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Abstract

We investigate the singularity formation of a nonlinear nonlocal system. This
nonlocal system is a simplified one-dimensional system of the 3D model that was
recently proposed by Hou and Lei (Comm Pure Appl Math 62(4):501–564, 2009)
for axisymmetric 3D incompressible Navier–Stokes equations with swirl. The main
difference between the 3D model of Hou and Lei and the reformulated 3D Navier–
Stokes equations is that the convection term is neglected in the 3D model. In the
nonlocal system we consider in this paper, we replace the Riesz operator in the
3D model by the Hilbert transform. One of the main results of this paper is that
we prove rigorously the finite time singularity formation of the nonlocal system
for a large class of smooth initial data with finite energy. We also prove global
regularity for a class of smooth initial data. Numerical results will be presented to
demonstrate the asymptotically self-similar blow-up of the solution. The blowup
rate of the self-similar singularity of the nonlocal system is similar to that of the
3D model.

1. Introduction

The question of whether a solution of the 3D incompressible Navier–Stokes
equations can develop a finite time singularity from smooth initial data with finite
energy is one of the most outstanding mathematical open problems [11,20,23].
A main difficulty in obtaining the global regularity of the 3D Navier–Stokes equa-
tions is due to the presence of the vortex stretching term, which has a formal
quadratic nonlinearity in vorticity. To date, most regularity analyses for the 3D
Navier–Stokes equations use energy estimates. Due to the incompressibility con-
dition, the convection term does not contribute to the energy norm of the velocity
field or any L p (1 < p � ∞) norm of the vorticity field. In a recent paper by
Hou and Lei [16], the authors investigated the stabilizing effect of convection by
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constructing a new 3D model for axisymmetric 3D incompressible Navier–Stokes
equations with swirl. This model preserves almost all the properties of the full 3D
Navier–Stokes equations except for the convection term, which is neglected. If
one adds the convection term back into the 3D model, one recovers the full Na-
vier–Stokes equations. They also presented numerical evidence which supports that
the 3D model may develop a potential finite time singularity. They further studied
the mechanism that leads to these singular events in the 3D model and how the
convection term in the full Navier–Stokes equations destroys such a mechanism.

In this paper, we propose a simplified nonlocal system for the 3D model pro-
posed by Hou and Lei in [16]. The nonlocal system is derived by first reformulating
the 3D model of Hou and Lei as the following two-by-two nonlinear and nonlocal
system of partial differential equations:

ut = 2uv + ν�u, vt = (−�)−1∂zzu2 + ν�v, (1)

where u = uθ /r, v = ψθz /r , and� = ∂2
z +∂2

r + 3
r ∂r , and uθ is the angular velocity

component and ψθ is the angular stream function, respectively, r = √
x2 + y2.

By the partial regularity result for the 3D model [14], which is an analogue of the
well-known Caffarelli–Kohn–Nirenberg partial regularity theory for the 3D incom-
pressible Navier–Stokes equations [2], we know that the singularity can occur only
along the symmetry axis, that is, the z-axis. In order to study the potential sin-
gularity formation of the 3D model, it makes sense to construct a simplified one
dimensional nonlocal system along the z-axis. One obvious choice is to replace
the Riesz operator (−�)−1∂2

z by the Hilbert transform H along the z axis, and to
replace �u by uzz , �v by vzz . This gives rise to our simplified nonlocal system:

ut = 2uv + νuzz, vt = H(u2)+ νvzz, (2)

where H is the Hilbert transform,

(H f ) (x) = 1

π
P.V.

∫ ∞

−∞
f (y)

x − y
dy. (3)

In our analysis, we will focus on the inviscid version of the nonlocal system and
relabel the variable z as x :

ut = 2uv, vt = H(u2), (4)

with the initial condition

u(t = 0) = u0(x), v(t = 0) = v0(x). (5)

Note that the 1D model (2) is designed to capture the dynamics of the 3D model
(1) along the z-axis only. Thus, its inviscid model (4) does not enjoy the energy
conservation property of the original model in the three-dimensional space.

One of the main results of this paper is that we prove rigorously the finite time
singularity formation of the nonlocal system for a large class of smooth initial data
with finite energy. As we will demonstrate in this paper, the blowup rate of the
self-similar singularity of the nonlocal system (4)–(5) is qualitatively similar to
that of the 3D model. The main result of this paper is summarized in the following
theorem.
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Theorem 1. Assume that the support of u0 is contained in (a, b) and that u0, v0 ∈
H1. Let φ(x) = x − a and

C = 4
∫ b

a
φ(x)u2

0 v0 dx, I∞ =
∫ +∞

0

dy
√

y3 + 1
.

If C > 0, then the solution of the nonlocal system (4)–(5) must develop a finite time

singularity in the H1 norm no later than T ∗ =
(

4C

3π(b − a)2

)−1/3

I∞.

A similar result has been obtained for periodic initial data.
The analysis of the finite time singularity for this nonlocal system is rather

subtle. The main technical difficulty is that this is a two-by-two nonlinear nonlocal
system. The key issue is under what conditions the solution u has a strong align-
ment with the solution v dynamically. If u and v have a strong alignment for long
enough time, then the right-hand side of the u equation would dynamically develop
a quadratic nonlinearity, which will lead to a finite time blowup. Note that v is
coupled to u in a nonlinear and nonlocal fashion through the Hilbert transform. It
is not clear whether u and v will dynamically develop such a nonlinear alignment.
To establish such a nonlinear alignment, we need to use the following important
property of the Hilbert transform:

Proposition 1. Let φ be a globally Lipschitz continuous function on R. For any
f ∈ L p(R1) ∩ L1(R1) and φ f ∈ Lq(R1) with 1

p + 1
q = 1, 1 < p, q < +∞, we

have
∫ +∞

−∞
φ(x) f (x)H f (x)dx = 1

2π

∫ +∞

−∞

∫ +∞

−∞
φ(x)− φ(y)

x − y
f (x) f (y)dxdy. (6)

Using this property, we can identify an appropriate test function φ such that the
time derivative of

∫
u2φdx satisfies a nonlinear inequality. This inequality implies

a finite time blowup of the nonlocal system.
Proposition 1 should be a well-known property in the Harmonic Analysis lit-

erature. During the revision of our paper, we found that an identity which can be
used to derive the special case φ = x of Proposition 1 has been used in [10], see
also a recent paper [19].1 However, we have not been able to find a proof for the
general case stated in Proposition 1 in the literature. For the sake of completeness,
we provide a proof of Proposition 1 in Section 2.

