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Abstract—This paper investigates the channel estimations in
a relay network with multiple transmit and receive antennas,
including the estimation of the end-to-end channel matrix and the
individual estimation of the transmitter-relay channels and the
relay-receiver channels. For the end-to-end channel estimation,
instead of directly estimating entries of the channel matrix,
we use singular value decomposition (SVD) and estimate its
largest singular value and singular vectors, which are then
combined to form an estimation of the channel matrix. An
approximate maximum-likelihood (ML) estimation is proposed,
which is shown to become the exact ML estimation when the time
duration of each training step equals the number of antennas
at the transmitter. Simulation on the mean square error (MSE)
shows that the SVD-based approximate ML estimation performs
about the same as the exact ML estimation and is superior to
entry-based estimations. For the individual channel estimation,
we decompose each channel vector into the product of its length
and direction, and find the ML estimation of each. By using
an approximation on the probability density function (PDF) of
the observations during training, an analytical ML estimation is
derived. The ML estimation with the exact PDF is also investi-
gated and a solution is obtained numerically. Simulation on the
MSE shows that the two have similar performance. Compared
with cascade channel estimations, its performance is superior
for the relay-receiver channel estimation and comparable for the
transmitter-relay channel estimation. Extension to the general
multiple-antenna multiple-relay network is also provided.

Index Terms—Relay network, channel training, channel es-
timation, maximum-likelihood (ML) estimation, mean square
error (MSE).

I. INTRODUCTION

COOPERATIVE relay network, where relay nodes col-
laborate to establish a virtual MIMO communication

link between a transmitter and a receiver, has been shown
to be a promising infrastructure to achieve spatial diversity.
Early researches in cooperative relay network focus on coher-
ent cooperative schemes, e.g., decode-and-forward (DF) [1]–
[3], amplify-and-forward (AF) [2]–[5], distributed space-time
coding (DSTC) [6]–[8], and beamforming [9]–[11], in which
perfect channel state information (CSI) is assumed at some or
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all network nodes. In reality, a training process, sometimes,
a feedback process as well, is required for a network node
to obtain an estimation of its required CSI. Such estimation
is always imperfect due to the existence of noise. As a
consequence, the training design and channel estimation are
important and practical problems in wireless relay networks.

These problems have drawn increasing attention recently,
for both regenerative and non-regenerative relay networks
[12]–[22]. For non-regenerative relay network [13]–[22], the
transmitter-relay channels (channels between the transmitter
and the relay) and relay-receiver channels (channels between
the relay and the receiver) concatenate with each other in
transmissions. Its estimation problem is different from that
of a point-to-point multi-input-multi-output (MIMO) system
[23]–[25], thus is particularly interesting. [13]–[18] are on
single-antenna network with a single relay. In [13]–[15], the
channel training and the diversity performance with channel
estimation error using mismatched maximum likelihood (ML)
receiver are studied. In both [13] and [14], channel estimation
is performed at the receiver. In [13], ML and linear-minimum-
mean-square-error (LMMSE) estimators are employed, and
DSTC is used for data transmission. It is shown that full
diversity can be achieved with both estimators. A similar
conclusion is drawn in [14] where Golden code is used for
data transmission. In [15], a scheme, in which the transmitter-
relay channel is estimated at the relay and forwarded to
the receiver, is proposed. In [16], the signal-to-noise ratio
(SNR) maximizing power allocations between training and
data transmission and between the broadcasting and relaying
phases are investigated. In [17], the joint optimization of the
training time, the power allocation between training and data
transmission, and the power allocation between the transmitter
and the relay that maximizes a mutual information lower
bound is studied. [18] studies the capacity lower bound with
channel estimation error and shows that minimum mean square
error (MMSE) estimation is optimal. For a relay network
with multiple relays but a single antenna at each node, the
training problem is studied in [19]–[21]. For an AF protocol
with matched filter, [19] proposes a scheme for the receiver
to estimate the end-to-end channel. [20], [21] are also on the
estimation of the end-to-end channels at the receiver but DSTC
is used.

The aforementioned papers are on the training problem for
relay networks with single antenna at both the transmitter and
the receiver only. There are limited publications on training for
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relay networks with multiple antennas at the transmitter and/or
the receiver [26], [27]. In [26], for the general MIMO relay
network, schemes for the receiver to estimate the transmitter-
relay channels and the relay-receiver channels individually
are proposed. The LMMSE estimations and the optimal pilot
designs that minimize the mean square error (MSE) are
derived. The requirement on the training time for full diversity
in data transmission with mismatched ML decoding is also
derived. In [27], both mismatched and matched decodings for
networks with multiple relays and multiple receive antennas
under channel estimation error are analyzed.

In this paper, for relays network with multiple transmit
and receive antennas, we study both the estimation of the
end-to-end channel matrix and the individual estimation of
the transmitter-relay and relay-receiver channels, all at the re-
ceiver. We consider two channel estimation problems because
different CSI is required for different cooperative schemes. For
non-regenerative DSTC [6], [7] and fixed gain AF [2], [28],
the end-to-end channel matrix is required to be known at the
receiver, while individual values of the transmitter-relay and
relay-receiver channels are not needed. On the other hand, for
relay/antenna selection [29]–[32] and beamforming [9]–[11],
the receiver needs to know the transmitter-relay and relay-
receiver channels individually. In what follows, we clarify the
difference of this work to previous ones.

The end-to-end channel estimation is investigated in [20],
[21] for relay networks with single transmit and receive
antenna only. In the proposed schemes, entries of the end-
to-end channel vector are estimated directly. In our paper,
we investigate networks with multiple transmit and receive
antennas via a different approach. Instead of directly estimat-
ing entries of the end-to-end channel matrix, we take into
consideration the special structure of the channel matrix and
propose to estimate the largest singular value of the matrix
as well as its corresponding left and right singular vectors
based on the ML criterion. An estimation of the channel
matrix is then constructed from the estimated singular value
and singular vectors. In other words, we parameterize the
end-to-end channel matrix by its eigenvalue and eigenvectors.
An approximate ML estimation is proposed, which is shown
by simulation to achieve about the same MSE as the exact
ML estimation. Comparing with the entry-based estimation
that ignores the special structure of the end-to-end channel
matrix, the proposed singular value decomposition (SVD)
based estimation is superior in MSE. Via simulation, the MSE
is also shown to have a linear decreasing rate in the transmit
power.

