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Abstract. In this article we study local and global well-posedness of the La-
grangian Averaged Euler equations. We show local well-posedness in Triebel-

Lizorkin spaces and further prove a Beale-Kato-Majda type necessary and suf-

ficient condition for global existence involving the stream function. We al-
so establish new sufficient conditions for global existence in terms of mixed

Lebesgue norms of the generalized Clebsch variables.

1. Introduction. In [12, 13], Holm, Marsden and Ratiu introduced the 3D La-
grangian averaged Euler equations as follows:{

∂tu+ (uα · ∇)u+ (∇uα)T · u = −∇p,
divu = 0.

(1)

Here the j−th component of ∇v · u is (∇v · u)j =
∑3
k=1 ∂jvkuk, and the relation

between the velocity u and the averaged velocity uα is given by

uα = (1− α24)−1u. (2)

It is easy to see that when α = 0 (1) reduces to the 3D incompressible Euler
equations.

Similar to the 3D Euler equations, (1) also enjoys a “vorticity formulation” after
taking curl of both sides and denoting ω = ∇× u:{

∂tω + (uα · ∇)ω = ∇uα · ω,
ω(0) = ω0.

(3)

Note that (3) has the same form as the vorticity formulation for the 3D Euler
equations, except that the transporting velocity u has been replaced by the “aver-
aged” velocity uα = (1− α24)−1u. One can further introduce the stream function
ψ through −4ψ = ω. For convenience of the readers, we summarize the relations
between u, ω, the averaged velocity uα and the stream function ψ:

−4ψ = ω, u = ∇× ψ = ∇× (−4)−1ω, uα = (1− α24)−1∇× ψ. (4)

Equation (1) has both practical and theoretical significance. On one hand, it
can be applied to the study of turbulence as a closure model ([5, 6, 10]); On the
other hand, (1) enjoys similar geometrical and analytical structures as that of the
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3D Euler equations and thus can be studied as a regularized model of the latter.
For the geometrical side of the theory, we refer the readers to [13, 21, 22]. In the
following we will focus on the analytical side.

A long-standing open problem in mathematical fluid mechanics is the global
well-posedness/finite time singularity of the 3D Navier-Stokes/Euler equations. It
is thus natural to study the same problem for the Lagrangian averaged equations
and hope for some insight. Interestingly, despite the fact that (1) is “regularized”, a
fact clearly seen from the vorticity formulation (3), its global well-posedness/finite
time singularity still seems beyond current machinery of analysis. In this article
we will derive some new necessary and sufficient conditions for the global well-
posedness of (1). To put our results in context, we review some recent progress
before introducing the main results of this article.

In [15], Hou and Li studied the local existence and blow-up criterion for solution
in Hm(R3). They proved that if ω0 ∈ Hs(R3) with s ≥ 2 and∫ T

0

‖ψ‖BMOdt <∞, for some T > 0,

then for any α > 0, there exists a unique global solution in Hs(R3) with

‖ω(t)‖Hs(R3) ≤ C(T )‖ω(0)‖Hs(R3), for 0 ≤ t ≤ T.

Liu, Wang and Zhang in [19] showed that if ω0 ∈W s,p(R3) with 3
2 < p <∞, and∫ T

0

‖ψ‖Ḃ0
∞,∞(R3)dt <∞, for some T > 0,

then for any α > 0, there exists a unique global solution in W s,p(R3) with

‖ω(t)‖W s,p(R3) ≤ C(T )‖ω(0)‖W s,p(R3), for 0 ≤ t ≤ T.

Recently, Liu and Jia in [20] proved that if ω0 ∈ Bsp,q(R3) with s > 3
p , 1 < p < ∞

and 1 ≤ q ≤ ∞, or s = 3
p , 1 < p <∞ and q = 1, and∫ T

0

‖ψ‖Ḃ0
∞,∞(R3)dt <∞, for some T > 0,

then for any α > 0, there exists a unique global solution in Bsp,q(R3) with

‖ω(t)‖Bsp,q(R3) ≤ C(T )‖ω(0)‖Bsp,q(R3), for 0 ≤ t ≤ T.

In this article, we will study the local existence and blow-up criterion of equation
(3) in Triebel-Lizorkin spaces F sp,q(Rn). More specifically, we show that

1. If ω0 ∈ F sp,q(R3), for either s > 3
p with 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, or s = 3

with p = 1 and q ∈ [1,∞], the Lagrangian averaged 3D Euler equations (3) is
locally well-posed in F sp,q(R3).

