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a b s t r a c t

In this paper, we establish the Gagliardo–Nirenberg inequality under Lorentz norms for
fractional Laplacian. Based on special cases of this inequality under Lebesgue norms,
we prove the Lp-logarithmic Gagliardo–Nirenberg and Sobolev inequalities. Motivated by
the L2-logarithmic Sobolev inequality, we obtain a fractional logarithmic Sobolev trace
inequality in terms of the restriction τku of u from Rn to Rn−k. Finally, we prove the
fractional Hardy inequality under Lorentz norms.

© 2012 Published by Elsevier Inc.

1. Introduction

During the last decades, fractional calculus has received a great deal of attention. Many famous mathematicians have
been working in this field and a journal entirely dedicated to the fractional calculus appeared several years ago. The
fractional powers of the Laplacian (−△)s/2 arise in stochastic theory as the operators associated with symmetric s-stable
Levy processes. They play a crucial role in the study of many important PDEs [1–11], among them the quasi-geostrophic
equation in geophysical fluid dynamics [12], which is crucial to the understanding of atmosphere and ocean, as well as
being an enlightening model of 3D Euler equations and Navier–Stokes equations. To study PDEs with fractional Laplacian, it
is necessary to establish several functional inequalities with fractional Laplacians. Themain concern of this paper is to prove
the fractional Gagliardo–Nirenberg and Hardy inequalities in Lorentz spaces.

First, we prove the fractional Gagliardo–Nirenberg inequality under Lorentz norms:

∥u∥Lp,q(Rn) ≤ A∥(−△)s/2u∥
α
q
Lp1,q1 (Rn)

∥u∥
q−α
q

Lp2,q2 (Rn)
(1.1)

and obtain an upper bound for the constant A. Similar inequalities in other spaces have been studied extensively, see [1] and
the references therein.

When working in Lebesgue spaces, similar to (1.1), we get the fractional Gagliardo–Nirenberg inequality:

∥u∥Lp(Rn) ≤ B
α
p ∥(−△)s/2u∥

α
p
Lp1 (Rn)

∥u∥
p−α
p

Lp2 (Rn)
, (1.2)
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from the sharp fractional Sobolev inequality

∥u∥
L

pn
n−ps (Rn)

≤ B∥(−△)s/2u∥Lp(Rn). (1.3)

The special case of (1.2) plays a significant role in a recent work of Frank and Lenzmann [13]. Cotsiolis and Tavoularis in
[14,15] have studied (1.3) for p = 2.

Then, combining (1.2) and the convexity of g(p) : p −→ p ln(


Rn |f |1/pdx), we get the fractional logarithmic
Gagliardo–Nirenberg inequality:

exp


1
q

+
s
n

−
1
p1


Rn

|u(x)|q

∥u∥q
Lq(Rn)

ln


|u(x)|q

∥u∥q
Lq(Rn)


dx


≤

B∥(−△)s/2u∥Lp1 (Rn)

∥u∥Lq(Rn)
, (1.4)

which implies the fractional logarithmic Sobolev inequality:

exp


s
n


Rn

|u(x)|p ln |u(x)|pdx


≤ B∥(−△)s/2u∥Lp(Rn). (1.5)

Merker [16,17] has studied (1.4) for s = 1 and applied in doubly nonlinear diffusion equations. Cotsiolis and Tavoularis
in [18] established (1.5) for p = 2. The case s = 1 of (1.5) becomes the classical logarithmic Sobolev inequality, see, e.g.,
[19–21] and the references therein. Beckner and Pearson in [22] proved that the best constant ( 2

neπ )1/2 of (1.5) for p = 2 and
s = 1 is the asymptotic of the sharp constant of the L2-Sobolev inequality. So, for general s, we guess that the best constant
of (1.5) is ( 2

neπ )s/2 which is the asymptotic of the sharp constant B of fractional Sobolev inequality (1.3).
When p = 2 and 0 < s < 1, (


Rn+1

+

|∇x,th(x, t)|2t1−2sdxdt)1/2 is equivalent to the right hand side of (1.5) (see e.g.
[23,24]). Here h(x, t) is the extension of u(x) defined through the equation

h(x, 0) = u(x),

△x h +
1 − 2s

t
ht + htt = 0.