For the individual estimation of the transmitter-relay and
relay-receiver channels, we propose a joint estimation of the
channel vectors. This is different from the cascade estimation
ideas in [26], [27], where the relay-receiver channels are
estimated first, the results of which are then used to estimate
the transmitter-relay channels. In this work, we decompose
each channel vector into the product of its length and direction.
The estimations on the length and direction are then combined
to obtain an estimation of the channel vector. First, by using an
approximation on the conditional probability density function
(PDF) of the received signals during training, ML estimation
of the individual channels is derived in analytical form. Then,
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Fig. 1. Relay network with multiple transmit and multiple receive antennas.

we investigate the ML estimation based on the exact PDF.
A solution for the estimation of the relay-receive channels
is obtained via numerical alternative optimization. Based on
this result, the estimation of the transmitter-relay channels is
obtained in analytical form. Compared with cascade estima-
tions, the proposed schemes achieve lower MSE on the relay-
receiver channels, and comparable MSE on the transmitter-
relay channels.

The rest of the paper is organized as follows. In Section II,
the cooperative relay network model, the channel estimation
problems, and the training procedure are explained. Section III
is on ML-based estimation of the end-to-end channel matrix;
while Section IV is on ML-based estimation of the transmitter-
relay channels and the relay-receiver channels individually.
Numerically simulated MSEs are shown in Section V. Sec-
tion VI discusses the extension of the proposed schemes to
the general MIMO relay network. Section VII contains the
conclusions. Involved proofs are enclosed in the appendix.

II. CHANNEL ESTIMATION PROBLEMS AND TRAINING

MODEL

First, we explain the notation used in this paper. We use
bold upper case letters to denote matrices and bold lower
case letters to denote vectors, which can be either row vectors
or column vectors. For a matrix A, its conjugate, transpose,
Hermitian, Frobenius norm, determinant, trace, and inverse are
denoted by A, At, A∗, ‖A‖F , detA, trA, and A−1, respec-
tively. vec(A) denotes the column vector formed by stacking
the columns of A. In is the n×n identity matrix. ⊗ denotes
the Kronecker product. For a complex scalar x, |x| denotes
its magnitude and ∠x denotes its angle. g(x) = O(f(x))
means |g(x)| ≤ c|f(x)| with c a non-zero constant. E(·) is
the average operator for a random variable, a random vector,
or a random matrix. We use â to denote the estimation of a.

A. Network Model and Channel Estimation Problems

Now we illustrate the relay network model. Consider a
network with one transmitter equipped with M antennas, one
relay equipped with single antenna, and one receiver equipped
with N antennas, as shown in Figure 1. Denote the channel
from the mth transmit antenna to the relay antenna as fm

and the channel from the relay antenna to the nth receive
antenna as gn. The channels are assumed to be i.i.d. circularly
symmetric complex Gaussian (CSCG) with zero-mean and
unit-variance, i.e., fm, gn ∼ CN (0, 1), so the magnitudes
follow Rayleigh distribution. The channels are also assumed
to remain constant during training. Define

f �
[

f1 f2 · · · fM

]t
and g �

[
g1 g2 · · · gN

]
,

which are the M ×1 transmitter-relay channel vector and the
1 × N relay-receiver channel vector, respectively.
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For some cooperative schemes such as non-regenerative
DSTC [6], [7] and AF with fixed gain relaying [2], [28], where
the relay antenna conducts linear transformation and simple
amplification respectively, the end-to-end channel values are
required to be known at the receiver. The end-to-end channel
from the mth transmit antenna to the nth receive antenna via
the relay antenna is fmgn. The individual values of fm’s and
gn’s are not needed. By using matrix and vector representation,
the M × N end-to-end channel matrix of the network is

H �

⎡
⎢⎢⎢⎣

f1g1 f1g2 · · · f1gN

f2g1 f2g2 · · · f2gN

...
...

. . .
...

fMg1 fMg2 · · · fMgN

⎤
⎥⎥⎥⎦ = fg. (1)

The first problem to be investigated in this paper is the
estimation of H at the receiver, which we address as the end-
to-end channel estimation problem.

For some other cooperative schemes such as relay/antenna
selection [29]–[32] and beamforming [9]–[11], the receiver
needs to know fm and gn for all m = 1, · · · , M and
n = 1, · · · , N , to find the relay/antenna to be selected and
calculate the beamforming coefficients (or feedback the CSI
to the transmitter and relay). Thus, the channel vectors f and
g need to be estimated at the receiver. The second problem
to be investigated in this paper is the estimation of f and g
at the receiver, which we address as the individual channel
estimation problem.

B. Training Model

We conduct a two-step training process, where in the first
step, space-time coding is used at the transmitter and in the
second step, the relay antenna conducts AF with fixed gain [2],
[28]. Each training step takes T symbol transmissions. Thus,
the total time duration for training is 2T . During the first step,
the transmitter sends

√
P1T/MS, where the T ×M matrix S

is the pilot, normalized as tr{S∗S} = M . This normalization
implies that the average transmit power of the transmitter is
P1 per transmission. The relay receives a T × 1 vector:

r =

√
P1T

M
Sf + u,

where u is the noise vector at the relay. We assume that the
noises are i.i.d. CSCG with zero-mean and unit-variance, i.e.,
u ∼ CN (0, IT ). During the second step, the relay amplifies
its received signal and forwards to the receiver with power P2.
The fixed gain

√
P2/(P1 + 1) is used. Define

α � P2

P1 + 1
β � P1P2T

(P1 + 1)M
.

The signal matrix received at the receiver, denoted as X, can
be calculated to be:

X =
√

βSH + W, (2)

where W � √
αug + V with V the T × N noise matrix

at the receiver. Again, we assume that entries of V are
i.i.d. CSCG with zero-mean and unit-variance, i.e., vec(V) ∼
CN (0, INT ). For a given realization of g, vec(W) can be

shown to be a CSCG random vector with zero mean. Its
covariance matrix can be calculated to be

RW �
(
IN + αgtḡ

)⊗ IT . (3)

From the training equation (2), we have the following condi-
tional probability density function (PDF):

p(X|f ,g) =

(2π)−TN det−1(RW)e−vec(X−√
βSH)∗R−1

W vec(X−√
βSH).(4)

RW is defined in (3), which depends on g.

III. ESTIMATION OF THE END-TO-END CHANNELS

In this section, we consider the estimation of the end-to-end
channel matrix given in (1) at the receiver. An approximate
ML estimation is proposed, which becomes the exact ML
estimation when T = M . When T �= M , simulation on the
MSE in Section V implies that the proposed approximate ML
estimation has close performance to the exact one.