2. If ∫ T

0

‖ψ(t)‖Ḟ 0
∞,∞(R3)dt <∞ for some T > 0,

then the Lagrangian averaged 3D Euler equations have a unique global solu-
tion ω(t) ∈ F sp,q(R3), satisfying

‖ω(t)‖F sp,q(R3) ≤ C(T )‖ω(0)‖F sp,q(R3), for 0 ≤ t ≤ T. (5)
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A novel approach to the global well-posedness problem is pioneered by Hou and
Li in [15], with inspiration from the classical Clebsch representation of vorticity.
They show that, if the initial vorticity ω can be written in terms of two level set
functions as follows,

ω(0, x) = ω0(φ0, ψ0)∇φ0 ×∇ψ0,

then this representation remains true for later times,

ω(t, x) = ω0(φ, ψ)∇φ×∇ψ,
as long as the level set functions φ, ψ evolve according to

φt + (uα · ∇)φ = 0, φ(0, x) = φ0(x),

ψt + (uα · ∇)ψ = 0, ψ(0, x) = ψ0(x).

In this case, they proved that if the initial data ω0, φ0 and ψ0 are smooth and
bounded, then the Lagrangian averaged 3D Euler equations have a unique smooth
solution up to T as long as either∫ T

0

‖φ‖TV dt <∞ or

∫ T

0

‖ψ‖TV dt <∞. (6)

Moreover, the following estimate holds

‖ω(t)‖Hm(R3) ≤ C‖ω(0)‖Hm(R3), 0 ≤ t ≤ T

for m > 5/2. Here ‖φ‖TV =
∑3
i=1 ‖φ‖TV xi for

‖φ‖TV x1 = sup
x2,x3

∫ ∞
−∞

∣∣∣∣ ∂∂x1φ(x1, x2, x3)

∣∣∣∣ dx1
and ‖φ‖TV x2

and ‖φ‖TV x3
defined similarly. This global existence condition has

been extended by Deng, Hou and Yu in [9] to the case of the vorticity represented
by generalized Clebsch Variables.

In this article, we will generalize conditions (6). More specifically, we replace the
TV norms by the following more general mixed norms:

3∑
j=1

∥∥∥∥ ∂ψ∂yj
∥∥∥∥
L
p1
y′ L

q1
yij

(R3)

,

3∑
j=1

∥∥∥∥ ∂φ∂yj
∥∥∥∥
L
p1
y′ L

q1
yij

(R3)

of the level set functions ψ and φ and 1 ≤ p1, q1 ≤ ∞ with

1− 2

p1
− 1

q1
∈ [0, 1],

for ij ∈ {1, 2, 3}. Note that for each j, a different ij can be taken. Here y′ denotes
the remaining 2D vector excluding yj . It is easy to see that (6) corresponds to the
special case p1 =∞, q1 = 1 and ij = j.

The rest of this paper is organized as follows. In Section 2, following some
basic facts of the Littlewood-Paley theory, we prove the local existence and blow-up
criterion for solution in Triebel-Lizorkin spaces F sp,q(Rn). In Section 3, we first give a
brief review of Clebsch variables as well as more general level set formulation of the
Lagrangian averaged Euler equations, then establish the global existence conditions
in terms of mixed norms.
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2. Local existence and blow-up criterion in F sp,q(R3).

2.1. Basics of Littlewood-Paley theory and Triebel-Lizorkin spaces. The
most intuitive definition of Triebel-Lizorkin spaces is based on the following
Littlewood-Paley decomposition (c.f. [28, 29]).

Let S be the Schwartz class of rapidly decreasing functions. For a given f ∈ S,
its Fourier transform f̂ is defined by

f̂(ξ) =
1

(2π)n/2

∫
Rn
e−ix·ξf(x)dx.

We consider φ ∈ S with the properties Suppφ̂ ⊂ {ξ ∈ Rn : 1
2 ≤ |ξ| ≤ 2}, and

φ̂(ξ) > 0 if 1
2 < |ξ| < 2. Letting φ̂j = φ̂(2−jξ), we can adjust the normalization

constant in front of φ̂ such that∑
j∈Z

φ̂j(ξ) = 1, ∀ξ ∈ Rn\{0}.

Given k ∈ Z, we define Sk ∈ S through its Fourier transform

Ŝk(ξ) = 1−
∑
j≥k+1

φ̂j(ξ).

We observe that

Suppφ̂j ∩ Suppφ̂j′ = ∅ if |j − j′| ≥ 2.

Let s ∈ R, p, q ∈ [0,∞]. Given f ∈ S ′, denote 4jf = φj ∗ f, and then the
homogeneous Triebel-Lizorkin semi-norm ‖f‖Ḟ sp,q is defined by

‖f‖Ḟ sp,q(Rn) =

∥∥∥∥∥∥∥
∑
j∈Z

(2sj |4jf(·)|)q
1/q

∥∥∥∥∥∥∥
Lp(Rn)

, 1 ≤ q <∞

‖f‖Ḟ sp,∞(Rn) =

∥∥∥∥sup
j∈Z

(2sj |4jf(·)|)
∥∥∥∥
Lp(Rn)

, q =∞,

where Lp(Rn) is the usual Lebesgue space on Rn. The inhomogeneous Triebel-
Lizorkin norm ‖f‖F sp,q is defined by

‖f‖F sp,q(Rn) = ‖f‖Lp(Rn) + ‖f‖Ḟ sp,q(Rn)
which is equivalent to∥∥∥∥∥∥∥

 ∞∑
j=0

(2sj |4jf(·)|)q
1/q

∥∥∥∥∥∥∥
Lp(Rn)

, 1 ≤ q <∞

with usual modification for q =∞.
Triebel-Lizorkin spaces include the usual Sobolev space W s,p(Rn) through the

relation W s,p(Rn) = F sp,2(Rn). In particular, we have F s2,2 = W s,2 = Hs.
The key to the application of Littlewood-Paley in nonlinear partial differential

equations is a set of inequalities and estimates relating different function spaces
and quantify the effect of common differential operators on them. We begin with
Bernstein’s inequality.