(1.6)

Thus, (1.5) can also be thought as a logarithmic Sobolev trace inequality. Note that (


Rn+1
+

|∇x,th(x, t)|2t1−2sdxdt)1/2 is not

the L2-norm of the fractional Laplacian of a function on Rn+1. We also deduce a logarithmic Sobolev trace inequality for
fractional Laplacian

exp


Rn−k
|(τku)(x)|2 ln |τku(x)|dx


≤ F∥u∥

n−k
4s−2k
Ḣs(Rn)

. (1.7)

Here τku is the restriction of u from Rn to the n − k dimensional hyperplane Rn−k. Inequality (1.7) generalizes the
corresponding inequalities of Park [25], Xiao [24], and Xiao and Zhai [26].

Our self-contained approach also enables us to prove the fractional Hardy inequality in Lorentz spaces:u(x)|x|s


Lp,q(Rn)

≤ H∥(−△)s/2u(x)∥Lp,q(Rn) (1.8)

and to exhibit an upper bound for the constant H . Note that in a recent work, Frank and Sereinger [27] have established a
sharp version of theHardy inequality; however they have replaced the classical normby another one towhich it is equivalent
only for p = 2. The fractional Hardy inequalities under Lebesgue norms have been extensively studied by Bogdan and
Dyda [28], Dyda [29], Frank and Seiringer [30], Loss and Sloane [31], and Ostrovsky and Sirota [32].

Before proceeding to the subsequent sections, let us introduce several necessary notations. For real number s, the operator
(−△)s/2 is defined through Fourier transformation by

(−△)s/2f (ξ) := (2π |ξ |)sf (ξ).

For 0 < s < n, (−△)s/2 can be viewed as the inverse of the Riesz potential up to a positive constant, that is,

f (x) = Ks,n


Rn

(−△)s/2f (y)
|y − x|n−s

dy, ∀x ∈ Rn (1.9)

with

Ks,n =
Γ
 n−s

2


πn/22sΓ (s/2)

.

The Riesz potential of a function f is defined by the Riesz kernel Is = |x|s−n as, for 0 < s < n,

Is ∗ f (x) =


Rn

f (y)
|x − y|n−s

dy for x ∈ Rn.
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For a measurable function defined on an open domain Rn, we define the distribution functionmf (s) of f as

mf (s) = |{x ∈ Rn
: |f (x)| > s}|.

Here |A| is the Lebesgue measure of the set A ⊂ Rn. From the distribution function, we define the non-increasing
rearrangement of f on (0, ∞) as

f ∗(t) = inf{s > 0 : mf (s) ≤ t}.

For 1 ≤ p ≤ ∞, it is well known that ∥f ∥Lp(Rn) = ∥f ∗
∥Lp(0,∞). This leads to a definition of the classical Lorentz spaces:

Lp,q(Rn) = {f : f is measuable on Rn with ∥f ∥Lp,q(Rn) < ∞}

for 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞, with ∥f ∥Lp,q(Rn) defined by

∥f ∥Lp,q(Rn) = ∥t
1
p −

1
q f ∗(t)∥Lq(0,∞),

where the usual modification has to be made if q = ∞. Obviously, Lp(Rn) = Lp,p(Rn) for 1 ≤ p ≤ ∞. For an introduction to
Lorentz spaces, see, for example, [33–35].

For 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, we define the Lorentz–Sobolev space Ẇ sLp,q(Rn) as the set of functions satisfying
(−△)s/2f ∈ Lp,q(Rn). When p = q, it become the homogeneous Sobolev space Ẇ s,p(Rn). If furthermore p = 2, Ẇ s,2(Rn) :=

Ḣs(Rn).

2. Fractional Gagliardo–Nirenberg inequalities

In this section,we first prove the fractional Gargliardo–Nirenberg inequality under Lorentz norms. Then,we get fractional
logarithmic Gagliardo–Nirenberg and fractional logarithmic Sobolev inequalities. Finally, motivated by a special case of the
fractional logarithmic Sobolev inequalities, we establish a fractional logarithmic Sobolev trace inequality in terms of the
restriction τkf of f .