The goal is to estimate H based on the observation X in (2).
The training equation (2) has the same format as the traditional
Gaussian observation model [33] or the training equation
for a multiple-antenna direct communication system without
relaying [23]. However, the end-to-end channel estimation for
the relay network has two main differences to the traditional
Gaussian estimation. First, in a traditional Gaussian model, the
noise term is independent of the parameters to be estimated.
Here, however, RW, the noise covariance matrix, is a function
of g, which is related to H, the matrix to be estimated. Second,
in the traditional Gaussian model, entries of the vector/matrix
to be estimated are assumed to be independent. Here, for the
relay network, due to the special structure of H defined in (1),
its rank is 1. Thus, entries of H are related. Of the total MN
entries in H, only M +N −1 of them are independent. These
make the end-to-end channel estimation problem of the relay
network with multiple transmit and receive antennas different
and more challenging.

In this paper, instead of representing H by its all MN
entries or M + N − 1 independent entries, we decompose H
as

H = af̃ g̃, (5)

where

a � ‖f‖F ‖g‖F , f̃ � f
‖f‖F

, and g̃ � g
‖g‖F

. (6)

f̃ and g̃ are the directions of f and g, respectively. They have
unit-norm. For the simplicity of the presentation, define

af � ‖f‖F , ag � ‖g‖F . (7)

We can see that (5) provides a map between H and the
3-tuple (a, f̃ , g̃). Also, a, f̃ , g̃ are mutually independent since
entries of f and g are i.i.d. CN (0, 1). The estimation of H
can thus be transformed to the estimation of (a, f̃ , g̃). Since
H is rank-1, it has a single non-zero singular value. The
decomposition in (5) is the SVD of H, where a is the non-
zero singular value, and f̃ and g̃ are the corresponding left and
right singular vectors. The proposed estimation is thus called
SVD-based estimation.
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Theorem 1: With the observation model in (2), define

η �
αa2

g

1 + αa2
g

, (8)

P � S(S∗S)−1S∗, (9)

Z � [P +
√

η(IT − P)]X. (10)

Let Z =
∑min{T,N}

i=1 σZ,iuiv∗
i be the singular value decom-

position, where σZ,1 ≥ σZ,2 ≥ · · · ≥ σZ,min{T,N} ≥ 0 are
the ordered singular values of Z and ui and vi are the left
and right singular vectors corresponding to the singular value
σZ,i. If ag is known, the ML estimation of (a, f̃ , g̃) is

â =
1√
β
‖(S∗S)−1S∗Xv1‖F , (11)

ˆ̃f =
(S∗S)−1S∗Xv1

‖(S∗S)−1S∗Xv1‖F
, ˆ̃g = v∗

1 . (12)

The ML estimation of the end-to-end channel matrix is thus

Ĥ = âˆ̃f ˆ̃g =
1√
β

(S∗S)−1S∗Xv1v∗
1 . (13)

Proof: See Appendix A.
In what follows, we discuss the results in Theorem 1.
The estimation in Theorem 1 is based on the assumption that

ag is known. In reality, ag, the norm of g, is unknown. Thus
η is unknown and the estimations given in (11)-(13) cannot
be calculated. To obtain an estimation, we replace a2

g with its
mean, i.e., a2

g ≈ E(a2
g) = N . With this approximation,

η ≈ Nα

1 + Nα
.

An estimation of H can thus be found using (9)-(13). Gener-
ally speaking, this estimation is not the exact ML estimation
but an approximate ML estimation.

The estimation Ĥ in (13) is rank-1, which conforms with
the structure of the end-to-end channel matrix in (1).

For the proposed estimation to be valid, from (11)-(13), S∗S
must be invertible, which implies a condition on the training
time: T ≥ M . The same requirement on the training time was
derived for the ML channel estimation in a multiple-antenna
system [23].

For the special case that T = M and S is nonsingular,
we have P = IT and Z = X regardless of the ag value. In
this case, the estimation results in Theorem 1 are independent
of ag. Thus the approximation on a2

g is not needed and
the estimation becomes the exact ML estimation. This is
demonstrated in the following corollary.
Corollary 1: When T = M and the pilot matrix S is non-

singular, let X =
∑min{T,N}

i=1 σX,iuiv∗
i be the singular value

decomposition, where σX,1 ≥ σX,2 ≥ · · · ≥ σX,min{T,N} ≥ 0
are the ordered singular values of X and ui and vi are the
left and right singular vectors corresponding to the singular
value σX,i. The ML estimation of (a, f̃ , g̃) is

â =
σX,1‖S−1u1‖F√

β
,

ˆ̃f =
S−1u1

‖S−1u1‖F
, ˆ̃g = v∗

1 . (14)

The ML estimation of the end-to-end channel matrix is thus

Ĥ =
σX,1√

β
S−1u1v∗

1. (15)

Proof: The results in this corollary can be obtained
directly from Theorem 1.

We can see from Corollary 1 that when T = M and the
pilot matrix is nonsingular, the ML estimations on a is a scaled
version of the largest singular value of X, the ML estimation
on the direction of g is the Hermitian of the corresponding
right singular vector, and the ML estimation on the direction
of f is the corresponding left singular vector transformed by
the inverse of the pilot.

It is noteworthy that the proposed SVD-based estimation
uses the rank-1 property of the end-to-end channel matrix.
For networks with single transmit and single receive antenna,
the end-to-end channel is 1-dimensional, which is always
rank-1. Thus we expect the proposed scheme to be favorable
for networks with multiple transmit and/or multiple receive
antennas.

IV. ESTIMATION OF THE TRANSMITTER-RELAY AND

RELAY-RECEIVER CHANNELS

This section is on the individual estimation of the
transmitter-relay channels, f , and the relay-receiver channels,
g, both at the receiver. With the decompositions f = af f̃ ,
g = agg̃, where af , f̃ , ag, g̃ are defined in (6) and (7), the
problem is equivalent to estimating af , f̃ , ag, g̃. The training
scheme is explained first. Then an approximate ML estimation
is provided in closed-form. Finally, the exact ML estimation
is investigated, which can be obtained numerically.

A. Training Scheme

If we use the training scheme proposed in Section II, for the
tractability of analysis, we approximate RW with its average,
which is (1 + α)ITN , to get, from (4),

p(X|f ,g) ≈ pappro(X|f ,g) �
(2π)−TN (1 + α)−TNe−

1
1+α‖X−√

βafagSf̃g̃‖2

F . (16)

In pappro(X|f ,g), af , ag appear as the product. It is thus im-
possible to estimate af and ag separately due to the violation
of the observability condition. Thus, extra observations other
than the X in (2) are in need.