Another interesting result is that we prove the global regularity of our non-
local system for a class of smooth initial data. Specifically, we prove the following
theorem:

Theorem 2. Assume that u0, v0 ∈ H1. Further we assume that u0 has compact
support in an interval of size δ and v0 satisfies the condition v0 � −3 on this

1 We only learned about the work of [19] after the presentation of our work at the PIMS
workshop on Hydrodynamics Regularity in August 2009.
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interval. Then the H1 norm of the solution of the nonlocal system (4)–(5) remains
bounded for all time as long as the following holds

δ1/2
(

‖v0x‖L2 + 1

3
δ1/2‖u0x‖2

L2

)
<

1

4
. (7)

Moreover, we have ‖u‖L∞ � Ce−3t , ‖u‖H1 � Ce−3t , and ‖v‖H1 � C for some
constant C which depends on u0, v0, and δ only.

In order to study the nature of the singularities, we have performed extensive
numerical experiments for nonlocal systems with and without viscosity. Our numer-
ical study shows that ‖u‖L∞(t) and ‖v‖L∞(t) develop a finite time blowup with a

blowup rate O
(

1
T −t

)
, which is qualitatively similar to that of the 3D model [16].

Our numerical results also indicate that the solution of the inviscid nonlocal system
seems to develop a one-parameter family self-similar finite time singularity of the
type:

u(x, t) = 1

T − t
U (ξ, t) , (8)

v(x, t) = 1

T − t
V (ξ, t) , (9)

ξ = x − x0(t)

(T − t)1/2 log(1/(T − t))1/2
, (10)

where x0(t) is the position at which u(x, t) achieves its maximum. The parameter
that characterizes this self-similar blowup is the rescaled speed of propagation of
the traveling wave defined as follows:

λ = lim
t→T

(
(T − t)1/2

d

dt
x0(t)

)
.

Different initial data give different speeds of propagation of the singularity. One of
the interesting findings of our numerical study is that by rescaling the self-similar
variable ξ by λ−1, the different rescaled profiles corresponding to different initial
conditions all collapse to the same universal profile. We offer some preliminary
analysis to explain this phenomenon.

Our numerical results also show that there is a significant overlap between the
inner region of U and the inner region of V where V is positive. Such overlap
persists dynamically and is responsible for producing a quadratic nonlinearity in
the right-hand side of the u-equation. The nonlinear interaction between u and v
produces a traveling wave that moves to the right.2 Such phenomenon seems quite
generic, and is qualitatively similar to that of the 3D model [16]. The only differ-
ence is that the 3D model produces traveling waves that move along the symmetry
axis in both directions. It is still a mystery why the inviscid nonlocal system selects

2 If we change the plus sign in front of the Hilbert transform in the nonlocal system (2)
to a minus sign, the nonlocal system would produce a traveling wave that moves to the left.
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the scaling (10) with the 1/2 exponent and a logarithmic correction. With the loga-
rithmic correction, the viscous term cannot dominate the nonlinear term 2uv in the
equation. Indeed, when we add viscosity to the nonlocal system, we find that the
viscous solution still develops the same type self-similar finite time blowup as that
of the inviscid nonlocal system.

We remark that Hou et al. [17] have recently made some important progress
in proving the formation of finite time singularities of the original 3D model of
Hou and Lei [16] for a class of smooth initial conditions with finite energy under
some appropriate boundary conditions. The stabilizing effect of convection has
been studied by Hou and Li in a recent paper [15] via a new 1D model. Forma-
tion of singularities for various model equations for the 3D Euler equations or the
surface quasi-geostrophic equation has been investigated by Constantin–Lax–
Majda [6], Constantin [5], DeGregorio [8,9], Okamoto and Ohkitani [21],
Cordoba–Cordoba–Fontelos [7], Chae–Cordoba–Cordoba–Fontelos [4],
and Li–Rodrigo [18].

The rest of the paper is organized as follows. In Section 2, we study some prop-
erties of the nonlocal system. In Section 3, we establish the local well-posedness
of the nonlocal system. Section 4 is devoted to proving the finite time singularity
formation of the inviscid nonlocal system for a large class of smooth initial data
with finite energy. We prove the global regularity of the nonlocal system for a class
of initial data in Section 5. Finally, we present several numerical results in Section 6
to study the nature of the finite time singularities for both the inviscid and viscous
nonlocal systems.

2. Properties of the nonlocal system

In this section, we study some properties of the nonlocal system. First of all, we
note that the nonlocal system has some interesting scaling properties. Specifically,
for any constants α and β satisfying αβ > 0, the nonlocal system

ut = αuv, vt = βHu2 (11)

is equivalent to the system

ũt = 2ũṽ, ṽt = Hũ2 (12)

by introducing the following rescaling of the solution:

u = ũ (x, γ t) , v = μṽ (x, γ t) , (13)

where γ and μ are related to α and β through the following relationship:

γ =
√
αβ

2
, μ = sgn(α)

√
2β

α
. (14)

Therefore, it is sufficient to consider the nonlocal system in the following form:

ut = 2uv, vt = Hu2. (15)
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Moreover, if we replace the second equation vt = Hu2 by v = Hu2 and define
w = u2, then our nonlocal system is reduced to the well-known Constantin–
Lax–Majda model [6]:

wt = 4wHw. (16)

Before we end this section, we present the proof of Proposition 1.

Proof of Proposition 1. Denote f̃ε(x) = 1

π

∫

|x−y|�ε
f (y)

x − y
dy, Fε(x) = φ(x)

f (x) f̃ε(x) and f̄ (x) = supε�0 | f̃ε(x)|. It follows from the singular integral theory

of Calderon–Zygmund [3] that f̃ε(x) → H f (x) for a.e. x ∈ R1 and

‖ f̄ ‖L p � C p‖ f ‖L p .