2.1. Fractional Gagliardo–Nirenberg inequalities

Theorem 2.1. Let 1 ≤ p < ∞, 1 ≤ p2, q, q1, q2 < ∞, 0 < α < q, 0 < s < n and 1 < p1 < n/s. Then the inequality

∥u∥Lp,q(Rn) ≤ A∥(−△)s/2u∥
α
q
Lp1,q1 (Rn)

∥u∥
q−α
q

Lp2,q2 (Rn)
(2.1)

holds for
α

q1
+

q − α

q2
= 1,

α


1
p1

−
s
n


+ (q − α)

1
p2

=
q
p

and

A ≤


3np1

n − p1s

ωn−1

n

 n−s
n
 α

q

.

Proof. Applying the Hölder inequality and simple computation yields

∥u∥q
Lp,q(Rn) = ∥t

1
p −

1
q u∗

∥
q
Lq(0,∞)

=


∞

0
(t

1
p −

1
q u∗(t))qdt

=


∞

0
(t

1
p −

1
q u∗(t))α(t

1
p −

1
q u∗(t))q−αdt

≤


∞

0
(t

1
p −

1
q u∗(t))rαdt

1/r  ∞

0
(t

1
p −

1
q u∗(t))r

′(q−α)dt
1/r ′

≤ ∥t
1
p −

1
q u∗(t)∥α

Lrα(0,∞)∥t
1
p −

1
q u∗(t)∥q−α

Lr′(q−α)(0,∞)

≤ ∥t
1
p −

1
q +

1
rα −

1
rα u∗(t)∥α

Lrα(0,∞)∥t
1
p −

1
q +

1
r′(q−α)

−
1

r′(q−α) u∗(t)∥q−α

Lr′(q−α)(0,∞)

≤ ∥u∥α
Lp3,q1 (Rn)∥u∥

q−α

Lp2,q2 (Rn)
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where r, s satisfy

1 < r, r ′ < ∞,
1
r

+
1
r ′

= 1, rα ≥ 1,

and
1
p3

=
1
p

−
1
q

+
1
rα

, q1 = rα,

1
p2

=
1
p

−
1
q

+
1

r ′(q − α)
, q2 = r ′(q − α).

Note that

u(x) = Ks,n


Rn

(−△)s/2u(y)
|x − y|n−s

dy.

Using the convolution inequality in Lorentz spaces (see O’Neil’s [34, Theorem 2.6]), we deduce from |x|s−n
∈ L

n
n−s ,∞(Rn)

that

∥u∥Lp3,q1 (Rn) ≤ c∥(−△)s/2u∥Lp1,q1 (Rn)

for
1
p3

=
1
p1

−
s
n
, 0 < s < n/p1.

It follows from [26, Theorem 2.1, Remark 2.4] that the constant c satisfies

c ≤
3np1

n − p1s

ωn−1

n

 n−s
n

if 1 ≤ q < ∞. Thus, (2.1) holds for 0 < s < n, 0 < s < n/p1,

α

q1
+

q − α

q2
= 1, α


1
p1

−
s
n


+ (q − α)

1
p2

=
q
p
. �

Whenworking in Lesbesgue spaces,weneed the following sharp fractional Sobolev inequality (2.2)which can be deduced
from the sharp Hardy–Littlewood Sobolev inequality:

Lemma 2.2 ([36]). For 1 < p < ∞ and 0 < s < n/p, we have

∥u∥
L

pn
n−ps (Rn)

≤ B∥(−△)s/2u∥Lp(Rn) (2.2)

with the best constant

B = 2−sπ−s/2 Γ ((n − s)/2)
Γ ((n + s)/2)


Γ (n)

Γ (n/2)

s/n

. (2.3)

Similar to Theorem 2.1, we can get the following fractional Gagliardo–Nirenberg inequalities from (2.2).

Corollary 2.3. Let 1 ≤ p, p2 < ∞, 0 < α < p < ∞, 0 < s < n and 1 < p1 < n/s. We have

∥u(x)∥Lp(Rn) ≤ B
α
p ∥(−∆)s/2u(x)∥

α
p
Lp1 (Rn)

∥u(x)∥
p−α
p

Lp2 (Rn)
(2.4)

with

α


1
p1

−
s
n


+

p − α

p2
= 1

and B given by (2.3)