For this reason, in addition to the training explained in
Section II, where the pilot S is sent by the transmitter and
forwarded by the relay, an extra training stage is conducted,
where the relay sends a Ť × 1 unit-norm pilot vector š, i.e.,
‖š‖F = 1, with power P2. This takes Ť symbol transmissions.
Denote the received signal at the receiver of this extra stage
as X̌. We have

X̌ =
√

P2Ť šg + V̌, (17)

where V̌ is the noise whose entries are assumed to be
i.i.d. CSCG with zero-mean and unit-variance. We call this
training stage the second training stage and the one represented
in (2) the first training stage. The total training time duration
for the individual channel estimation is thus 2T + Ť .

Equation (17) is the same as that of the training in a
multiple-antenna system with 1 transmit antenna and N re-
ceive antennas, in which the ML estimation of g requires
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p(X, X̌|af , f̃ , ag, g̃) = p(X, X̌|f ,g) = p(X|f ,g)p(X̌|g) =

(2π)−TN
(
1 + αa2

g

)−T
e−vec(X−√

βafagSf̃g̃)∗R−1
W vec(X−√

βaf agSf̃g̃)(2π)−ŤNe
−

‚
‚
‚X̌−

√
P2Ť ag šg̃

‚
‚
‚

2

F . (18)

(
âf ,

ˆ̃f , âg, ˆ̃g
)

=arg min
(af ,f̃ ,ag,g̃)

[
vec(X −

√
βafagSf̃ g̃)∗R−1

Wvec(X −
√

βafagSf̃ g̃) +
∥∥∥∥X̌−

√
P2Ť agšg̃

∥∥∥∥
2

F

+ T ln
(
1 + αa2

g

)]

=arg min
(af ,f̃ ,ag,g̃)

(
tr
[(

X−
√

βafagSf̃ g̃
)∗ (

X −
√

βafagSf̃ g̃
)

(I − ηg̃∗g̃)
]

+
∥∥∥∥X̌ −

√
P2Ť agšg̃

∥∥∥∥
2

F

+ T ln
(
1 + αa2

g

))

=arg min
(af ,f̃ ,ag,g̃)

[
(1 − η)βa2

f a
2
g‖Sf̃‖2

F − 2 (1 − η)
√

βafag

(
f̃∗S∗Xg̃∗

)
− η‖Xg̃∗‖2

F

+
(

P2Ť a2
g − 2

√
P2Ť ag
(š∗X̌g̃∗)

)
+ T ln

(
1 + αa2

g

)]

=arg min
(af ,f̃ ,ag,g̃)

⎡
⎢⎣(1 − η)

⎛
⎜⎝√β‖Sf̃‖F afag −



[(

Sf̃
)∗

Xg̃∗
]

‖Sf̃‖F

⎞
⎟⎠

2

− (1 − η)

2
[(

Sf̃
)∗

Xg̃∗
]

‖Sf̃‖2
F

−η‖Xg̃∗‖2
F +

(
P2Ť a2

g − 2
√

P2Ť ag

(
š∗X̌g̃∗))+ T ln

(
1 + αa2

g

)]
. (19)

Ť ≥ 1. This is also sufficient for our relay network, where
only extra information on ‖g‖F is required. Since Ť is at least
1, for the individual chanel estimation, the time requirement
for the second stage of training is Ť ≥ 1.

B. ML Estimation Using an Approximate PDF

With both observations X and X̌, we can investigate the ML
estimations of f ,g, or equivalently, estimations of af , ag, f̃ , g̃.
Theorem 2: With the observations X and X̌, and the pilots

S and š, define

Γ1 � X∗P∗PX + (1 + α)X̌∗šš∗X̌. (20)

Note that Γ1 is a positive semi-definite matrix. Let Γ1 =∑N
i=1 σΓ1,iqiq∗

i be the singular value decomposition, where
σΓ1,1 ≥ σΓ1,2 ≥ · · · ≥ σΓ1,N ≥ 0 are the ordered
singular values and qi is the singular vector corresponding
to σΓ1,i. With the approximation in (16), the ML estimations
of af , ag, f̃ , g̃ are

ˆ̃g = q∗
1e

j∠(š∗X̌q1), ˆ̃f =
(S∗S)−1S∗Xˆ̃g∗

‖(S∗S)−1S∗Xˆ̃g∗‖F

, (21)

âg =
š∗X̌ˆ̃g∗√

P2Ť
, âf =

√
P2Ť

β

‖(S∗S)−1S∗Xˆ̃g∗‖F

š∗X̌ˆ̃g∗ . (22)

The ML estimations of f ,g are thus

f̂ = âf
ˆ̃f , ĝ = âg

ˆ̃g. (23)

Proof: See Appendix B.
Due to the approximation in (16), Theorem 2 provides

approximate ML estimations of f and g.

C. ML Estimation Using the Exact PDF

In the previous subsection, the approximate PDF in (16) is
used. In this subsection, we work on the exact PDF (4) to
obtain the exact ML estimation. Notice that

detRW = det T
(
IN + αgtḡ

)
det NIT =

(
1 + αa2

g

)T
.

Thus from (4),

p(X|f ,g) = (2π)−TN (1 + αa2
g)−T

e−vec(X−√
βafagSf̃g̃)∗R−1

W vec(X−√
βaf agSf̃g̃). (24)

Given f and g, X and X̌ are independent Gaussian since
W and V̌ are independent Gaussian. Using the fact that X̌
is also independent of f , we have the equalities in (18) at the
top of this page. By using the calculations in (34) and (37) in
Appendix A and the definition of η in (8), the ML estimation
problem can be analyzed using the equalities in (19) at the
top of this page.

Notice that in the objective function, only the first term
depends on af . For the minimization, we need

√
β‖Sˆ̃f‖F âf âg =



[(

Sˆ̃f
)∗

Xˆ̃g∗
]

‖Sˆ̃f‖F

,

or equivalently,

âf =
1√
βâg



[(

Sˆ̃f
)∗

Xˆ̃g∗
]

‖Sˆ̃f‖2
F

. (25)
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With this choice, only the second term in (19) depends on
f̃ . Following the derivation in (39) of Appendix A, we need
Equality (40) of Appendix A for the minimization.