Therefore, we have Fε(x) → φ(x) f (x)H f (x) for a.e. x ∈ R1 and |Fε(x)| �
G(x), where G(x) = |φ(x) f (x)| f̄ (x) satisfies

‖G(x)‖L1 � ‖ f̄ (x)‖L p‖φ(x) f (x)‖Lq

� C p‖ f (x)‖L p‖φ(x) f (x)‖Lq < +∞. (17)

Using the Lebesgue Dominated Convergence Theorem, we have
∫
φ(x) f (x)H( f )dx = lim

ε→0

∫
f (x)φ(x) f̃ε(x)dx

= 1

π
lim
ε→0

∫
f (x)φ(x)

∫

|x−y|�ε
f (y)

x − y
dydx . (18)

Note that
∫

| f (y)|
(∫

|x−y|�ε
| f (x)φ(x)|

|x − y| dx

)

dy �
∫

| f (y)|
(∫

2| f (x)φ(x)|
ε + |x − y| dx

)
dy

� 2‖φ(x) f (x)‖Lq ‖(ε + |x |)−1‖L p

∫
| f (y)|dy

= C‖ f (y)‖L1‖φ(x) f (x)‖Lq < ∞,

for each fixed ε > 0 since f ∈ L1, φ f ∈ Lq by our assumption, and C ≡
‖(ε + |x |)−1‖L p < ∞ for p > 1. Thus Fubini’s Theorem implies that

1

π

∫
f (x)φ(x)

∫

|x−y|�ε
f (y)

x − y
dydx = 1

π

∫ ∫

|x−y|�ε
f (x)φ(x)

f (y)

x − y
dydx,

(19)

for each fixed ε > 0. Furthermore, by renaming the variables in the integration, we
can rewrite 1/2 of the integral on the right-hand side of (19) as follows:

1

2π

∫ ∫

|x−y|�ε
f (x) f (y)

φ(x)

x − y
dydx = − 1

2π

∫ ∫

|x−y|�ε
f (x) f (y)

φ(y)

x − y
dxdy,
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which implies that

1

π

∫ ∫

|x−y|�ε
f (x) f (y)

φ(x)

x − y
dydx

= 1

2π

∫ ∫

|x−y|�ε
f (x) f (y)

φ(x)− φ(y)

x − y
dxdy. (20)

Since f ∈ L1(R) and φ(x) is globally Lipschitz continuous on R, it is easy to show
that

f (x) f (y)
φ(x)− φ(y)

x − y
∈ L1(R2).

Using the Lebesgue Dominated Convergence Theorem, we have

1

2π
lim
ε→0

∫ ∫

|x−y|�ε
f (x) f (y)

φ(x)− φ(y)

x − y
dxdy

= 1

2π

∫ ∫
f (x) f (y)

φ(x)− φ(y)

x − y
dxdy. (21)

Proposition 1 now follows from (18)–(21).

We remark that Proposition 1 is also valid for periodic functions. Recall that
for periodic functions (with period 2π ) the Hilbert transform takes the form:

(H f ) (x) = 1

2π
P.V.

∫ 2π

0
f (y) cot

(
x − y

2

)
dy. (22)

For the sake of completeness, we state the corresponding result for periodic func-
tions below:

Proposition 2. Let φ be a periodic Lipschitz continuous function with period 2π .
For any periodic function f with period 2π satisfying f ∈ L p([0, 2π ]) and φ f ∈
Lq([0, 2π ]) with 1

p + 1
q = 1, 1 < p, q < +∞, we have

∫ 2π

0
φ(x) f (x)H f (x)dx = 1

4π

∫ 2π

0

∫ 2π

0
(φ(x)− φ(y))

× cot

(
x − y

2

)
f (x) f (y)dxdy. (23)

The proof of Proposition 2 goes exactly the same as for the non-periodic case.
We omit the proof here.

Remark 1. As we see in the proof of Proposition 1, the key is to use the oddness of
the kernel in the Hilbert transform. The same observation is still valid here:

1

2π

∫ ∫

[0,2π ]2, |x−y|>ε
f (x) f (y)φ(x) cot

(
x − y

2

)
dydx

= − 1

2π

∫ ∫

[0,2π ]2, |x−y|>ε
f (x) f (y)φ(y) cot

(
x − y

2

)
dxdy,

by renaming the variables in the integration.
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3. Local well-posedness in H1

In this section, we will establish local well-posedness in Sobolev space H1.

Theorem 3. (Local well-posedness) For any u0, v0 ∈ H1, there exists a finite time
T = T

(‖u0‖H1 , ‖v0‖H1
)
> 0 such that the nonlocal system (4)–(5) has a unique

smooth solution, u, v ∈ C1
([0, T ); H1

)
for 0 � t � T . Moreover, if T is the first

time at which the solution of the nonlocal system ceases to be regular in H 1 and
T < ∞, then the solution must satisfy the following condition:

∫ T

0
(‖u‖L∞ + ‖v‖L∞) dt = +∞. (24)

Remark 2. We remark that the condition (24) is an analogue of the well-known
Beale–Kato–Majda blowup criteria for the 3D incompressible Euler equation [1].

Proof. To show local well-posedness, we write the system as an ODE in the Banach
space X := H1 × H1:

Ut = F(U ), (25)

where U = (u, v), F(U ) = (2uv, H(u2)). As H1(R) is an algebra, F maps any
open set in X into X and, furthermore, F is locally Lipschitz on X . Local well-
posedness of (4)–(5) then follows from the standard abstract ODE theory, such as
Theorem 4.1 in [20].

The blow-up criterion (24) follows from the following a priori estimates. Mul-
tiplying the u-equation by u and the v-equation by v, and integrating over R, we
obtain

d

dt

∫
u2dx = 4

∫
u2vdx � 4‖v‖L∞

∫
u2dx, (26)

and
d

dt

∫
v2dx = 2

∫
vHu2dx = −2

∫
(Hv) u2dx � 2‖u‖L∞

∫
|Hv| udx

� ‖u‖L∞
(∫

u2dx +
∫
v2dx

)
. (27)

Similarly, we can derive L2 estimates for ux and vx as follows:

d

dt

∫
u2

x dx = 4
∫
(vu2

x + uvx ux )dx

� 4‖v‖L∞
∫

u2
x dx + 2‖u‖L∞

∫
(u2

x + v2
x )dx, (28)

and
d

dt

∫
v2

x dx = 4
∫
vx H (uux ) dx

= 4
∫
(Hvx ) uux dx

� 2‖u‖L∞
∫
(u2

x + v2
x )dx . (29)
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Summing up the above estimates gives

d

dt

(
‖u‖2

H1 + ‖v‖2
H1

)
� C (‖u‖L∞ + ‖v‖L∞)

(
‖u‖2

H1 + ‖v‖2
H1

)
. (30)

We see that the regularity is controlled by the quantity

‖u‖L∞ + ‖v‖L∞ . (31)

If
∫ T

0 (‖u‖L∞ + ‖v‖L∞)dt < ∞, then it follows from (30) that ‖u‖H1 + ‖v‖H1

must remain finite up to T . Therefore, if T is the first time at which the solution
blows up in the H1-norm, we must have

∫ T

0
(‖u‖L∞ + ‖v‖L∞) dt = +∞. (32)

4. Blow up of the nonlocal system

In this section, we will prove the main result of this paper, that is, the solution
of the nonlocal system will develop a finite time singularity for a class of smooth
initial conditions with finite energy. We will prove the finite time singularity of the
nonlocal system as an initial value problem in the whole space and in a periodic
domain.

