn/. Dong and Li in [24] established the optimal local smoothing estimates of solutions to

(1.1) in Lebesgue spaces. In Li and Zhai [25, 26], inspired by Koch and Tataru [10] and Xiao [11], they studied (1.1) in critical space

Qˇ ,�1
˛;1 .Rn/Dr � .Qˇ˛ .R

n//n for ˇ 2 .1=2, 1/ and ˛ 2 .0,ˇ/. Here, Qˇ˛ .R
n/ for ˛ 2 .�1,ˇ/ is the set of all measurable functions with

sup
I
.l.I//2.˛Cˇ�1/�n

Z
I

Z
I

jf .x/� f .y/j2

jx � yjnC2.˛�ˇC1/
dxdy <1,

where the supremum is taken over all cubes I with edge length l.I/ and edges parallel to the coordinate axes in Rn. Qˇ˛ .R
n/ is a gen-

eralization of Q˛.Rn/ studied in Essen et al. [27], Xiao [28], and Dafni and Xiao [29]. Recently, in [30], Zhai proved the well-posedness

for Equation (1.1) in critical spaces BMO�.2ˇ�1/.Rn/ D .�4/
2ˇ�1

2 BMO.Rn/ and G�.2ˇ�1/
n .Rn/, which are all close to PB�.2ˇ�1/

1,1 for
ˇ 2 .1=2, 1/. Here, for s > 0,

G�s
p .Rn/D

�
f 2 S 0.Rn/ : jf j 2 S 0.Rn/, kfkG�s

p .Rn/ D sup
t>0

t
sn

2pˇ ke�t.�4/ˇ jf jkL1.Rn/ <1

�
,

which is a subclass of Besov spaces and also contains the Morrey-type space of measures. These well-posedness results extend that of
Chen and Xin [12] and Koch and Tataru [10]. For the regularity of mild solutions to Equation (1.1), we refer the readers to Dong and Li
[24], Katz and Pavlović [31], Li and Zhai [25], Wu [32], and Zhai [33].

For the fractional Navier–Stokes equation (1.1), it has also been shown that all critical spaces are continuously embedded in the

largest space PB1�2ˇ
1,1 .R

n/ (see, e.g., Li-Zhai [25]). Given that all the well-posedness results for the Navier–Stokes equations have been
developed in the fractional case, a natural conjecture would be that Bourgain and Pavlović’s and Cheskidov and Shvydkoy’s ill-
posedness results for Navier–Stokes equations can also be transplanted. It is difficult to answer this problem directly. In this note, we

will prove that the fractional Navier–Stokes equations is globally well-posed in its largest critical space PB�.2ˇ�1/
1,1 .Rn/with ˇ 2 .1=2, 1/

for small initial data. Thus, our result leads us to expect that it is unlikely to extend the above-mentioned ill-posedness result to the
fractional case.

Our proof of the global existence depends on the contraction principle in a suitable space. In fact, for adapted value space
PB�.2ˇ�1/
1,1 .Rn/with ˇ 2 .1=2, 1/, we can find an admissible path space Y defined by

Y D

�
u : .0,1/ �! L1.Rn/ : r � uD 0 and sup

t>0
t

2ˇ�1
2ˇ ku.t/kL1.Rn/ <1

�

such that the bilinear operator B.�, �/ : Y � Y �! Y is continuous. Then, we can apply the contraction principle in Y to find a solution

u. Finally, we prove u 2 PB1�2ˇ
1,1 .R

n/. Note that our method breaks down for the Navier–Stokes equations (ˇ D 1), consistent with the
ill-posedness of the latter in PB�1

1,1.R
n/.

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 676–683
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We will also show local well-posedness for the fractional Navier–Stokes equations in supercritical spaces PB˛p,q.R
n/ with n

p > ˛ >

1� 2ˇC n
p , 1� q�1, 2˛Cminf0, 1� 2

p g> 0 and ˇ 2
� 1

2 , 1
2 C

n
4

�
.