The estimation problem thus reduces to(
âg, ˆ̃g

)
=arg max

(ag,g̃)

[
(1 − η) ‖PXg̃∗‖2

F + η‖Xg̃∗‖2
F − P2Ť a2

g

+2
√

P2Ť ag

(
š∗X̌g̃∗)− T ln

(
1 + αa2

g

)]

=arg max
(ag,g̃)

[
‖Zg̃∗‖2

F + 2
√

P2Ť ag

(
š∗X̌g̃∗)− P2Ť a2

g

−T ln
(
1 + αa2

g

)]
, (26)

where the second equality is obtained using Equality (42) in
Appendix A and Z is defined in (8). In general, Z depends
on ag. The optimization problem in (26) is non-convex,
and analytical solution is unavailable. In the following, we
consider the numerical alternative optimization of g̃ and ag.
1) Finding g̃ Given ag: For a fixed ag, the optimization

over g̃ is

max
g̃

[
‖Zg̃∗‖2

F + 2
√

P2Ť ag

(
š∗X̌g̃∗)]

subject to ‖g̃‖F = 1. (27)

The optimization problem in (27) is a special case of quadratic
constrained quadratic programming (QCQP). The general
QCQP is NP-hard. In this paper, we use an exhaustive search
by searching the g̃ over a grid inside the unit hyper-sphere
that results in the highest objective value. The complexity of
this exhaustive search is exponential in N , the dimension of
g. For large N , the complexity is too high for its practical
employment. Actually, the main purpose of the exact ML
estimation in this paper is to serve as a benchmark for the
approximate estimation proposed in Section IV-B.
2) Finding ag Given g̃: For a fixed g̃, we can conduct the

optimization over ag in (26) as follows.
For the special case of T = M and S is nonsingular, we

have Z = X, independent of ag. Taking the derivative of
the objective function over ag and setting it to 0 leads to the
following equation for the optimal ag:√

P2Ť
 (š∗X̌g̃∗)− P2Ť âg − Tαâg

1 + αâ2
g

= 0,

from which we get

αP2Ť â3
g − α

√
P2Ť
 (š∗X̌g̃∗) â2

g + (P2Ť + αT )âg

−
√

P2Ť
 (š∗X̌g̃∗) = 0. (28)

If g̃ is the solution of (27), from the discussion in the proof
of Theorem 2, š∗X̌g̃∗ must be a positive real number. Thus
Equation (28) must have a real positive root. âg is the positive
root of (28) that results in the highest objective value.

For the general case of T > M , Z depends on ag. Efficient
numerical methods can be used in finding the optimal ag since
the objective function is explicitly known in (26). For example,
we can calculate the derivative of the objective function and

Algorithm 1 Algorithm for the exact ML estimations of the
transmitter-relay channels and the relay-receiver channels.

1: Initialize âg, e.g., âg = 1.
2: Search over a grid inside the unit hyper-sphere to find the

solution of (27), denoted as ˆ̃g.
3: Find the âg,new that solves (26) using the previously

found ˆ̃g. If T = M , this can be achieved by finding the
best real root of (28). Otherwise, use Newton’s method
for the optimization.

4: If |âg,new − âg| is larger than a predetermined threshold,
âg = âg,new, and go to Step 2.

5: Calculate ˆ̃f , âf using (40) and (25), respectively.

find its roots using Newton’s method. The optimal ag is the
root that results in the largest objective value.

Once âg and ˆ̃g are solved, the ML estimations of f̃ and
af can be calculated using (40) and (25). Based on the above
discussion, Algorithm 1 is proposed. It is noteworthy that, in
general, the solution Algorithm 1 founds is not guaranteed
to be the global optimal, i.e., the exact ML estimation. One
method to increase the possibility of finding the optimal
solution is to choose multiple initial values and use the
best one among the found solutions. During simulation, we
also observe that the alternative optimization in Algorithm 1
converges in a few iterations.

V. SIMULATION RESULTS

In this section, we simulate the MSEs of the proposed
estimations, including the estimation of the end-to-end channel
matrix H in Section III and the individual estimations of f
and g in Section IV. Since the focus of this paper is on the
estimation rules, optimizations of the training pilot, power
allocation, and training time are not considered. They are
interesting and important issues but are beyond the scope
of this paper, and thus left for future work. For the end-to-
end channel matrix training, we set S = IT when T = M ;
otherwise, S is a randomly generated T × M unitary matrix.
For the individual channel training, the same setting is used
for the first training stage. For the second training stage, we
set Ť = 1, in which case š reduces to a scalar š, and we let
š = 1. We further set P1 = P2 = P to avoid optimization of
the power allocation.

A. MSE on the End-to-End Channel Estimation

In this subsection, we show the simulated MSE on the end-
to-end channel estimation defined as MSE(H) � E{‖H −
Ĥ‖2

F }. Note that in traditional ML estimation, the MSE is
the power of the estimation error averaged over the noises. In
our estimation model, in addition to the noises, the channels
are also random, the average is over not only the noises
but also the random channels. In the conducted Monte-Carlo
simulation, a distinct channel realization is used for each iter-
ation. The channels are modeled as CSCG random variables
with zero-mean and unit variance. The calculated MSE is the
average power of the estimation error over a large number of
channel realizations.
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Fig. 2. MSE on H for networks with T = M = N = 2 and T = M =
N = 5.

We compare the proposed SVD-based estimation in Theo-
rem 1 with entry-based estimations explained in what follows.
From (2), if entries of H are seen as independent parameters
to be estimated and neither the special structure of H nor
the relation between H and the noise covariance matrix is
taken into account, the estimation problem can be seen as a
traditional Gaussian one and the ML estimation and LMMSE
estimation are, respectively,

Ĥentry,ML =
1√
β

(S∗S)−1S∗X,

Ĥentry,LMMSE =
√

β [(1 + α)IM + βS∗S]−1 S∗X. (29)

In Figure 2, we show the MSE as a function of P with
T = M = N = 2 and T = M = N = 5. For
these two settings, the proposed SVD-based estimation is the
exact ML estimation. We can see that when P is large, the
proposed SVD-based estimation is about 0.5dB and 1.5dB
better than the two entry-based estimations (ML and LMMSE)
respectively. At low P values, the proposed scheme is slightly
worse than the entry-based LMMSE estimation but still better
than the entry-based ML estimation. For all estimations, the
MSEs scale as O(P−1), that is, the MSEs decrease linearly
with respect to the training power P . This is important in
achieving full diversity in data transmission [27].