4.1. Initial data with compact support

We first consider the initial value problem in the whole space and prove the
finite time blow up of the solution of the nonlocal system (4)–(5) for a large class
of initial data u0 that have compact support.

For the sake of completeness, we will restate the main result below:

Theorem 4. Assume that the support of u0 is contained in (a, b) and that u0, v0 ∈
H1. Let φ(x) = x − a and

C = 4
∫ b

a
φ(x)u2

0 v0 dx, I∞ =
∫ +∞

0

dy
√

y3 + 1
.

If C > 0, then the solution of the nonlocal system (4)–(5) must develop a finite time

singularity in the H1 norm no later than T ∗ =
(

4C

3π(b − a)2

)−1/3

I∞.

Proof. By Theorem 3, we know that there exists a finite time T = T
(‖u0‖H1 , ‖v0

‖H1
)
> 0 such that the nonlocal system (4)–(5) has a unique smooth solution,

u, v ∈ C1
([0, T ); H1

)
for 0 � t < T . Let T ∗ be the largest time such that the

nonlocal system with initial condition u0 and v0 has a smooth solution in H1. We
claim that T ∗ < ∞. We prove this by contradiction.
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Suppose that T ∗ = ∞, that is, that the nonlocal system has a globally smooth
solution in H1 for the given initial condition u0 and v0. Using (4), we obtain

(u2)t t = 4(u2v)t = 8ut uv + 4u2vt = 4(ut )
2 + 4u2 H(u2). (33)

Multiplying φ(x) to both sides of the above equation and integrating over [a, b],
we have the following estimate:

d2

dt2

∫ b

a
φ(x)u2(x, t)dx = 4

∫ b

a
φ(x)(ut )

2dx + 4
∫ b

a
φ(x)u2 H(u2)dx

� 4
∫ b

a
φ(x)u2 H(u2)dx . (34)

Note that the support of u(x, t) is the same as that of the initial value u0. Proposition
1 implies that

∫ b

a
φ(x)u2 H(u2)dx =

∫ ∞

−∞
φ(x)u2 H(u2)dx

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
u2(x, t)u2(y, t)

φ(x)− φ(y)

x − y
dxdy

= 1

2π

(∫ b

a
u2(x, t)dx

)2

. (35)

Combining (34) with (35), we get

d2

dt2

∫ b

a
φ(x)u2(x, t)dx � 2

π

(∫ b

a
u2(x, t)dx

)2

. (36)

As we can see, Proposition 1 plays an essential role in obtaining the above inequal-
ity, which is the key estimate in our analysis of the finite time singularity of the
nonlocal system.

By the definition of φ, we have the following inequality:

∫ b

a
u2(x, t)dx � 1

b − a

∫ b

a
φ(x)u2(x, t)dx . (37)

Combining (36) with (37), we obtain the following key estimate:

d2

dt2

∫ b

a
φ(x)u2(x, t)dx � 2

π(b − a)2

(∫ b

a
φ(x)u2(x, t)dx

)2

(38)

Denoting F(t) = ∫ b
a φ(x)u

2(x, t)dx we obtain the ODE inequality system

Ftt � 2

π(b − a)2
F2, Ft (0) = C > 0, F(0) =

∫ b

a
φu2

0 > 0. (39)

Since Ft (0) = C > 0, integrating (39) from 0 to t gives Ft (t) > 0 for all t � 0.
Denote F̃(t) ≡ F(t) − F(0). Then we have F̃(t) � 0 for t � 0, F̃t > 0 and
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F̃(0) = 0. Since F(0) > 0 and F̃(t) � 0, it is easy to show that F̃ satisfies
the same differential inequality (39) as F . Therefore we can set F(0) = 0 in the
following analysis without loss of generality.

Multiplying Ft to Ftt � 2
π(b−a)2

F2 and integrating in time, we obtain

dF

dt
�

√
4

3π(b − a)2
F3 + C2. (40)

It is easy to see from the above inequality that F must blow up in a finite time.
Define

I (x) =
∫ x

0

dy
√

y3 + 1
, J =

(
3π(b − a)2C2

4

)1/3

.

Integrating (40) in time gives

I

(
F(t)

J

)
� Ct

J
. (41)

Observe that both I and F are strictly increasing functions, and I (x) is bounded
for all x > 0 while the right-hand side of (41) increases linearly in time. It follows
from (41) that F(t) must blow up no later than

T ∗ = J

C
I∞ =

(
4C

3π(b − a)2

)−1/3

I∞. (42)

This contradicts the assumption that the nonlocal system has a globally smooth
solution for the given initial conditions u0 and v0. This contradiction implies that
the solution of the nonlocal system (4)–(5) must develop a finite time singularity in
the H1 norm no later than T ∗ given by (42). This completes our proof of Theorem 4.

4.2. Periodic initial data

In this subsection, we will extend the analysis of finite time singularity for-
mation of the nonlocal system to periodic initial data. Below we state our main
result:

Theorem 5. We assume that the initial values u0, v0 are periodic functions with
period 2π and the support of u0 is contained in (a, b) ⊂ (0, 2π) with b − a < π .
Moreover, we assume that u0, v0 ∈ H1[0, 2π ]. Letφ(x) be a 2π -periodic Lipschitz
continuous function with φ(x) = x − a on [a, b], and

C = 4
∫ b

a
φ(x)u2

0 v0 dx, I∞ =
∫ +∞

0

dy
√

y3 + 1
.

