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                    Abstract  
 

Let D(c; r) be the smallest disk, with center c and radius r, containing 
all zeros of the polynomial p(z) = (z–z1)(z–z2) · · · (z–zn). In 1958, we 
conjectured that for every zero zk of p(z), the disk D(zk; r) contains at 
least one zero of the derivative pʹ′(z). More than 100 papers are devoted 
to this conjecture, proving it for different special cases. But in general, 
the conjecture is proved only for the polynomials of degree n≤8. In this 
lecture we review the latest developments and generalizations of the 
conjecture. 
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