In Figure 3, we show the MSE as a function of the
training step size T for a network with M = N = 2 and
P = 20dB. We can see that the MSE decreases and converges
as T increases. This shows that increasing the training time
will decrease the MSE but only to some positive level. The
proposed estimation always has a lower MSE than the two
entry-based ones. In this experiment, since T �= M for T > 2,
the proposed SVD-based estimation is an approximate ML
estimation. To assess the approximation, we also show the sim-
ulated MSE of an SVD-based ideal ML estimation, in which,
the true value of ag is used. In reality, ag is unknown. Thus
the true ML estimation is expected to perform no better than
this ideal one. Figure 3 shows that the proposed estimation
performs about the same as the ideal ML estimation, implying
that it is close to the exact ML estimation.
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Fig. 3. MSE on H of a network with M = N = 2, P = 20dB.
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Fig. 4. MSE on H of a network with M = 2, N = 3, T = 4, P = 20dB.

Next, we investigate the effect of η on the proposed esti-
mation. From the definition in (8), η ∈ (0, 1). We simulate a
network with M = 2, N = 3, T = 4, P = 20dB and draw
the MSE of the proposed estimation as η is approximated by
different values. We can see from Figure 4 that the effect of
the value of η on the MSE is negligible. The maximum MSE
fluctuation (ratio of the absolute difference between an MSE
and the average MSE to the average MSE) is about 1.1%. The
entry-based ML estimation is also shown. We can see that for
all possible η values, the proposed SVD-based estimation has
lower MSEs. The entry-based ML estimation is independent
of η. Its MSE fluctuation, whose largest value is 0.9%, is
due to simulation imprecision only. This further shows the
unimportance of the value of η in the proposed estimation.

B. MSEs on the Transmitter-Relay and Relay-Receiver Chan-
nel Estimations

In this subsection, we simulate the average MSEs on
the proposed individual estimations of the transmitter-relay
channels and relay-receiver channels in Section IV. Define
MSE(f) � E{‖f− f̂‖2

F } and MSE(g) � E{‖g−ĝ‖2
F}, where

the average is over both the noises and the channels.
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Fig. 5. MSEs on f and g of a network with M = N = T = 2.

The proposed estimation with the approximate PDF (pro-
posed approximate estimation) and proposed estimation with
exact PDF (Algorithm 1) are compared with cascade estima-
tion schemes [26], where g is estimated first, based on which
an estimation on f is then obtained. In [26], cascade LMMSE
estimation is investigated for relay networks using DSTC.
Here, we consider both cascade ML and cascade LMMSE
estimations for comparison. First, based on the observation
X̌ in the second training stage only, the ML and LMMSE
estimations of g can be obtained as

ĝcas,ML =
š∗X̌√
P2Ť

, ĝcas,LMMSE =

√
P2Ť š∗X̌

1 + P2Ť
, (30)

respectively. To estimate f , we rewrite the training equation
of the first training stage (2) as:

vec(X) =
√

βSgf + vec(W), (31)

where Sg � (gt ⊗ IT )S. When g is known, both Sg and
the noise covariance matrix are known. Equation (31) is a
traditional Gaussian observation model with Sg the pilot and
f the vector to be estimated. The ML and LMMSE estimations
are, respectively,

f̂cas,ML=
1√
β

(
S∗

gR
−1
WSg

)−1
S∗

gR
−1
Wvec(X), (32)

f̂cas,LMMSE=
√

β
(
IM + βS∗

gR
−1
WSg

)−1
S∗

gR
−1
Wvec(X),(33)

where RW is given in (3). In reality, the estimation of g in
(30) is used in (32) and (33) to obtain an estimation on f ,
i.e., redefining Sg as Sg � (ĝt ⊗ I)S and RW as RW �(
IN + αĝt ¯̂g

) ⊗ IT , where ĝ is the cascade ML or cascade
LMMSE estimation of g correspondingly.

Figure 5 shows the MSEs as a function of P for a network
with T = M = N = 2. We compare the MSEs on both f and
g of the proposed ML estimation with the approximate PDF
(proposed approximate estimation), the proposed estimation
with exact PDF (Algorithm 1), the cascade ML estimation,
and the cascade LMMSE estimation. For the MSE on f ,
compared with the two cascade estimations, the two proposed
estimations are slightly worse at low values of P . As P
increases, the difference diminishes to zero. For the MSE on
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Fig. 6. MSEs on f and g of a network with M = N = T = 4.
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Fig. 7. MSEs on f and g of a network with T = M = 2, P = 20dB.

g, the proposed estimations are about 1.5dB better than the
cascade ones. This is because while cascade estimations use
only the observation X̌ in estimating g, the two proposed
estimations use both X̌ and X. The estimation using the
approximate PDF has close performance to the estimation
using the exact PDF (Algorithm 1), especially for large P .
Thus, in practice, the approximate ML estimation is more
desirable since it has a closed-form solution. Another useful
observation is that all MSEs have the scaling O(P−1). This
is important for full diversity in data transmission [27]. In
Figure 6, we simulate a network with T = M = N = 4.
We only show the MSE of the proposed estimation with
approximate PDF (proposed approximate estimation) since
simulation of the estimation using the exact PDF (Algorithm
1) is computationally too costly. Similar phenomenon can be
observed. With respect to g, the proposed estimation is about
3.5dB better than the two cascade estimations. With respect
to f , it has about the same performance.

Figure 7 shows the MSE as a function of N , the number of
receive antennas, while we set T = M = 2 and P = 20dB.
When N changes, the dimension of g changes, thus for fair
comparison, we show the MSE per channel. We also show
the cascade ML estimation for comparison. The figure shows
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Fig. 8. MSEs on f and g of a network with T = M, N = 2, P = 20dB.

that for both the proposed and cascade ML estimations, with a
fixed training time, the per channel MSE on f decreases as N
increases. For the proposed scheme, the per channel MSE on
g decreases slightly as N increases, while it keeps unchanged
for the cascade scheme.

Figure 8 shows the MSE as a function of M , the number
of transmit antennas, while we set N = 2, T = M , and P =
20dB. Thus as M increases, the training time also increases.
We can see that for both estimations, the per channel MSEs
on both f and g keep unchanged with M .

VI. EXTENSION TO MIMO RELAY NETWORKS

In this section, we discuss the extension of the proposed
channel estimations to the general MIMO relay network with
multiple relay antennas as shown in Figure 9. The transmitter
has M antennas, the receiver has N antennas, and there are in
total R antennas at the relays. The relay antennas can be either
co-located at one relay or distributively located at different
relays. Thus this network contains one transmitter node, one
receiver node, and multiple relay nodes, where every node
can be equipped with multiple antennas. Denote the channel
from the mth transmit antenna to the rth relay antenna as fmr

and the channel from the rth relay antenna to the nth receive
antenna as grn. The channel vector from the transmitter to the
rth relay antenna and the channel vector from the rth relay
antenna to the receiver are thus,

fr �
[

f1r f2r · · · fMr

]t
,

gr �
[

gr1 gr2 · · · grN

]
,

respectively. All channels are assumed to be i.i.d. CN (0, 1).
The end-to-end channel from the mth transmit antenna to

the nth receive antenna via the rth relay antenna is fmrgrn.
By using matrix and vector presentation, the M × N end-to-
end channel matrix from the transmitter to the receiver via
the rth relay antenna is Hr = frgr. The end-to-end channel
estimation problem is the estimation of H1, · · · ,HR. The
individual channel estimation problem is the estimation of
f1, · · · , fR and g1, · · · ,gR.