Lemma 2.1 ([25, 28, 29]). Let f ∈ S ′(Rn).
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(i) If Suppf̂ ⊂ {ξ ∈ Rn : |ξ| ≤ r}, then there is a constant C such that, for
1 ≤ p ≤ q ≤ ∞,

‖f‖Lq(Rn) ≤ Crn( 1
p−

1
q )‖f‖Lq(Rn),

‖∂βf‖Lp(Rn) ≤ Cr|β|‖f‖Lp(Rn).

(ii) If Suppf̂ ⊂ {ξ ∈ Rn : |ξ| ≈ r}, then there is a constant C such that, for
1 ≤ p ≤ q ≤ ∞,

‖f‖Lq(Rn) ≈ Crn( 1
p−

1
q )‖f‖Lq(Rn),

sup
|β|=k

‖∂βf‖Lp(Rn) ≈ Crk‖f‖Lp(Rn).

Next we recall various embeddings for Triebel-Lizorkin spaces.

Lemma 2.2 ([26]).
(i) For s > n

p with p, q ∈ [1,∞], or s = n with p = 1 and q ∈ [1,∞], there holds

‖f‖L∞(Rn) ≤ C‖f‖F sp,q(Rn).

(ii) For s ≥ n
(

1
p −

1
r

)
with q ∈ [1,∞] and 1 ≤ p < r <∞, there holds

‖f‖Lr(Rn) ≤ C‖f‖F sp,q(Rn).

Now we list the Commutator type estimates, Beale-Kato-Majda type inequalities
and Moser type inequalities in Triebel-Lizorkin spaces, respectively. They are useful
tools for the study of the local existence and blow-up criterion for some partial
differential equations.

Lemma 2.3 ([7]). Let (p, q) ∈ (1,∞)× (1,∞], or p = q =∞, and f be a solenoidal
vector field. Then, for s > −1, we have∥∥∥∥∥∥

(∑
k∈Z

(2ks([f,4k] · ∇g))q

)1/q
∥∥∥∥∥∥
Lp1 (Rn)

≤C
(
‖∇f‖L∞(Rn)‖g‖Ḟ sp,q(Rn) + ‖g‖L∞(Rn)‖∇f‖Ḟ sp,q(Rn)

)
, (7)

where [f,4k] · ∇g = (f · ∇)4kg −4k(f · ∇)g.

Lemma 2.4 ([3, 4]). Let s > n
p with p ∈ [1,∞], q ∈ [1,∞). Then, there exists a

constant C such that the following inequality holds

‖f‖L∞(Rn) ≤ C(1 + ‖f‖Ḟ 0
∞,∞

(log+ ‖f‖F sp,q(Rn) + 1)). (8)

Lemma 2.5 ([3, 4]). Let s > 0, (p, q) ∈ (1,∞)× (1,∞], or p = q =∞. Then, there
exists a constant C such that the following inequality holds:

‖fg‖Ḟ sp,q(Rn) ≤ C
(
‖f‖Lp1 (Rn)‖g‖Ḟ sp2,q(Rn) + ‖g‖Lr1 (Rn)‖f‖Ḟ sr2,q(Rn)

)
(9)

for p1, r1 ∈ [1,∞] with

1

p
=

1

p1
+

1

p2
=

1

r1
+

1

r2
.
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Finally we need some understanding of how differential and pseudo-differential
operators act on various Triebel-Lizorkin spaces.

A function m defined in Rn\{0} is called to satisfy a Hörmander condition of
order k if

|m(ξ)| ≤ C, in Rn\{0},
and

L2|β|−n
∫
L<|ξ|<2L

|Dβm(ξ)|2dξ ≤ C,

for all multi-indices β with |β| ≤ k and C independent of L > 0.
The Hörmander multiplier theorem (c.f. [27]) states that the multiplier operator

T associated with m, T̂ f(ξ) = m(ξ)f̂(ξ), f ∈ S(Rn), is bounded in Lp(Rn), for
1 < p <∞ if the multiplier m satisfies a Hörmander condition of order k > n/2.