Finally, our method can be applied without difficulty to the fractional magnetohydrodynamics (MHD) equations:

8̂̂<
ˆ̂:
@tuC .�4/ˇuC u � ruCrp� b � rbD 0, in R1Cn

C ;

@tbC .�4/ˇbC u � rb� b � ruD 0, in R1Cn
C ;

r � uDr � bD 0, in R1Cn
C ;

ujtD0 D u0, bjtD0 D b0, in Rn,

(1.4)

with ˇ 2 .1=2, 1/ and establish the global well-posedness for small initial data in its largest critical space PB�.2ˇ�1/
1,1 .Rn/. We refer the

readers to Cao and Wu [34], Wu [21, 32, 35], Yuan [36], Zhou [37], and the references therein for more information about the MHD
system.

The remainder of this note is organized as follows: In Section 2, we will review the classical Littlewood–Paley theory as well as the
general framework for mild solutions. Then, in Section 3, we will state and prove our main results.

2. Preliminaries

2.1. Littlewood–Paley theory

We recall the definition of the homogeneous Besov spaces. For more details, see Berg and Lofstrom [38], Runst and Sickel [39], and
Triebel [40, 41]. We start with the Fourier transform. The Fourier transformbf of f 2 S is defined as

bf .�/D .2�/�n=2
Z
Rn

f .x/e�ix��dx.

Here, S.Rn/ denotes the Schwartz class of rapidly decreasing smooth functions and S 0.Rn/ is the space of tempered distributions. The
fractional power of the Laplacian can be defined by the Fourier transform. For � 2R,

3

.�4/�=2f .�/D j�j�bf .�/.
Then, we introduce the Littlewood–Paley decomposition by means of f'jg

1
jD�1. Take a function � 2 C10 with

supp.�/D f� 2Rn : 1=2< j�j � 2g

such that
P1

jD�1 �.2
�j�/D 1 for all � ¤ 0. Then, we define functions 'j.jD 0,˙1,˙2, � � � / as

b'j.�/D �.2
�j�/.

Let4j f D 'j � f , for jD 0,˙1,˙2,˙3, � � � . Then, for s 2R and 1� p, q�1, we define

kfkPBs
p,q.Rn/ D

0
@ 1X

jD�1

.2sjk4jfkLp.Rn//
q

1
A1=q

, 1� q <1

kfkPBs
p,1.Rn/ D sup

�1<j<1
.2sjk4jfkLp.Rn//, qD1,

where Lp.Rn/means the usual Lebesgue space on Rn with the norm k � kLp.Rn/. The homogeneous Bosev space PBs
p,q.R

n/ is defined by

PBs
p,q.R

n/D
n

f 2 S 0 : kfkPBs
p,q.Rn/ <1

o
.

Moreover, for negative s, the homogeneous Besov spaces PBs
p,q.R

n/ can be defined equivalently as follows.

Lemma 2.1
[42] Let 1� p, q�1, s < 0 and 0< ˇ <1. Then, f 2 PBs

p,q.R
n/ if and only if

�Z 1
0
.t�

s
2ˇ ke�t.�4/ˇ fkLp.Rn//

q dt

t

�1=q

<1, 1� q <1,

sup
t>0

t�
s

2ˇ ke�t.�4/ˇ fkLp.Rn/ <1, qD1.6
7

8
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We will use the Lp � Lq type estimates for e�t.�4/� in Lebesgue and Besov spaces and product in Besov spaces. See Kozono et al.
[43], Miao et al. [42], Runst and Sickel [39], and Zhai [44] for the proof of the following lemma.

Lemma 2.2
Let � > 0 and 1� p, q�1. Then, the following statements hold:

(i)

ke�t.�4/� fkLp.Rn/ � CkfkLp.Rn/,

kre�t.�4/� fkLp.Rn/ � Ct�
1

2� kfkLp.Rn/,

kPre�t.�4/� fkLp.Rn/ � Ct�
1

2� kfkLp.Rn/.

(ii) If s1 � s2, then

ke�t.�4/� fkPBs2
p,q.Rn/

� Ct�
s2�s1

2� kfkPBs1
p,q.Rn/

,

kre�t.�4/� fkPBs2
p,q.Rn/

� Ct�
s2�s1C1

2� kfkPBs1
p,q.Rn/

.