A straightforward extension of the proposed estimation
schemes to the general MIMO relay network is to solve the

. .
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. .
 . . .

 .

. .
 .

transmitter receiver
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relay

f1
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Fig. 9. MIMO multiple-relay network.

estimation problems related to each relay antenna one by one.
With respect to each relay antenna, the problems become the
same as those for a network with single relay antenna. In other
words, for the end-to-end channel estimation, we consider
the estimation of Hr for different r separately and sequen-
tially; for the individual channel estimation, we consider the
estimation of fr and gr separately and sequentially. Since
channels related to different relay antennas are independent,
this extension does not lose generality or optimality in design1.

VII. CONCLUSIONS

For a relay network with multiple transmit and receive
antennas but a single relay antenna, following the maximum
likelihood approach, we proposed a scheme for the the re-
ceiver to estimate the end-to-end channels, and a scheme
for the receiver to individually estimate both the transmitter-
relay channels and the relay-receiver channels. The estima-
tion of the end-to-end channels was based on the singular
value decomposition and estimations on the singular value
and singular vectors. The proposed approximate maximum
likelihood estimation was shown to perform close to the
exact maximum likelihood estimation and was superior to
entry-based estimations. For the individual channel estimation,
the lengths and the directions of the channel vectors were
estimated and the results were combined to obtain the estima-
tions of the channel vectors. Maximum likelihood estimations
were proposed using both the exact and an approximate
probability density functions of the received signals during
training. The former requires numerical search and the latter
is analytical. Simulation on the mean square error showed
that the two proposed estimations have similar performance.
Compared with previously proposed cascade estimations of the
individual channels, the proposed estimations achieved better
performance for the relay-receiver channels. Extensions to the
general multiple-antenna multi-relay network were discussed.

APPENDIX

A. Proof of Theorem 1

Using the decomposition of H in (5), we look for estima-
tions on a, f̃ , and g̃. From (3), RW =

(
IN + αa2

gg̃
t ¯̃g
)⊗ IT .

For a realization of (a, f̃ , g̃), if ag is further known, RW is a
known matrix. From (4), the PDF of X|a, f̃ , g̃, ag is

p(X|a, f̃ , g̃, ag) =

(2π)−TN det −1(RW)e−vec(X−√
βSH)∗R−1

W vec(X−√
βSH).

1It is noteworthy that for the end-to-end channel estimation, the antenna-by-
antenna extension with respect to the transmit and receive antennas may cause
sub-optimality in design because channel entries corresponding to different
transmit and receive antennas are related, instead of independent.



10 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 8, SEPTEMBER 2012

vec
(
X − a

√
βSf̃ g̃

)∗
R−1

Wvec
(
X − a

√
βSf̃ g̃

)
= vec

(
X − a

√
βSf̃ g̃

)∗ [(
IN + αa2

gg̃
t ¯̃g
)⊗ IT

]−1
vec
(
X− a

√
βSf̃ g̃

)
= vec

(
X − a

√
βSf̃ g̃

)∗ [(
IN + αa2

gg̃
t ¯̃g
)−1 ⊗ IT

]
vec
(
X − a

√
βSf̃ g̃

)
= vec

(
X − a

√
βSf̃ g̃

)∗
vec
[
IT

(
X − a

√
βSf̃ g̃

) (
IN + αa2

gg̃
t ¯̃g
)−T
]

= tr
[(

X− a
√

βSf̃ g̃
)∗ (

X − a
√

βSf̃ g̃
) (

IN + αa2
gg̃

∗g̃
)−1
]
. (34)

F
(
a, f̃ , g̃

)
� tr

[(
X − a

√
βSf̃ g̃

)∗ (
X − a

√
βSf̃ g̃

)
(IN − ηg̃∗g̃)

]
= (1 − η) a2β‖Sf̃‖2

F − 2 (1 − η) a
√

β

(
f̃∗S∗Xg̃∗

)
+ ‖X‖2

F − η‖Xg̃∗‖2
F

= (1 − η)β‖Sf̃‖2
F

⎛
⎝a −



(
f̃∗S∗Xg̃∗

)
√

β‖Sf̃‖2
F

⎞
⎠

2

− (1 − η)

2
(
f̃∗S∗Xg̃∗

)
‖Sf̃‖2

F

+ ‖X‖2
F − η‖Xg̃∗‖2

F . (35)

The ML estimation finds the parameter value that maximizes
the PDF, i.e.,(

â,
ˆ̃f , ˆ̃g
)

= arg max
(a,f̃ ,g̃)

p(X|a, f̃ , g̃, ag) =

arg min
(a,f̃ ,g̃)

vec
(
X−a

√
βSf̃ g̃

)∗
R−1

Wvec
(
X−a

√
βSf̃ g̃

)
. (36)

We recall the following identities for Kronecker product and
vectorization:

(A ⊗ B)−1 = A−1 ⊗ B−1,

vec (ABC) =
(
Ct ⊗ A

)
vec (B) ,

vec (A)∗ vec (B) = tr (A∗B) .

Applying these identities, we have the derivations in (34) at
the top of this page.

Using the Sherman-Morrison-Woodbury formula (Page 48
of [34]), we have(

IN + αa2
gg̃

∗g̃
)−1

=IN − g̃∗
[(

αa2
g

)−1
+ g̃g̃∗

]−1

g̃

=IN − ηg̃∗g̃, (37)

where η is defined in (8) and η ∈ (0, 1). By using (34) and

(37), the objective function in (36) simplifies to F
(
a, f̃ , g̃

)
defined in (35) at the top of this page. Thus, to minimize
F
(
a, f̃ , g̃

)
, we need

a =


(
f̃∗S∗Xg̃∗

)
√

β‖Sf̃‖2
F

. (38)

With this choice of a, the optimization problem in (36)
reduces to (

ˆ̃f , ˆ̃g
)

= argmax
(f̃ ,g̃)

G
(
f̃ , g̃
)

,

where

G
(
f̃ , g̃
)

� (1 − η)

2
[(

Sf̃
)∗

Xg̃∗
]

‖Sf̃‖2
F

+ η‖Xg̃∗‖2
F .