If we define T1 = (1−α24)−1(−4) by T̂1f(ξ) = m(ξ)f̂(ξ) with m(ξ) = |ξ|2
1+α2|ξ|2 ,

for any f ∈ S(Rn). It is easy to see that m satisfies a Hörmander condition. There-
fore we have

‖T1f‖Lp(Rn) ≤ C‖f‖Lp(Rn). (10)

Meanwhile, it is easy to prove that

‖T1f‖Ḟ 0
∞,∞(Rn) ≤ C‖f‖Ḟ 0

∞,∞(Rn). (11)

Furthermore, for any Riesz-type operator R, we have,

‖Rf‖F sp,q(Rn) ≤ ‖f‖F sp,q(Rn) (12)

for p, q ∈ [1,∞], s ∈ R, and

‖Rf‖Ḟ 0
∞,∞(Rn) ≤ C‖f‖Ḟ 0

∞,∞(Rn). (13)

In particular, we have
‖Rf‖Lp(Rn) ≤ C‖f‖Lp(Rn) (14)

for 1 < p <∞.
Since ∇u = ∇∇× (−4)−1ω, (14) implies

‖∇u‖Lp(Rn) ≤ C‖ω‖Lp(Rn) (15)

for 1 < p <∞. On the other hand, ∇uα = (1−α2∆)−1∇∇×ψ = T1∇∇×(−4)−1ψ,
consequently (11) and (13) imply

‖∇uα‖Ḟ 0
∞,∞(Rn) ≤ C‖ψ‖Ḟ 0

∞,∞(Rn) (16)

The following result can be deduced from Lemmas 2.1 and the Hörmander mul-
tiplier theorem.

Lemma 2.6. Let uα = (1− α24)−1u. Then for any u ∈ Lp(R3), 1 < p <∞,
‖uα‖W 2,p(Rn) ≤ C‖u‖Lp(Rn), (17)

and for any u ∈ F sp,q(Rn), s ∈ R, 1 < p <∞ and 1 ≤ q ≤ ∞,
‖uα‖F s+2

p,q (Rn) ≤ C‖u‖F sp,q(Rn). (18)

According to (15) and (17), we have, for 1 < p <∞,
‖∇uα‖W 2,p(Rn) ≤ C‖∇u‖Lp(Rn) ≤ C‖ω‖Lp(Rn). (19)

This can also be found in [19] and [20].
Since uα = (1− α24)−1∇× (−4)−1ω, we get

∇uα = (1− α24)−1Rω
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where R = ∇∇× (−4)−1 is a Riesz operator. Thus (12) and (18) imply

‖∇uα‖F s+2
p,q (Rn) ≤ C‖ω‖F sp,q(Rn). (20)

This estimate is very important in the proof of our main results.

2.2. Local existence and blow-up criterion. In this section, we get the fol-
lowing result about the local existence and blow-up criterion of solution in the
Triebel-Lizorkin spaces F sp,q(R3). Our criterion is sharper than the result of Hou

and Li [15] in the sense that the BMO(R3) norm of the stream function is re-

placed by the Ḟ 0
∞,∞(R3) norm, which is weaker than the BMO(R3) norm (namely,

BMO(Rn) ↪→ Ḟ 0
∞,∞(Rn)).

Theorem 2.7.
(i) If ω0 ∈ F sp,q(R3), for either s > 3

p with 1 ≤ p < ∞ and 1 ≤ q ≤ ∞, or s = 3

with p = 1 and q ∈ [1,∞], the Lagrangian averaged 3D Euler equations (3) is locally
well-posed in F sp,q(R3).
(ii) If ∫ T

0

‖ψ(t)‖Ḟ 0
∞,∞(R3)dt <∞,

then the solution in (i) exists up to at least T , and satisfies

‖ω(t)‖F sp,q(R3) ≤ C(T )‖ω(0)‖F sp,q(R3), for 0 ≤ t ≤ T. (21)

Proof. First we clarify the source of the restriction on p. According to Lemma 2.6,
we have

‖∇uα‖L∞(R3) ≤ C‖∇uα‖F s+2
p,q (R3) ≤ C‖ω‖F sp,q(R3) (22)

and ‖ω‖L∞(R3) ≤ C‖ω‖F sp,q(Rn) for s > 3
p with 1 ≤ p <∞ and 1 ≤ q ≤ ∞, or s = 3

with p = 1 and 1 ≤ q ≤ ∞.
Now we start the proof. Applying 4j to (3), we have

∂t4jω + (uα · ∇)4jω = (uα · ∇)4jω −4j(uα · ∇)ω +4j(∇uα · ω).

Since divuα = 0, we deduce from Lemmas 2.3 and 2.5 and inequality (20) that

d

dt
‖ω(t)‖Ḟ sp,q(R3) (23)

≤C

‖∇uα(t) · ω(t)‖Ḟ sp,q(R3)+

∥∥∥∥∥∥∥
∑
j∈Z

2jqs[(uα · ∇)4jω−4j(uα · ∇)ω]q

1/q
∥∥∥∥∥∥∥
Lp(R3)


≤C(‖∇uα(t)‖L∞(R3)‖ω(t)‖Ḟ sp,q(R3) + ‖ω(t)‖L∞(R3)‖∇uα(t)‖Ḟ sp,q(R3))

≤C(‖∇uα(t)‖L∞(R3)‖ω(t)‖F sp,q(R3) + ‖ω(t)‖L∞(R3)‖∇uα(t)‖F sp,q(R3))

≤C(‖∇uα(t)‖L∞(R3) + ‖ω(t)‖L∞(R3))‖ω(t)‖F sp,q(R3)).