If C > 0, then the solution of the nonlocal system (4)–(5) must develop a finite time

singularity in the H1 norm no later than T ∗ =
(

4C cos( b−a
2 )

3π(b − a)2

)−1/3

I∞.
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Proof. As in the proof of Theorem 1, we also prove this theorem by contradiction.
Assume that the nonlocal system with the given initial conditions u0 and v0 has a
globally smooth solution in H1. As before, by differentiating (4) with respect to t ,
we obtain the following equation:

(u2)t t = 4(ut )
2 + 4u2 H(u2). (43)

Multiplying both sides of the above equation by φ(x), integrating over [0, 2π ] and
using Proposition 2, we obtain the following estimate:

d2

dt2

∫ b

a
φ(x)u2(x, t)dx = d2

dt2

∫ 2π

0
φ(x)u2(x, t)dx

= 4
∫ 2π

0
φ(x)(ut )

2dx + 4
∫ 2π

0
φ(x)u2 H(u2)dx

� 4
∫ 2π

0
φ(x)u2 H(u2)dx

= 1

π

∫ 2π

0

∫ 2π

0
u2(x, t)u2(y, t)(φ(x)− φ(y)) cot

(
x − y

2

)
dydx

= 1

π

∫ b

a

∫ b

a
u2(x, t)u2(y, t)(x − y) cot

(
x − y

2

)
dydx

� M

π

(∫ b

a
u2(x, t)dx

)2

, (44)

where M = min−(b−a)�x�b−a x cot(x/2). Since b − a < π , we have

M = min
−(b−a)�x�b−a

x cos(x/2)

sin(x/2)
� min

−(b−a)�x�b−a
2 cos(x/2)

= 2 cos

(
b − a

2

)
> 0. (45)

Now, following the same procedure as in the proof of Theorem 1, we conclude that
the solution must blow up no later than

T ∗ =
(

4MC

6π(b − a)2

)−1/3

I∞ �
(

4C cos b−a
2

3π(b − a)2

)−1/3

I∞. (46)

This contradicts the assumption that the nonlocal system with the given initial con-
ditions u0 and v0 has a globally smooth solution. This contradiction implies that the
solution of the nonlocal system (4)–(5) must develop a finite time singularity in the
H1 norm no later than T ∗ given by (46). This completes the proof of Theorem 5.

Remark 3. We can also prove the finite time blowup of a variant of our nonlocal
system

ut = 2uv, vt = −H(u2), (47)
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by choosing the test function φ(x) = b − x . It is interesting to note that while the
solution of (4) produces traveling waves that propagate to the right, the solution of
(47) produces traveling waves that propagate to the left.

Remark 4. Our singularity analysis can be generalized to give another proof of finite
time singularity formation of the Constantin–Lax–Majda model without using the
exact integrability of the model. More precisely, we consider the Constantin–Lax–
Majda model:

{
ut = u H(u),
u(t = 0) = u0(x), x ∈ �. (48)

By choosing φ(x) = x −a and following the same procedure as in the proof of The-
orem 1, we can show that if u0 is smooth and has compact support, supp u0 = [a, b]
and u0(x) > 0 on (a, b), then the L1 norm of the solution of (48) must blows up
no later than

T ∗ = 2π(b − a)2
∫ b

a
φ(x)u0 dx

. (49)

Below we will give a different and simpler proof of the finite time blowup for the
Constantin–Lax–Majda model.

Multiplying both sides of equation (48) by φ(x), integrating over the support
(a, b), and using Proposition 1, we obtain

d

dt

∫ b

a
(x − a)udx =

∫ b

a
(x − a)u H(u)dx = 1

2π

(∫ b

a
udx

)2

. (50)

As
∫ b

a (x − a)udx � (b − a)
∫ b

a udx due to u � 0 for x ∈ [a, b], setting F(t) =
∫ b

a (x − a)udx we have

Ft � 1

2π(b − a)2
F2, F(0) =

∫ b

a
φ(x)u0dx > 0. (51)

This leads to

F(t) � F(0)

1 − t F(0)/2π(b − a)2
, (52)

which implies the finite-time blowup of F no later than T ∗ = 2π(b−a)2∫ b
a φ(x)u0 dx

.

Similar results can be obtained for periodic initial data following the same
analysis of Theorem 5.
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5. Global regularity for a special class of initial data

In this section, we will prove global regularity of the solution of our nonlocal
system for a special class of initial data. Below we state our main result in this
section.

Theorem 6. Assume that u0, v0 ∈ H1. Further, assume that u0 has compact sup-
port in an interval of size δ and v0 satisfies the condition v0 � −3 on this interval.
Then the H1 norm of the solution of the nonlocal system (4)–(5) remains bounded
for all time as long as the following holds

δ1/2
(

‖v0x‖L2 + 1

3
δ1/2‖u0x‖2

L2

)
<

1

4
. (53)

Moreover, we have ‖u‖L∞ � Ce−3t , ‖u‖H1 � Ce−3t , and ‖v‖H1 � C for some
constant C which depends only on u0, v0 and δ.

Proof. Note that (53) implies that δ1/2‖v0x‖L2 < 1
4 which gives −4 +

2δ1/2‖v0x‖L2 < −3.5. By using an argument similar to the local well-posedness
analysis, we can show that there exists T0 > 0 such that ‖u‖H1 and ‖v‖H1 are
bounded, v < −2 on supp(u), and 2δ1/2‖vx‖L2 < 1 for 0 � t < T0.

Let [0, T ) be the largest time interval on which ‖u‖H1 and ‖v‖H1 are bounded,
and both of the following inequalities hold:

v < −2 on supp(u) and 2δ1/2‖vx‖L2 < 1. (54)

We will show that T = ∞.
We have for 0 � t < T that

d

dt

∫
u2

x dx = 4
∫
(vu2

x + uvx ux )dx � −8
∫

u2
x dx + 4‖u‖L∞‖vx‖L2‖ux‖L2 .

(55)

Observe that supp(u) = supp(u0) for all times. Let � = supp(u0). Since supp(u)
has length δ, we can use the Poincaré inequality to get

‖u‖L∞ � δ1/2‖ux‖L2(�) = δ1/2‖ux‖L2 . (56)

Therefore we obtain the following estimate:

d

dt
‖ux‖L2 � −4‖ux‖L2 + 2δ1/2‖vx‖L2‖ux‖L2

=
(
−4 + 2δ1/2‖vx‖L2

)
‖ux‖L2 < −3‖ux‖L2 . (57)

Thus we have for 0 � t < T that

‖ux‖L2 � ‖u0x‖L2 e−3t . (58)
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On the other hand, we have that

d

dt

∫
v2

x dx = 4
∫
vx H (uux ) dx � 4‖vx‖L2‖uux‖L2

� 4‖u‖L∞‖vx‖L2‖ux‖L2 � 4δ1/2‖vx‖L2‖ux‖2
L2 , (59)

where we have used the property that ‖H( f )‖L2 � ‖ f ‖L2 and the Poincaré inequal-
ity (56). Now using (58), we get

d

dt
‖vx‖L2 � 2δ1/2‖ux‖2

L2 � 2δ1/2‖u0x‖2
L2 e−6t . (60)