Proof. Hölder’s inequality implies
Rn

|u(x)|pdx =


Rn

|u(x)|α|u(x)|p−αdx

≤ ∥u |
α
∥Lp̄ ∥u|p−α

∥Lr̄ ,
1
p̄

+
1
r̄

= 1

= ∥u∥α

Lαp̄∥u∥
p−α

L(p−α)r̄ .
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Let αp̄ := p0 and (p − α)r̄ := p2. We have
Rn

|u(x)|pdx ≤ ∥u∥α
Lp0 ∥u∥

p−α

Lp2 ,

and α
p0

+
p−α

p2
= 1. Then, (2.2) yields (2.4) with p1 satisfying 1

p1
+

n−s
n = 1 +

1
p0
. �

Remark 2.4. (i) It follows from the special case p1 = q1 and p2 = q2 of (2.1) that the inequality

∥u∥Lp,q(Rn) ≤ A∥(−△)s/2u∥
α
q
Lp1 (Rn)

∥u∥
q−α
q

Lp2 (Rn)
(2.5)

with q = p(1 −
αs
n ). (2.5) can be thought of as a refinement of (2.4) since Lp,r1 ↩→ Lp,r2 for r1 < r2.

(ii) When q = p1 = α, (2.5) becomes

∥u∥
L

qn
n−qs ,q

(Rn)
≤ A∥(−△)s/2u∥Lq(Rn)

which can also be thought of as a refinement of (2.2) (see, e.g., [26]).

2.2. Logarithmic Gagliardo–Nirenberg inequalities

We prove fractional logarithmic Gagliardo–Nirenberg inequalities which imply the Lp-logarithmic Sobolev inequalities
for fractional Laplacian.

Theorem 2.5. Let 1 < q < ∞, 0 < s < n and 1 < p1 < n/s. Then the inequality

exp


1
q

+
s
n

−
1
p1


Rn

|u(x)|q

∥u∥q
Lq(Rn)

ln


|u(x)|q

∥u∥q
Lq(Rn)


dx


≤

B∥(−△)s/2u∥Lp1 (Rn)

∥u∥Lq(Rn)
(2.6)

holds for

1
q

+
s
n

−
1
p1

> 0

and B given by (2.3).

Proof. The convexity of g(h) : p −→ h ln(


Rn |u(x)|1/hdx) implies

g ′(h) = ln


Rn
|u(x)|1/hdx


−

1
h


Rn |u(x)|1/h ln |u(x)|dx

Rn |u(x)|1/hdx
≥

g(h1) − g(h)
h1 − h

for h > h1 ≥ 0. By taking h =
1
q and h1 =

1
p , Merker in [17] established the following logarithmic Hölder inequalities:

Rn

|u(x)|q

∥u∥q
Lq(Rn)

ln


|u(x)|q

∥u∥q
Lq(Rn)


dx ≤

p
p − q

ln


∥u∥q

Lp(Rn)

∥u∥q
Lq(Rn)


for 0 < q < p ≤ ∞. We can choose p =

nq
n−qs ∈ (q, ∞) for p2 = q and α satisfying the condition of Corollary 2.3 and get


Rn

|u(x)|q

∥u∥q
Lq(Rn)

ln


|u(x)|q

∥u∥q
Lq(Rn)


dx ≤

p
p − q

ln



B

α
p ∥(−△)s/2u∥

α
p
Lp1 (Rn)

∥u∥
p−α
p

Lp2 (Rn)

q

∥u∥q
Lq(Rn)


≤

qα
p − q

ln

B∥(−△)s/2u∥Lp1 (Rn)

∥u∥Lq(Rn)


.

Note that

α


1
p1

−
s
n


+ (p − α)

1
q

= 1 implies
qα

p − q
=

1
1
q +

s
n −

1
p1

.

Thus, (2.6) holds. �

When q = p1, the previous logarithmic Gagliardo–Nirenberg inequalities imply the following logarithmic Sobolev
inequalities for fractional Laplacian.
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Corollary 2.6. For any 0 < s < n, 1 < p < n/s, u ∈ Ẇ s,p(Rn) such that ∥u∥Lp(Rn) = 1, we have

exp


s
n


Rn

|u(x)|p ln |u(x)|pdx


≤ B∥(−△)s/2u∥Lp(Rn) (2.7)

with B given by (2.3).