For any r ∈ [1,∞), multiplying (3) by |ω|r−2ω and integrating over R3, we have

1

r

d

dt

∫
R3

|ω|rdx+

∫
R3

(uα · ∇)ω · |ω|r−2ωdx =

∫
R3

(∇uα · ω) · |ω|r−2ωdx.

Noting that divuα = 0, we get
∫
R3(uα ·∇)ω · |ω|r−2ωdx = 0 according to integration

by parts. Meanwhile, it is easy to see that∫
R3

(∇uα · ω) · |ω|r−2ωdx ≤ ‖∇uα‖L∞(R3)‖ω‖rLr(R3).
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Thus, for r ∈ [1,∞),

d

dt
‖ω‖Lr(R3) ≤ ‖∇uα‖L∞(R3)‖ω‖Lr(R3) (24)

and

d

dt
‖ω(t)‖Lr(R3) ≤ C

(
‖∇uα(t)‖L∞(R3) + ‖ω(t)‖L∞(R3)

)
‖ω(t)‖Lr(R3). (25)

The case r = p of estimate (25) and the previous estimate (23) tell us

d

dt
‖ω(t)‖F sp,q(R3) ≤ C(‖∇uα(t)‖L∞(R3) + ‖ω(t)‖L∞(R3))‖ω(t)‖F sp,q(R3)). (26)

Thus (22) and (26) imply

d

dt
‖ω(t)‖F sp,q(R3) ≤ C‖ω(t)‖2F sp,q(R3).

This estimate and standard technique give us the local well-posedness in F sp,q(R3).
Thus finishes the proof of (i).

To prove (ii), it suffices to show that both ‖∇uα(t)‖L∞(R3) and ‖ω(t)‖L∞(R3)

remains bounded up to T . For any r > 3/2, using (8), (16) and (19), we have

‖∇uα‖L∞(R3) ≤ C(1 + ‖∇uα‖Ḟ 0
∞,∞

(log+ ‖∇uα‖W 2,r(R3) + 1))

≤ C(1 + ‖ψ‖Ḟ 0
∞,∞

(log+ ‖ω‖Lr(R3) + 1)). (27)

Next we estimate ‖ω‖Lr as well as ‖ω‖L∞ . We return to the vorticity equation (3)
and obtain for any r > 3/2:

d

dt
‖ω‖Lr(R3) ≤ ‖∇uα‖L∞(Rn)‖ω‖Lr(R3)

≤ C(1 + ‖∇uα‖Ḟ 0
∞,∞

(log+ ‖∇uα‖W 2,r(R3) + 1))‖ω‖Lr(R3)

≤ C(1 + ‖ψ‖Ḟ 0
∞,∞

(log+ ‖ω‖Lr(R3) + 1))‖ω‖Lr(Rn). (28)

It now follows that when ∫ T

0

‖ψ(t)‖Ḟ 0
∞,∞(R3)dt <∞

holds, ‖ω‖Lr is bounded up to T and furthermore the bound is independent of r.
Letting r → ∞ we obtain the boundedness of ‖ω‖L∞(Rn). On the other hand, the
boundedness of ‖ω‖Lr(Rn) together with (27) immediately gives the boundedness of
‖∇uα‖L∞(Rn). Thus ends the proof of (ii).

3. Global existence conditions in terms of level set formulation.

3.1. Clebsch variables and level set formulations. We recall some known facts
about the classical Clebsch variables and its generalizations. We refer the readers
to Hou and Li [15], Deng, Hou and Yu [9] and Graham and Henyey [11] for more
information. For the 3D Euler equations in the vorticity form:{

∂tω + (u · ∇)ω = ∇u · ω,
ω(0) = ω0.

the Lagrangian flow map X(t, a) is defined as

d

dt
X(t, a) = u(t,X(t, a)), X(0, a) = a.
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Since the flow is divergence-free, the Jacobian det(∇aX) = 1. Then, vorticity along
the Lagrangian trajectory has the following analytical expression ([8]):

ω(t,X(t, a)) = (∇aX)ω0(a). (29)

Now let θ(t, x) be the inverse map of X(t, a), i.e. X(t, θ(t, x)) ≡ x. Then, θ satisfies

θt + (u · ∇)θ = 0, θ(0, x) = x.

Denote θ = (θ1, θ2, θ3) and ω0 = (ω1
0 , ω

2
0 , ω

3
0). Then (29) and the facts (∇aX)(∇xθ) =

I and det(∇xθ) = 1 imply that

ω(t, x) = ω1
0(θ)∇θ2 ×∇θ3 + ω2

0(θ)∇θ3 ×∇θ1 + ω3
0(θ)∇θ1 ×∇θ2.