As a consequence, we obtain for 0 � t < T that

‖vx‖L2 � ‖v0x‖L2 + 1

3
δ1/2‖u0x‖2

L2 . (61)

Now observe that at the left end of the support of u, vt = Hu2 is always negative.
Since v0 � −3 on the support of u, we conclude that v(x, t) � −3 at the left end of
the support of u for all times. Now, we apply the Poincaré inequality in the support
of u and use (61) to obtain

v � −3 + δ1/2‖vx‖L2(�) � −3 + δ1/2
(

‖v0x‖L2 + 1

3
δ1/2‖u0x‖2

L2

)
, (62)

on supp(u) for all t ∈ [0, T ).
Next, we perform L2 estimates. We can easily show by using vt = Hu2 that

1

2

d

dt

∫
v2dx =

∫
vHu2dx � ‖v‖L2‖u2‖L2 � ‖v‖L2‖u‖2

L∞δ1/2,

which gives

d

dt
‖v‖L2 � δ1/2‖u‖2

L∞ .

It follows from (56) and (58) that

‖u‖L∞ � δ1/2‖u0x‖L2 e−3t . (63)

Therefore, we obtain

d

dt
‖v‖L2 � δ‖u0x‖2

L2 e−6t ,

which implies

‖v‖L2 � ‖v0‖L2 + 1

6
δ‖u0x‖2

L2 , (64)

for 0 � t < T .
Similarly, using v < −2 on the support of u, we can easily show that

‖u‖L2 � ‖u0‖L2 e−4t , (65)

for 0 � t < T .
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To summarize, we have shown that ‖u‖H1 and ‖v‖H1 are uniformly bounded
for 0 � t < T , and

‖vx‖L2 � ‖v0x‖L2 + 1

3
δ1/2‖u0x‖2

L2 , (66)

and

v � −3 + δ1/2‖vx‖L2 � −3 + δ1/2
(

‖v0x‖L2 + 1

3
δ1/2‖u0x‖2

L2

)
, (67)

on supp(u) for 0 � t < T .
By our assumption on the initial data, we have

δ1/2
(

‖v0x‖L2 + 1

3
δ1/2‖u0x‖2

L2

)
<

1

4
. (68)

Therefore, we have proved that if

v < −2 on supp(u) and 2δ1/2‖vx‖L2 < 1, (69)

0 � t < T , then we actually have

v � −2.75 on supp(u) and 2δ1/2‖vx‖L2 < 0.5, (70)

0 � t < T . This implies that we can extend the time interval beyond [0, T ) so
that (69) is still valid. This contradicts the assumption that [0, T ) is the largest time
interval on which (69) is valid. This contradiction shows that T cannot be a finite
number, that is (69) is true for all times. This in turn implies that ‖u‖H1 and ‖v‖H1

are bounded for all times. Moreover, we have shown that both ‖u‖L∞ and ‖u‖H1

decay exponentially fast in time and ‖v‖H1 is bounded uniformly for all times (see
(63), (58), (61), (64) and (65)). This proves Theorem 6.

6. Numerical results

In this section, we perform extensive numerical experiments to study the nature
of the singularities of the nonlocal system. Our numerical results demonstrate con-
vincingly that the nonlocal system develops asymptotically self-similar singularities
in a finite time for both the inviscid and viscous nonlocal systems.

6.1. Set-up of the problem

In our numerical study, we use the following nonlocal system without the factor
of 2 in front of the nonlinear term uv in the u-equation:3

ut = uv + νuxx , (71)

vt = H(u2)+ νvxx . (72)

3 As we have shown in Section 2, dropping this factor changes only the scaling of the
solution.
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We study the nonlocal system for two types of initial data. The first type of initial
data has compact support. The second type of initial data is periodic. The nature
of the singularities for these two types of initial data is very similar. In the case of
periodic data, we can use FFT to compute the Hilbert transform. This enables us
to perform our computations with a very high space resolution.

Below we describe the initial data that we will use in our numerical experi-
ments. We choose three different initial conditions. The first initial condition has
compact support which lies in � = [0.45, 0.55] and v0 ≡ 0. Within the compact
support �, u0 is given by

Initial Condition I: u0 = exp

⎛

⎝1 −
(

1 −
(

x − 0.5

0.05

)2
)−1

⎞

⎠

for x ∈ �, v0 = 0.

We call this Initial Condition I. The largest resolution we use for Initial Condition I
is N = 16,384. The timestep is chosen to be�t = 10−3/‖u‖L∞ in order to resolve
the maximum growth of ‖u‖L∞ .

The last two initial conditions are periodic with period one. They are given as
follows:

Initial Condition II: u0 = 2 + sin(2πx)+ cos(4πx), v0 = 0,

Initial Condition III: u0 = 1

1.2 + cos(2πx)
, v0 = 0.

We call them Initial Condition II and Initial Condition III, respectively. The largest
resolution that we use for these two periodic initial conditions is N = 262,144 =
218, and the timestep is chosen to be �t = 10−3/‖u‖L∞ .

We use the fourth order classical Runge-Kutta method to discretize the inviscid
nonlocal system in time. For the viscous nonlocal system, we consider only peri-
odic initial data since the solution will no longer have compact support. In order
to remove the stiffness of the time discretization due to the viscous term, we first
apply a Fourier transform to the nonlocal system to obtain

∂t û(k, t) = (̂uv)(k, t)− νk2û(k, t), (73)

∂t v̂(k, t) = −isgn(k )̂(u2)(k, t)− νk2v̂(k, t), (74)

where û(k, t) is the Fourier transform of u and k is the wave number. We then
reformulate the viscous term as an integral factor

∂

∂t
(eνk2t û(k, t)) = eνk2t (̂uv)(k, t), (75)

∂

∂t
(eνk2t v̂(k, t)) = −isgn(k)eνk2t (̂u2)(k, t). (76)

Now we apply the classical Runge-Kutta method to discretize the above system in
time. The resulting time discretization method will be free of the stiffness induced
by the viscous term.
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For periodic initial data, we use the spectral method to discretize the Hilbert
transform by using the explicit formula Ĥ(k) = −isgn(k). For initial data of com-
pact support, we use the well-known alternating trapezoidal rule to discretize the
Hilbert transform which gives spectral accuracy. For the sake of completeness,
we describe the method below, see also [22]. Let x j = jh be the grid point and
h > 0 be the grid size. The alternating trapezoidal rule discretization of the Hilbert
transform is given by the following quadrature:

H( f )(xi ) =
∑

( j−i)odd

f j

xi − x j
2h. (77)

Therefore, our numerical method has spectral accuracy in space and and fourth
order accuracy in time. The high order accuracy of the method plus high space res-
olution and adaptive time-stepping is essential for us to resolve the asymptotically
self-similar singular solution structure of the nonlocal system.