(iii) If s1, s2 <
n
p and s1C s2C n min

n
0, 1� 2

p

o
> 0, then there exists a positive constant C such that

kuvk
PB

s1Cs2�
n
p

p,q .Rn/
� CkukPBs1

p,q.Rn/
kvkPBs2

p,q.Rn/
.

2.2. An abstract lemma

We need the following abstract result, which can be proved by Banach fixed point theorem (see Lemarié-Rieusset [45] and Meyer [15]).

Lemma 2.3
Let .Z, k � kZ/ be a Banach space and H : Z � Z! Z a bounded bilinear form satisfying

kH.x1, x2/kZ � C0kx1kZkx2kZ (2.1)

for all x1, x2 2 Z and a constant C0 > 0. Then, if 0 < " < 1
4C0

and if y 2 Z with kykZ < ", then the equation uD yC H.u, u/ has a solution

in Z such that kukZ � 2". This solution is the only one in the ball B.0, 2"/. Moreover, the solution u depends continuously on y in the
sense that if ky0kZ � ", u0 D y0C H.u0, u0/ and ku0kZ � 2", then

ku� u0kZ �
1

1� 4"C0
ky � y0kZ .

Recalling the definition of mild solutions to Equation (1.1), we easily see that to establish local or global well-posedness in a space X ;
roughly speaking, all we need is the bilinear estimate (2.1) with C0 D CT a for a > 0 and Z D L1..0, T/; X/ or an absolute constant C0

and Z D L1..0,1/; X/.

3. Main results

We divide this section into two parts in which we study fractional Navier–Stokes equations and fractional MHD equations, respectively.

3.1. Fractional Navier–Stokes equations

Theorem 3.1
(i) (Global existence in critical spaces) For all ˇ 2 .1=2, 1/ there exists "ˇ > 0 such that for all u0 2 PB

�.2ˇ�1/
1,1 .Rn/with r � u0 D 0 and

ku0kPB�.2ˇ�1/
1,1 .Rn/

� "ˇ ,

for (1.1), there exists a solution u 2 L1..0,1/, PB�.2ˇ�1/
1,1 .Rn// such that

sup
t>0

t
2ˇ�1

2ˇ ku.t/kL1.Rn/ <1.

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 676–683
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(ii) (Local existence in supercritical spaces) Let 1< p <1, 1� q�1, ˇ 2
� 1

2 , 1
2 C

n
4

�
, n

p > ˛ > 1�2ˇC n
p and 2˛Cminf0, 1� 2

p g> 0.

Then, for any u0 2 PB˛p,q.R
n/withr�u0 D 0, for (1.1), there exists T D T.ku0kPB˛p,q.Rn// and a unique solution u 2 L1.Œ0, T�, PB˛p,q.R

n//.

Proof

(i) We will use the method of integral equations and the contraction mapping principle to prove the existence. To do this, we define

Y D

�
u : .0,1/ �! L1.Rn/ : r � uD 0 and sup

t>0
t

2ˇ�1
2ˇ ku.t/kL1.Rn/ <1

�
,

which is a Banach space with the norm

kukY D sup
t>0

t
2ˇ�1

2ˇ ku.t/kL1.Rn/.

We will find a fixed point of operator Au in Y . To do this, we first estimate kAu.t/kL1.Rn/ for t > 0. By (1.2) and Lemma 2.2, we have

kAu.t/kL1.Rn/ � ke�t.�4/ˇu0kL1.Rn/C

Z t

0
.t� s/�

1
2ˇ ku.s/k2

L1.Rn/ds.