Note that θj(j = 1, 2, 3) are level set functions convected by the flow veloci-
ty. In particular, if the initial vorticity can be written into the form ω(0, x) =
ω0(φ0, ψ0)∇φ× ψ0 and the level set functions φ and ψ satisfy

φt + (u · ∇)φ = 0, φ(0, x) = φ0(x),

ψt + (u · ∇)ψ = 0, ψ(0, x) = ψ0(x),

then the vorticity at a later time can be expressed in terms of these two level set
functions and their gradients

ω(t, x) = ω0(φ, ψ)∇φ×∇ψ.

In the case ω0 = 1, φ, ψ are known as the Clebsch variables. We review some
properties of classical Clebsch variables.

• If ω = ∇φ×∇ψ at one time s, then ω = ∇φ× ψ for all t > s.
• If ω = ∇φ×∇ψ, then the helicity H ≡

∫
u · ω = 0.

• If ω = ∇φ×∇ψ in a neighborhood of a point x0 where the vorticity vanishes,
then det[∇ω(x0)] = 0.

• If ω 6= 0 at some x0, then ω = ∇φ×∇ψ for some φ and ψ in a neighborhood
of x0.

As pointed out in Hou-Li [15], the above Clebsch variables/level set formulation
is a direct consequence of the Lagrangian structure of the flow and therefore also
applies to the 3D Lagrangian averaged Euler equations. In this case, the level set
functions satisfy

φt + (uα · ∇)φ = 0, φ(0, x) = φ0(x),

ψt + (uα · ∇)ψ = 0, ψ(0, x) = ψ0(x).

3.2. Global existence conditions. We establish the following new conditions for
existence of global solutions.

Theorem 3.1. Assume that the initial vorticity has the form

ω(0, x) = ω0(φ0, ψ0)∇φ0 ×∇ψ0

with smooth and bounded ω0, φ0 and ψ0. Then the Lagrangian averaged 3D Euler
equations (3) have a unique smooth solution up to T as long as, for each j ∈ {1, 2, 3}
there exists ij ∈ {1, 2, 3} such that one of the following two conditions is true:
(a) ∫ T

0

3∑
j=1

∥∥∥∥ ∂ψ∂yj
∥∥∥∥
L
p1
y′ L

q1
yij

(R3)

dt <∞;
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(b) ∫ T

0

3∑
j=1

∥∥∥∥ ∂φ∂yj
∥∥∥∥
L
p1
y′ L

q1
yij

(R3)

dt <∞,

for 1 ≤ p1, q1 ≤ ∞ with

1− 2

p1
− 1

q1
∈ [0, 1].

Moreover, the following estimate holds

‖ω(t)‖F sp,q(R3) ≤ C(T )‖ω(0)‖F sp,q(R3), 0 ≤ t ≤ T (30)

for s > 3
p with p ∈ [1,∞], q ∈ [1,∞).

Remark 1. 1. Deng, Hou and Yu in [9] introduced the generalized Clebsch vari-
ables which are two triplets of real functions

Φ = {φ1, φ2, φ3} and U = {U1(Φ), U2(Φ), U3(Φ)},

such that the vorticity vector field ω can be represented in the following way

ω =

3∑
k=1

∇Uk ×∇φk. (31)

Similar to Deng, Hou and Yu [9, Theorem 3.1], we can generalize Theorem 3.1
to the case where initial vorticity field is bounded and with compact support,
and can be represented in the formula (31).

2. When (p1, q1) = (∞, 1) and ij = j for each j ∈ {1, 2, 3}, Theorem 3.1 covers
Hou and Li’s [15, Theorem 4]. Theorem 3.1 gives us more general blow-up
criteria for more exponents. The region A of these acceptable exponents are
shown in the following figure.

-

6

Figure 1: Region of acceptable exponents

1
q1

1
p10

(p1, q1) = (∞, 1)↙

A

1

1
2

Now, we give the proof of Theorem 3.1.
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Proof. We only prove Theorem 3.1 under the assumption that that for each j ∈
{1, 2, 3} there exists ij ∈ {1, 2, 3} such that∫ T

0

3∑
j=1

∥∥∥∥ ∂ψ∂yj
∥∥∥∥
L
p1
y′ L

q1
yij

(R3)

dt <∞.

We follow the proof of [15, Theorem 4]. We only need to consider the case ω0 = 1,
that is, ω = ∇φ × ∇ψ for all times. We write ω = ∇ × (φ∇ψ). Like in [15], we
define B(y) be the integral kernel of the operator (1 − α24)−1R in R3. Without
loss of generality, we let x = 0 and omit the reference to time. Then

|∇uα(0)| =
∣∣∣∣∫

R3

B(y)ω(y)dy

∣∣∣∣ =

∣∣∣∣∫
R3

∇B(y)× (φ(y)∇ψ(y))dy

∣∣∣∣
with

|∇B(y)| ≤ Cα
|y|2(1 + |y|)

. (32)

Estimate (32) can be deduced as follows. It follows from [17, p. 261-262] that

the Green function associated with the operator (1− α24)4 is Gα(|y|) = 1−e−
|y|
α

4π|y| .