6.2. Asymptotically self-similar blowup of the inviscid nonlocal system

In the singularity analysis, we have proved that the nonlocal system must
develop a finite time singularity for a large class of initial data. However, the singu-
larity analysis does not tell us the nature of the singularity. Understanding the nature
of the singularity is the main focus of our numerical study. Our numerical results
show that all three of the initial conditions we consider here develop asymptotically
self-similar singularities in a finite time. The numerical evidence of self-similar sin-
gularities is quite convincing for all three initial data that we consider. As is the
case for the original 3D model, the mechanism of forming such self-similar blowup
of the nonlocal system is due to the fact that we neglect the convection term in our
model. As is demonstrated in [15,16], the convection term tends to destroy the
mechanism for generating the finite time blowup in the 1D or 3D model. Indeed, a
recent numerical study shows that the 3D incompressible Euler equation does not
seem to grow faster than double exponential in time [12,13].

We use the following asymptotic singularity form fit to predict the singularity
time and the blowup rate:

‖u‖L∞ = C

(T − t)α
, (78)

where T is the blowup time. We find that near the singularity time, the inverse of
‖u‖L∞ is almost a perfect linear function of time, see Fig. 1. To obtain a good esti-
mate for the singularity time, we perform a least square fit for the inverse of ‖u‖L∞ .
We find that α = 1 gives the best fit. The same least square fit also determines the
potential singularity time T and the constant C .

To confirm that the above procedure indeed gives a good fit for the potential
singularity, we plot ‖u‖−1∞ as a function of time with a sequence of increasing
resolutions against the asymptotic form fit for the three initial conditions we con-
sider here. In Fig. 1, we perform such a comparison for Initial Condition I with a
sequence of increasing resolutions from N = 4,096 to N = 16,384. We can see
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Fig. 1. Top The inverse of ‖u‖L∞ (black) versus the asymptotic fit (red) for Initial Condition
I with ν = 0. The fitted blowup time is T = 2.36752830915169 and the scaling constant is
C = 1.67396437016231. Bottom ‖u‖L∞ (black) versus the asymptotic fit (red) for Initial
Condition I

that the agreement between the computed solutions and the asymptotically fitted
solution is excellent as the time approaches the potential singularity time. In the
lower box of Fig. 1, we plot ‖u‖∞ computed by our adaptive method against the
form fit C/(T − t) with T = 2.36752830915169 and C = 1.67396437016231.
The computed solutions and the asymptotically fitted solution are almost indistin-
guishable. This asymptotic blowup rate is qualitatively similar to that of the 3D
model [16].

We have also performed a similar comparison between the computed ‖u‖L∞
and the asymptotically fitted solution for Initial Conditions II and III in Figs. 2
and 3, respectively. For these two periodic initial conditions, we can afford even
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Fig. 2. The inverse of ‖u‖L∞ (black) versus the asymptotic fit (red) for Initial Condition II
with ν = 0. The fitted blowup time is T = 0.780894805082166 and the scaling constant is
C = 1.68253514799506
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Fig. 3. The inverse of ‖u‖L∞ (black) versus the asymptotic fit (red) for Initial Condition III
with ν = 0. The fitted blowup time is T = 0.569719056780405 and the scaling constant is
C = 1.68293676812485

higher resolutions ranging from N = 214 to N = 218. Again, we observe excellent
agreement between the computed solutions and the asymptotically fitted singular
solution.

After we obtain an estimate for the singularity time, we can use it to look for a
dynamically rescaled profile U (ξ, t), V (ξ, t) near the singularity of the form
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Fig. 4. Rescaled profiles U and V for Initial Condition I with ν = 0 at three different times:
t = 2.36710445318745, 2.36743324526419 and 2.36750705502071, the corresponding
maximum values of u are 3,948, 17,617 and 78,422 respectively. Blue profile of u; Red
profile of v

u(x, t) = 1

T − t
U

(
x − x0(t)

(T − t)β
, t

)
, as t → T, (79)

v(x, t) = 1

T − t
V

(
x − x0(t)

(T − t)β
, t

)
, as t → T, (80)

where T is the predicted blowup time in the singularity form fit (78), β is a param-
eter to be determined, and x0(t) is the location in which |u| achieves its global
maximum at t .

Again, we use a least square fit to determine β. Our numerical study indicates
that β = 1

2 with a logarithmic correction. More precisely, we find that the dynam-
ically rescaled variable ξ has the form:

ξ = x − x0(t)

(T − t)1/2 log(1/(T − t))1/2
. (81)

In terms of this rescaling variable ξ , we define the dynamically rescaled profiles
U (ξ, t) and V (ξ, t) through the following relationship:

u(x, t) = 1

T − t
U (ξ, t) , (82)

v(x, t) = 1

T − t
V (ξ, t) . (83)

In Fig. 4, we plot the self-similar profiles U and V at three different times for
Initial Condition I. We can see that the rescaled profiles for these three different
times agree with one another very well. From Fig. 4, we can see that there is a
significant overlap between the inner region of U and the inner region of V where
V is positive. Such overlap persists dynamically and is responsible for producing a
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quadratic nonlinearity in the right-hand side of the u-equation, which has the form
uv. On the other hand, we observe that the position at which u achieves its global
maximum is not in phase with the position at which v achieves its global maximum.
In fact, the positive part of V always moves ahead of U . This is a consequence of
the property of the Hilbert transform. As a result, the nonlinear interaction between
u and v produces a traveling wave that moves to the right. Such phenomena seem
quite generic. We observe the same phenomena for all three initial conditions for
both the inviscid and viscous models. This phenomenon is also qualitatively similar
to that of the 3D model [16].

The strong alignment between the rescaled profile of u and v is the main mech-
anism for the solution of the nonlocal system to develop an asymptotically self-
similar singularity in the form given by (81) and (82)–(83). We observe essentially
the same phenomena for Initial Conditions II and III, see Fig. 5.