From the definition of P in Theorem 1, we have(
Sf̃
)∗

Xg̃∗ =
(
Sf̃
)∗

PXg̃∗.

Thus

G
(
f̃ , g̃
)
=(1 − η)


2
[(

Sf̃
)∗

PXg̃∗
]

‖Sf̃‖2
F

+ η‖Xg̃∗‖2
F

≤(1 − η)
‖Sf̃‖2

F ‖PXg̃∗‖2
F

‖Sf̃‖2
F

+ η‖Xg̃∗‖2
F

=(1 − η)‖PXg̃∗‖2
F + η‖Xg̃∗‖2

F � H(g̃) (39)

with equality when Sf̃ = γPXg̃∗ for some real γ. So, when
f̃ = γ(S∗S)−1S∗Xg̃∗, G

(
f̃ , g̃
)

is maximized. Since f̃ has
unit-norm, we have

f̃ =
(S∗S)−1S∗Xg̃∗

‖(S∗S)−1S∗Xg̃∗‖F
. (40)

With this choice of f̃ , the optimization becomes the maxi-
mization of H(g̃) defined in (39). Notice that P is a projection
matrix. Thus (PX)∗[(IT − P)X] = 0 and we have

H(g̃)=‖PXg̃∗‖2
F + η

(‖Xg̃∗‖2
F − ‖PXg̃∗‖2

F

)
=‖PXg̃∗‖2

F + η‖(IT − P)Xg̃∗‖2
F

=‖ [P +
√

η(IT − P)] Xg̃∗‖2
F = ‖Zg̃∗‖2

F , (42)

where in the last step, the definition of Z in (10) is used.
With the SVD given in Theorem 1, it is clear that H(g̃) is
maximized when g̃∗ = v1, the right singular vector of the
largest singular value. That is, the ML estimation of g̃ is ˆ̃g =
v∗

1 . By using this result in (40) then (38), the ML estimations
are obtained as in (11)-(13).

B. Proof of Theorem 2

For given f and g, X and X̌ are independent Gaussian since
W and V̌ are independent Gaussian. Using the approximation
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(
âf ,

ˆ̃f , âg, ˆ̃g
)

= arg max
(af ,f̃ ,ag,g̃)

p
(
X, X̌|af , f̃ , ag, g̃

)

=arg min
(af ,f̃ ,ag,g̃)

[∥∥∥X −
√

βafagSf̃ g̃
∥∥∥2

F
+ (1 + α)

∥∥∥∥X̌ −
√

P2Ť agšg̃
∥∥∥∥

2

F

]

=arg min
(af ,f̃ ,ag,g̃)

[
βa2

f a
2
g‖Sf̃‖2

F − 2
√

βafag

[(

Sf̃
)∗

Xg̃∗
]

+ (1 + α)
(

P2Ť a2
g − 2

√
P2Ť ag


(
š∗X̌g̃∗))]

=arg min
(af ,f̃ ,ag,g̃)

⎡
⎢⎣
⎛
⎜⎝√β‖Sf̃‖F afag −



[(

Sf̃
)∗

Xg̃∗
]

‖Sf̃‖F

⎞
⎟⎠

2

+ (1 + α)
(√

P2Ť ag −
 (š∗X̌g̃∗))2

−

2
[(

Sf̃
)∗

Xg̃∗
]

‖Sf̃‖2
F

− (1 + α)
2
(
š∗X̌g̃∗)

⎤
⎥⎦ . (41)

in (16) and the fact that X̌ is independent of f , we have

p(X, X̌|af , f̃ , ag, g̃) = p(X|f ,g)p(X̌|g)

≈ (2π)−TN (1 + α)−TNe−
1

1+α‖X−√
βafagSf̃g̃‖2

F

(2π)−ŤNe
−

‚
‚
‚X̌−

√
P2Ť ag šg̃

‚
‚
‚

2

F .

The ML estimation problem can thus be analyzed as the
equalities in (41) at the top of this page.

To minimize the objective function in (41), we need√
P2Ť ag = 
 (š∗X̌g̃∗) . (43)

and √
β‖Sf̃‖F afag =



[(

Sf̃
)∗

Xg̃∗
]

‖Sf̃‖F

. (44)

With the choices of af and ag that satisfy (44) and (43),
the ML estimation problem becomes(ˆ̃f , ˆ̃g) =

argmax
(f̃ ,g̃)

⎡
⎢⎣
2

[(
Sf̃
)∗

Xg̃∗
]

‖Sf̃‖2
F

+ (1 + α)
2
(
š∗X̌g̃∗)

⎤
⎥⎦ .

Similar to the proof of Theorem 1, the maximum is achieved
when f̃ satisfies (40). With this choice, the ML estimation
further reduces to

ˆ̃g=arg max
g̃

[
‖PXg̃∗‖2

F + (1 + α)
2(š∗X̌g̃∗)
]
. (45)

Notice that, replacing g̃ with ejθg̃ for any θ will not
change the first term in the objective function of (45). So the
maximum is attained at a g̃ that makes š∗X̌g̃∗ a positive real
number. Thus, to solve (45), we can find the g̃ that maximizes
‖PXg̃∗‖2

F + (1 + α)‖š∗X̌g̃∗‖2
F , then adjust g̃ by the phase

∠(š∗X̌g̃∗) to make š∗X̌g̃ real and positive. This is possible
because š∗X̌g̃ is a scalar. Since

‖PXg̃∗‖2
F + (1 + α)‖š∗X̌g̃∗‖2

F = g̃Γ1g̃∗,

where Γ1 is defined in (20), to maximize it, we need g̃∗ to be
the singular vector of the largest singular value of Γ1. With

the SVD of Γ1 in Theorem 2, we need g̃ = q∗
1. To make

š∗X̌g̃ a positive real number, we adjust the angle of g̃ by
multiplying with ej∠(š∗X̌q1) to obtain the ML estimation of
g̃ in (21).

Using (40) and (43), we can find the estimations on f̃ and
ag to be in and (21) and (22).

For the estimation on af , by using (43),

âf =

((Sˆ̃f)∗Xg̃∗)
√

β‖Sˆ̃f‖2
F âg

=

√
P2Ť

β

‖(S∗S)−1S∗Xˆ̃g∗‖F

š∗X̌ˆ̃g∗ ,

which is the second result in (22).
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