Remark 2.7. (i) If the best constant for (2.7) is defined as

D = sup


exp

 s
n


Rn |u(x)|p ln |u(x)|pdx


∥(−△)s/2u∥Lp(Rn)

: u ∈ Ẇ s,p(Rn), ∥u∥Lp(Rn) = 1


,

then D satisfies D ≤ B. The exact form of D is unknown. For p = 2, an upper bound estimate for Dwas given by Cotsiolis
and Tavoularis in [15].

(ii) When s = 1, it is well known that the sharp constant for the logarithmic Sobolev inequality for p = 2 is ( 2
neπ )1/2 which

is the asymptotic of the sharp constant for the corresponding Sobolev inequality. So, it is reasonable to guess that the
best constant D for (2.7) is the asymptotic of the best constant B for fractional Sobolev inequalities (2.2). Recalling the
Stirling formula

Γ (s + 1) ∼
√
2πss+

1
2 , as s −→ ∞,

we get
Γ (n)

Γ (n/2)

s/n

∼


2n
e

s/2

and
Γ ((n − s)/2)
Γ ((n + s)/2)

∼


2
n

s

as n −→ ∞. Then, B ∼ ( 2
neπ )s/2 as n −→ ∞. So, we guess D = ( 2

neπ )s/2.

2.3. Logarithmic Sobolev trace inequalities

When p = 2, Ẇ s,2(Rn) = Ḣs(Rn) is endowed the norm

∥u∥Ḣs(Rn) =


Rn

|2πξ |
2s
|u(ξ)|2dξ

1/2

,

which is equivalent to (


Rn+1
+

|∇x,th(x, t)|2t1−2sdxdt)1/2 up to a constant when 0 < s < 1 (see e.g. [23,24]). Here h(x, t) is
the extension of u(x) defined through the equation

h(x, 0) = u(x),

△x h +
1 − 2s

t
ht + htt = 0.

(2.8)

So, when 0 < s < 1, if we use (


Rn+1
+

|∇x,th(x, t)|2t1−2sdxdt)1/2 to replace the right hand side of (2.7) up to a constant, then

we can think (2.7) as a logarithmic Sobolev trace inequality. Note that (


Rn+1
+

|∇x,th(x, t)|2t1−2sdxdt)1/2 is not the L2-norm of

the fractional Laplacian of a function on Rn+1. We will deduce a logarithmic Sobolev trace inequality for fractional Laplacian
in terms of the restriction τku of u ∈ Ḣs(Rn) to the n − k dimensional hyperplane given by

(τku)(x1, x2, . . . , xn−k) = u(x1, x2, . . . , xn−k, 0, 0, . . . , 0)

from the following Sobolev trace inequality.

Theorem 2.8 (Einav and Loss in [37]). Let 0 ≤ k < n and k
2 < s < n

2 . For any u ∈ Ḣs(Rn), we have

∥τku∥2

L
2(n−k)
n−2s (Rn−k)

≤ E∥u∥Ḣs(Rn) (2.9)

with the best constant

E = 2−2sπ−s Γ (n/2 − s)Γ (s − k/2)
Γ (s)Γ (n/2 + s − k)


Γ (n − k)

Γ ((n − k)/2)

 2s−k
n−k

.

In the following, we use this Sobolev trace inequality to obtain a logarithmic Sobolev trace inequality.
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Theorem 2.9. Let k, n be integers with n ≥ 2, 0 ≤ k < n and k
2 < s < n

2 . If u ∈ Ḣs(Rn) and ∥τku∥L2(Rn−k) = 1, then

exp


Rn−k
|(τku)(x)|2 ln |τku(x)|dx


≤ F∥u∥

n−k
4s−2k
Ḣs(Rn)

(2.10)

with

F =


2−2sπ−s Γ (n/2 − s)Γ (s − k/2)

Γ (s)Γ (n/2 + s − k)

 n−k
4s−2k


Γ (n − k)

Γ ((n − k)/2)

 1
2

.

Proof. Let p =
(n−k)(q−2)

2s−k , 2 < q < 2(n−k)
n−2s . Applying the Hölder inequality, we have

∥τku∥
q
Lq(Rn−k)

=


Rn−k

|τku(x)|p|τku(x)|q−pdx

≤ ∥τku∥
p

L
2(n−k)
n−2s (Rn−k)


Rn−k

|(τku)(x)|2
1− p(n−2s)

2(n−k)
.