It is interesting to see how the different rescaled profiles corresponding to differ-
ent initial conditions are related to one another. In Fig. 5 (top), we put three profiles
from three different initial conditions together. The profile from Initial Condition
III is the widest while the profile from Initial Condition II is narrower than that
from Initial Condition III. The profile from Initial Condition I is the narrowest
of the three initial conditions. But what is amazing is that they can match each
other very well by rescaling the variable ξ . To match the three rescaled profiles,
we keep the profile from Initial Condition III unchanged. In order to match the
profile from Initial Condition III, we change the profile from Initial Condition II by
rescaling ξ → ξ/1.58, and change the profile from Initial Condition I by rescaling
ξ → ξ/19.5. As we can see from Fig. 5 (bottom), the three rescaled profiles are
almost indistinguishable.

To gain some insight into this phenomenon, we perform some analysis of the
self-similar solutions. We assume that the self-similar profiles converge to a steady
state as t → T .

u(x, t) → 1

T − t
U (ξ ; λ) , as t → T (84)

v(x, t) → 1

T − t
V (ξ ; λ) , as t → T, (85)

where λ = limt→T

(
(T − t)1/2

d

dt
x0(t)

)
.

If we neglect the logarithmic correction in ξ and substitute the above equations
into the nonlocal system, we obtain equations for U and V as follows:

U + βξUξ − λUξ = U V, (86)

V + βξVξ − λVξ = H(U 2). (87)

Let U1(ξ), V1(ξ) be the solution of the self-similar system (86), (87) corre-
sponding to λ = 1, then the solution for λ 
= 1 can be obtained by using the
following rescaling of the self-similar variable ξ :

U (ξ ; λ) = U1(λ
−1ξ), (88)

V (ξ ; λ) = V1(λ
−1ξ). (89)
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Fig. 5. The self-similar profiles for Initial Conditions I–III respectively (ν = 0). Top The
original profiles for u for Initial Conditions I–III; Bottom The rescaled profiles. Black Initial
Condition I; Red Initial Condition II; Blue Initial Condition III

The profiles that are obtained from different initial conditions have different λ, but
they can match each other by rescaling ξ . This may explain why we can match dif-
ferent rescaled profiles corresponding to different initial conditions by rescaling ξ .

6.3. Asymptotically self-similar blowup of the viscous nonlocal system

In this subsection, we perform computations to investigate the finite time singu-
larity of the viscous nonlocal system. In our computations, we choose the viscosity
coefficient to be ν = 0.001. Notice that the solution of the viscous nonlocal sys-
tem cannot keep the compact support, so we perform our numerical study only for
Initial Conditions II and III, which are periodic. The computational settings are the
same as those in the inviscid case.
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Fig. 6. The inverse of ‖u‖∞ (black) versus the asymptotic fit (red) for Initial Condition
II with viscosity ν = 0.001. The fitted blowup time is T = 0.833919962702315 and the
scaling constant is C = 1.69630372479547
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Fig. 7. The inverse of ‖u‖∞ (black) versus the asymptotic fit (red) for Initial Condition
III with viscosity ν = 0.001. The fitted blowup time is T = 0.617315651741129 and the
scaling constant is C = 1.69150344092375

We use the same asymptotic singularity form fit as in the inviscid model, that is

‖u‖L∞ = C

(T − t)α
, (90)

where T is the blowup time. In Figs. 6 and 7, we plot ‖u‖−1
L∞ versus the asymp-

totic singularity fit. We can see that as we increase resolutions from N = 214 to
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Fig. 8. Rescaled profiles U and V for Initial Condition II with viscosity ν = 0.001 at
t = 0.833917828434707, 0.83391976141767 and 0.833919943745501, respectively. The
corresponding maximum values of u are 794,399, 8,416,207 and 89,496,701, respectively.
Blue profile of u; Red profile of v

N = 218, ‖u‖−1
L∞ converges to the asymptotic fit, which is almost a perfect straight

line. This suggests that α = 1. From these numerical results, we can see that adding
viscosity with ν = 0.001 does not prevent the solution from blowing up and does
not change the qualitative nature of the singular solution, although it postpones the
blowup time.

Next, we study the rescaled profiles of the asymptotically self-similar solu-
tions of the viscous nonlocal system. We look for a dynamically rescaled profile
U (ξ, t), V (ξ, t) near the singularity of the form

u(x, t) = 1

T − t
U

(
x − x0(t)

(T − t)β
, t

)
, as t → T, (91)

v(x, t) = 1

T − t
V

(
x − x0(t)

(T − t)β
, t

)
, as t → T, (92)

where T is the predicted blowup time in the singularity form fit (90),β is a parameter
to be determined, and x0(t) is the location in which |u| achieves its global maximum
at t . Again, we use a least square fit to determine β and find that β = 1/2 with a
logarithmic correction. In Figs. 8 and 9, we plot the rescaled profiles of the asymp-
totically self-similar solution for Initial Conditions II and III, respectively. The
dynamically rescaled variable ξ has the same form as that of the inviscid nonlocal
system, that is

ξ = x − x0(t)

(T − t)1/2 log(1/(T − t))1/2
. (93)

In Fig. 8, we plot the self-similar profiles U and V at three different times for Initial
Condition II. We can see that the rescaled profiles for these three different times
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Fig. 9. Rescaled profiles U and V for Initial Condition III with viscosity ν = 0.001 at
t = 0.617313605456105, 0.617315459830455 and 0.617315633726175, respectively. The
corresponding maximum values of u are 826,395, 8,808,734 and 94,072,100, respectively.
Blue profile of u; Red profile of v

agree with one another very well. As in the inviscid case, we observe that there is a
significant overlap between the inner region of U and the inner region of V where
V is positive. Such overlap persists dynamically and is responsible for producing a
quadratic nonlinearity in the right-hand side of the u-equation. Similar observations
can be made for the self-similar profiles for Initial Condition III, see Fig. 9.

As we can see from Figs. 8 and 9, the rescaled profiles of the viscous nonlocal
system are qualitatively similar to those of the inviscid nonlocal systems. This is
to be expected since there is a logarithmic correction in the rescaling variable ξ
in the inviscid nonlocal system. Consequently, the viscous term cannot dominate
the nonlinear term in the nonlocal system. On the other hand, we observe that the
profiles corresponding to the viscous nonlocal system are wider and more symmet-
ric than those corresponding to the inviscid nonlocal system. This seems to make
sense because the viscosity tends to smooth the singularity and make the profiles
smoother and more symmetric.

We have also performed a similar numerical study of the viscous nonlocal sys-
tem with ν = 0.01 for Initial Conditions II and III. We find that the viscous nonlocal
system develops an asymptotically self-similar singularity in a finite time with the
same blowup rate and self-similar scaling as in the case of ν = 0.001.
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