This estimate and the definition of X imply that

kAu.t/kY � sup
t>0

t
2ˇ�1

2ˇ ke�t.�4/ˇu0kL1.Rn/C sup
t>0

t
2ˇ�1

2ˇ

Z t

0
.t� s/�

1
2ˇ ku.s/kL1.Rn/ku.s/kL1.Rn/ds

� C1ku0kPB�.2ˇ�1/
1,1 .Rn/

Ckuk2
Y sup

t>0
t

2ˇ�1
2ˇ

Z t

0
.t� s/�

1
2ˇ s�

2ˇ�1
ˇ ds

� C1ku0kPB�.2ˇ�1/
1,1 .Rn/

C C2kuk2
Y

because

Z t

0
.t� s/�

1
2ˇ s�

2ˇ�1
ˇ dsD B

�
1

ˇ
� 1, 1�

1

2ˇ

�
t

1�2ˇ
2ˇ

for ˇ 2 .1=2, 1/. Here, B.a, b/ is the classical beta function for positive a and b. Thus, we have

kAu� AukY � C3 max fkukY , kukYg ku� ukY ,

for any u, u 2 Y .
Then, we will prove that A is a contraction mapping on BY.0, r/with a suitable r. In fact, if there exists "ˇ > 0 small enough such

that

ke�t.�4/ˇu0kY � C1ku0kPB�.2ˇ�1/
1,1 .Rn/

< "ˇ and 6C3C1ku0kPB�.2ˇ�1/
1,1 .Rn/

< 1=2,

then, we can prove that for any u, v 2 BY.0, r/with rD 2C1ku0kPB�.2ˇ�1/
1,1 .Rn/

,

kAu� AvkY � C3 max fkukY , kvkYg ku� vkY

� C3rku� vkY

�
1

2
ku� vkY .

Thus, A is a contraction mapping in BY.0, r/ and has a unique fixed point u.
Now, we prove supt>0 ku.t/kPB�.2ˇ�1/

1,1 .Rn/
<1. In fact, by (1.2) and Lemma 2.2,

ke�l.�4/ˇAu.t/kL1.Rn/ � ke�.lCt/.�4/ˇu0kL1.Rn/C

����
Z t

0
e�.lCt�s/.�4/ˇPr.u˝ u/ds

����
L1.Rn/

� ke�l.�4/ˇu0kL1.Rn/C

Z tCl

0
.lC t � s/�

1
2ˇ s�

2ˇ�1
ˇ dskuk2

Y .6
8

0

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 676–683
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So, we have

kAu.t/kPB�.2ˇ�1/
1,1 .Rn/

D sup
l>0

l
2ˇ�1

2ˇ ke�l.�4/ˇAu.t/kL1.Rn/

� Cku0kPB�.2ˇ�1/
1,1 .Rn/

C sup
l>0

l
2ˇ�1

2ˇ

Z tCl

0
.lC t � s/�

1
2ˇ s�

2ˇ�1
ˇ dskuk2

Y

� Cku0kPB�.2ˇ�1/
1,1 .Rn/

C sup
l>0

l
2ˇ�1

2ˇ .lC t/�
2ˇ�1

2ˇ B

�
1

ˇ
� 1, 1�

1

2ˇ

�
kuk2

Y

� Cku0kPB�.2ˇ�1/
1,1 .Rn/

C Ckuk2
Y

for all t > 0. Thus, supt>0 kAu.t/kPB�.2ˇ�1/
1,1 .Rn/

<1.

(ii) For T > 0, we define

XT D

�
u : .0, T/ �! PB˛p,q.R

n/ : r � uD 0 and sup
0<t<T

ku.t/kPB˛p,q.Rn/ <1

�
,

which is a Banach space with the norm

kukXT D sup
0<t<T

ku.t/kPB˛p,q.Rn/.

For any u0 2 PB˛p,q.R
n/, we have

kAu.t/kPB˛p,q.Rn/ � ke�t.�4/ˇu0kPB˛p,q.Rn/C

Z t

0
ke�.t�s/.�4/ˇPr.u˝ u/.s, x/kPB˛p,q.Rn/ds

� ke�t.�4/ˇu0kPB˛p,q.Rn/C

Z t

0
.t� s/�

˛�.2˛� n
p /C1

2ˇ k.u˝ u/.s, x/k
PB

2˛� n
p

p,q .Rn/
ds

� ke�t.�4/ˇu0kPB˛p,q.Rn/C

Z t

0
.t� s/�

˛�.2˛� n
p /C1

2ˇ ku.s, x/kPB˛p,1.Rn/ku.s, x/kPB˛p,q.Rn/ds

� ke�t.�4/ˇu0kPB˛p,q.Rn/C

Z t

0
.t� s/�

˛�.2˛� n
p /C1

2ˇ dskuk2
XT

by applying Lemma 2.2. Thus, we have

kAu.t/kXT � ke�t.�4/ˇu0kX C CT
2ˇC˛� n

p�1

2ˇ kuk2
XT

as 2ˇC ˛ � n
p � 1> 0. Therefore, Lemma 2.3 finishes the proof.