Then,

uα(0) = ∇×
∫
R3

Gα(|y|)ω(y)dy =

∫
R3

fα(|y|) y
|y|
× ω(y)dy, (33)

where fα(|y|) = 1
α2 f

(
|y|
α

)
and f(y) = (1+y)e−y−1

4πy2 (also see [14] and [16]). Using

(33), we can get

|∇B(y)| ≤ Cα
|y|2(1 + |y|)

for y ∈ R3.
Let q > 3, 1 ≤ p1, q1 ≤ ∞. In the following, q′ denote the dual index for q. Then,

for 0 < ε < 1, we can estimate |∇uα(0)| in the following way:

|∇uα(0)|

=

∣∣∣∣∣
∫
|y|<ε

+

∫
|y|≥ε

∇B(y)× (φ(y)∇ψ(y))dy

∣∣∣∣∣
≤C‖φ‖L∞(R3)

ε 3−2q′
q′ ‖∇ψ‖Lq(R3) +

3∑
j=1

∫
|y|≥ε

∣∣∣ ∂ψ∂yj ∣∣∣
|y|2(1 + |y|)

dy

 .

≤C‖φ‖L∞(R3)

(
ε

3−2q′
q′ ‖∇ψ‖Lq(R3)

+

3∑
j=1

∫
|y′|≥ε/2

(∫
|yij |≥ε/2

(
1

|y|2(1 + |y|)

)q′1
dyij

)p′1/q′1
dy′


1
p′1 ∥∥∥∥ ∂ψ∂yj

∥∥∥∥
L
p1
y′ L

q1
yij

(R3)

 .

≤C‖φ‖L∞(R3)

(
ε

3−2q′
q′ ‖∇ψ‖Lq(R3)

+

3∑
j=1

∫
|y′|≥ε/2

(∫
|yij |≥ε/2

(
1

|y|2+c

)q′1
dyij

)p′1/q′1
dy′


1
p′1 ∥∥∥∥ ∂ψ∂yj

∥∥∥∥
L
p1
y′ L

q1
yij

(R3)

 ,
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for c ∈ [0, 1]. In the previous inequalities, we used Hölder’s inequality for mixed
norms (see [1]) and the fact

1

|y|2(1 + |y|)
≤ C

|y|2+c
,

for y ∈ R3 and any c ∈ [0, 1]. In fact, the cases c = 0 and c = 1 are obvious. For
c ∈ (0, 1), we have

1 + |y| ≥ (1− c)1(1/c)
′
+ c(|y|c)1/c ≥ |y|c

according to Young’s inequality.
Then, we have

|∇uα(0)| ≤ C‖φ‖L∞(R3)

ε 3−2q′
q′ ‖∇ψ‖Lq(R3) +

3∑
j=1

Iij

∥∥∥∥ ∂ψ∂yj
∥∥∥∥
L
p1
y′ L

q1
yij

(R3)

 ,

for

Iij :=

∫
|y′|≥ε/2

(∫
|yij |≥ε/2

(
1

|y|2+c

)q′1
dyij

)p′1/q′1
dy′


1
p′1

=

∫
|y′|≥ε/2

∫
|yij |≥ε/2

(
1

(|yij |2 + |y′|2)
2+c
2

)q′1
dyij

p′1/q
′
1

dy′


1
p′1

.(34)

To estimate Iij , we first compute the inner integration as follows:∫
|yij |≥ε/2

(
1

(|yij |2 + |y′|2)
2+c
2

)q′1
dyij

p′1/q
′
1

=

∫
|yij |≥ε/2

|y′|−(2+c)q
′
1

(
1

(|yijy′ |2 + 1)
2+c
2

)q′1
dyij

p′1/q
′
1

= |y′|−(2+c)p
′
1

∫
|yij |≥ε/2

1(
|yijy′ |2 + 1

) (2+c)q′1
2

dyij


p′1/q

′
1

≤ C|y′|−(2+c)p
′
1

(∫ π
2

0

|y′| sec2 θ

(tan2 θ + 1)
(2+c)q′1

2

dθ

)p′1/q′1

≤ C|y′|−(2+c)p
′
1+p

′
1/q
′
1

(∫ π
2

0

(sec θ)2−2
(2+c)q′1

2 dθ

)p′1/q′1

≤ C|y′|−(2+c)p
′
1+p

′
1/q
′
1

(∫ π
2

0

(cos θ)(2+c)q
′
1−2dθ

)p′1/q′1

≤ C|y′|−(2+c)p
′
1+p

′
1/q
′
1

(
B

(
1

2
,

(2 + c)q′1 − 1

2

))p′1/q′1
,
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since (2 + c)q′1 − 2 > −1 and c ∈ [0, 1], where