Using the fact ∥τku∥L2(Rn−k) = 1 and (2.9), we get
Rn−k

|τku(x)|q−2
|τku(x)|2dx

 1
q−2

=


Rn−k

|τku(x)|qdx
 1

q−2

≤ (E∥u∥Ḣs(Rn))
n−k
4s−2k . (2.11)

Since |τku|2dx can be treated as a probability measure on Rn−k, Jensen’s inequality implies

exp


Rn−k
|τku(x)|2 ln(|τku(x)|)dx


=


exp


Rn−k

|τku(x)|2 ln(|τku(x)|q−2)dx
 1

q−2

≤


Rn−k

|τku(x)|q−2
|τku(x)|2dx

 1
q−2

. (2.12)

So, (2.11) and (2.12) give us (2.10). �

Remark 2.10. Xiao in [24] proved that, for u ∈ Ḣs(Rn−1) with ∥u∥L2(Rn−1) = 1,

exp


Rn−1
|u(x)|2 ln |u(x)|dx


≤ G


Hn

|∇(e−(−△)1/2tu)(x, t)|2t1−2sdxdt
 n−1

4s

with

G =


21−4s

π sΓ (2 − 2s)
Γ ((n − 1)/2 − s)
Γ ((n − 1)/2 + s)

 n−1
4s


Γ (n − 1)
Γ ((n − 1)/2)

 1
2

.

Note that for the case k = 1, our constant differs from Xiao’s by a factor 1/2. This is due to the fact that (e−(−△)1/2tu)(x, t) is
only defined on Hn

= {(x, t) : x ∈ Rn−1, t > 0}.

3. Fractional Hardy inequalities

In this section, we prove the Hardy inequalities for fractional Laplacian in Lorentz spaces and an upper bound for the
constant.

Theorem 3.1. Let 1 < p < ∞, 0 < s < n/q, and 1 ≤ q ≤ ∞. There holdsu(x)|x|s


Lp,q(Rn)

≤ H∥(−△)s/2u(x)∥Lp,q(Rn), (3.1)

with

H ≤
3p2ωn−1

(n − ps)(p − 1)
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if 1 ≤ q < ∞, and

H ≤ e1/e


ωn−1p2

s(p − 1)2 +
np(p−1)
n−ps


Ks,n

if q = ∞.

Proof. Recall a generalized version of Hölder’s inequality: if 1 ≤ p1, p2, q1, q2 ≤ ∞, then

∥fg∥Lp,q(Rn) ≤
p

p − 1
∥f ∥Lp1,q1 (Rn)∥g∥Lp2,p2 (Rn)

for any f ∈ Lp1,q1(Rn) and g ∈ Lp2,p2(Rn) with

1
p

=
1
p1

+
1
p2

and
1
q

=
1
q1

+
1
q2

.

The proof of this inequality can be found in [34].
We take g(x) = |x|−s and it is easy to see that g(x) ∈ Ln/s,∞(Rn) with ∥g∥Ln/s,∞(Rn) = (

ωn−1
n )s/n. Here ωn−1 is the surface

area of the unit ball in Rn. So, we getu(x)|x|s


Lp,q(Rn)

≤
p

p − 1

ωn−1

n

s/n
∥u(x)∥

L
np

n−ps ,q
(Rn)

with 1 ≤ q ≤ ∞. It follows from [26, Theorem 2.1, Remark 2.4] that

∥u(x)∥
L

np
n−ps ,q

(Rn)
≤ c∥(−△)s/2u(x)∥Lp,q(Rn)

for any u ∈ Lp,q(Rn) with 1 ≤ q ≤ ∞, 1 < p < ∞, and 0 < s < n/p. Here the sharp constant c satisfies

c ≤
3np

n − ps

ωn−1

n

 n−s
n

if 1 ≤ q < ∞, and

c ≤ e1/e


np
s(p − 1) +

np
n−ps


Ks,n

ωn−1

n

 n−s
n

if q = ∞, where Ks,n =
Γ ( n−s

2 )

πn/22sΓ (s/2)
. Thus, we have (3.1). �

Remark 3.2. When p = q and 0 < s < 1, (3.1) becomes
Rn

|u(x)|p

|x|sp
dx
1/p

≤ G∥(−△)s/2u(x)∥Lp(Rn)

which has been studied in [27].
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