�

3.2. Fractional MHD equations

We prove the existence of solutions to the fractional MHD equations by similar methods used in the proof of Theorem 3.1.

Proposition 3.2

(i) (Global existence in critical spaces) For all ˇ 2 .1=2, 1/, there exists "ˇ > 0 such that for all .u0, b0/ 2 PB
�.2ˇ�1/
1,1 .Rn/with

kb0kPB�.2ˇ�1/
1,1 .Rn/

Cku0kPB�.2ˇ�1/
1,1 .Rn/

� "ˇ ,

for (1.4), there exists a solution .u, b/ 2 L1..0,1/, PB�.2ˇ�1/
1,1 .Rn// such that

sup
t>0

t
2ˇ�1

2ˇ ku.t/kL1.Rn/C sup
t>0

t
2ˇ�1

2ˇ kb.t/kL1.Rn/ <1.

(ii) (Local existence in supercritical spaces) Let 1< p <1, ˇ 2
� 1

2 , 1
2 C

n
4

�
, n

p > ˛ > 1�2ˇC n
p , 1� q�1 and 2˛Cminf0, 1� 2

p g> 0.

Then, for any .u0, b0/ 2 PB˛p,q.R
n/, for (1.4), there exists T D T.k.u0, b0/kPB˛p,q.Rn// and a unique solution .u, b/ 2 L1.Œ0, T�, PB˛p,q.R

n//.

Proof
Here, we only prove (i) because (ii) follows from a similar argument and the proof of Theorem 3.1 (ii). The solution .u, b/ to Equation (1.4)
can be written as

u.t, x/D e�t.�4/ˇu0.x/� B.u, u/C B.b, b/ :D F1.u, b/,
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6
8

1



X. YU AND Z. ZHAI

b.t, x/D e�.�4/
ˇ

b0.x/� B.u, b/C B.b, u/ :D F2.u, b/,

with

B.u, v/D

Z t

0
e�.t�s/.�4/ˇPr � .u˝ v/.s/ds.

Define

Y D
˚
.u, b/ : .0,1/ �! L1.Rn/jr � uDr � bD 0, k.u, b/kY <1

	
with

k.u, b/kY D kukY CkbkY D sup
t>0

t
2ˇ�1

2ˇ .ku.t/kL1.Rn/Ckb.t/kL1.Rn//.

We want to show that F1 and F2 are contraction mappings from a ball of Y to itself. We rewrite the solution .u, b/ as�
u
b

�
D

�
F1.u, b/
F2.u, b/

�
:D F.u, b/.

By similar argument as Theorem 3.1, we obtain

kF1.u, b/k � Cku0jPB�.2ˇ�1/
1,1 .Rn/

C Ck.u, b/k2
Y

and

kF1.u, b/.t/� F1.u
0, b0/kY � Ck.u� u0, b� b0/kY.k.u, b/kY Ck.u

0, b0/kY/.

Similarly,

kF2.u, b/k � Ckb0jPB�.2ˇ�1/
1,1 .Rn/

C Ck.u, b/k2
Y

and

kF2.u, b/.t/� F2.u
0, b0/kY � Ck.u� u0, b� b0/kY.k.u, b/kY Ck.u

0, b0/kY/.

Like in the proof of Theorem (3.1), we find a fixed point .u, b/ of the operator F. Finally, we can prove similarly that

sup
t>0
ku.t/kPB�.2ˇ�1/

1,1 .Rn/
C sup

t>0
kb.t/kPB�.2ˇ�1/

1,1 .Rn/
<1.

�
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