B

(
a+ 1

2
,
b+ 1

2

)
= 2

∫ π
2

0

(sin θ)a(cos θ)bdθ, a > −1, b > −1,

is the classical Beta function. So

Iij =

∫
|y′|≥ε/2

∫
|yij |≥ε/2

(
1

(|yij |2 + |y′|2)
2+c
2

)q′1
dyij

p′1/q
′
1

dy′


1
p′1

≤ C

(∫
|y′|≥ε/2

|y′|−(2+c)p
′
1+p

′
1/q
′
1

(
B

(
1

2
,

(2 + c)q′1 − 1

2

))p′1/q′1
dy′

) 1
p′1

≤ C

(
B

(
1

2
,

(2 + c)q′1 − 1

2

))1/q′1
(∫ ∞

ε/2

r1−(2+c)p
′
1+p

′
1/q
′
1dr

) 1
p′1

≤ C

(
B

(
1

2
,

(2 + c)q′1 − 1

2

))1/q′1
(

log

(
2

ε

)) 1
p′1

(35)

if c can be taken such that 1 − (2 + c)p′1 + p′1/q
′
1 = −1, which is equivalent to

c = 1 − 2
p1
− 1

q1
. Consequently the existence of such c ∈ [0, 1] is the same as

1− 2
p1
− 1

q1
∈ [0, 1] which is assumed to be true in the theorem.

Thus, we have

|∇uα(0)|

≤C‖φ‖L∞(R3)

ε 3−2q′
q′ ‖∇ψ‖Lq(R3) +

(
log

2

ε

) 1
p′1

3∑
j=1

∥∥∥∥ ∂ψ∂yj
∥∥∥∥
L
p1
y′ L

q1
yij

(R3)


≤C‖φ‖L∞(R3)

2
3−2q′
q′
(ε

2

) 3−2q′
q′ ‖∇ψ‖Lq(R3) +

(
log

2

ε

) 1
p′1

3∑
j=1

∥∥∥∥ ∂ψ∂yj
∥∥∥∥
L
p1
y′ L

q1
yij

(R3)

 .

If we take ε such that
(
ε
2

) 3−2q′
q′ (e+ ‖∇ψ‖Lq(R3)) = 1, then(

log
2

ε

) 1
p′1

=

(
q′

3− 2q′

) 1
q′1 [

log(e+ ‖∇ψ‖Lq(R3))
] 1
p′1

≤
(

q′

3− 2q′

) 1
p′1

log(e+ ‖∇ψ‖Lq(R3))

since log(e+ ‖∇ψ‖Lq(R3)) ≥ 1. Finally, we get

|∇uα(0)| ≤ C‖φ‖L∞(R3)

2
3−2q′
q′ +

3∑
j=1

∥∥∥∥ ∂ψ∂yj
∥∥∥∥
L
p1
y′ L

q1
yij

(R3)

log
(
e+ ‖∇ψ‖Lq(R3)

)
(36)

for 1 ≤ p1, q1 ≤ ∞ and q > 3. This immediately gives

‖∇uα‖L∞(R3) ≤ C

2
3−2q′
q′ +

3∑
j=1

∥∥∥∥ ∂ψ∂yj
∥∥∥∥
L
p1
y′ L

q1
yij

(R3)

log
(
e+ ‖∇ψ‖Lq(R3)

)
for 1 ≤ p1, q1 ≤ ∞ and q > 3, since ‖φ‖L∞(R3) ≤ ‖φ0‖L∞(R3).
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To close the estimates we return to the equation for ψ. Differentiating

ψt + uα · ∇ψ = 0

with respect to x, we get

(∇ψ)t + (uα · ∇)(∇ψ) +∇uα∇ψ = 0. (37)

Now applying standard energy estimate to (37), we obtain

∂

∂t
‖∇ψ‖Lq(R3)

≤‖∇uα‖L∞(R3)‖∇ψ‖Lq(R3)

≤C

2
3−2q′
q′ +

3∑
j=1

∥∥∥∥ ∂ψ∂yj
∥∥∥∥
L
p1
y′ L

q1
yij

(R3)

log
(
e+ ‖∇ψ‖Lq(R3)

) ‖∇ψ‖Lq(R3).

If
∫ T
0

∑3
j=1

∥∥∥ ∂ψ∂yj ∥∥∥Lp1
y′ L

q1
yij

(R3)
dt <∞, then the Gronwall inequality implies

‖∇ψ‖Lq(R3) ≤ C(T )

which in turn gives us∫ T

0

‖∇uα‖L∞(R3)dt ≤ C
∫ T

0

‖∇ψ‖Lq(R3)dt ≤ C(T ).

The bound on
∫ T
0
‖∇uα‖L∞(R3)dt gives the L∞ bound on ∇ψ from (37). Similarly,

we get the L∞ bound for ∇φ. Combining the L∞ estimates for ∇ψ and ∇φ, we
have the L∞ bound for ω. Now the energy estimate for ω in the F sp,q(R3) can be
proved by a standard argument and

d

dt
‖ω(t)‖F sp,q(R3) ≤ C(‖∇uα(t)‖L∞(R3) + ‖ω(t)‖L∞(R3))‖ω(t)‖F sp,q(R3)).
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