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1. INTRODUCTION

The study of partial differential equations (PDE's) started in the 18th century
in the work of Euler, d'Alembert, Lagrange and Laplace as a central tool
in the description of mechanics of continua and more generally, as the principal
mode of analytical study of models in the physical science. The analysis of
physical models has remained to the present day one of the fundamental
concerns of the development of PDE's. Beginning in the middle of the 19th
century, particularly with the work of Riemann, PDE's also became an
essential tool in other branches of mathematics.

This duality of viewpoints has been central to the study of PDE's through
the 19th and 20th century. On the one side one always has the relationship
to models in physics, engineering and other applied disciplines. On the
other side there are the potential applications��which have often turned
out to be quite revolutionary��of PDE's as an instrument in the development
of other branches of mathematics. This dual perspective was clearly stated for
the first time by H. Poincare� [Po1] in his prophetic paper in 1890. Poincare�
emphasized that a wide variety of physically significant problems arising in
very different areas (such as electricity, hydrodynamics, heat, magnetism,
optics, elasticity, etc...) have a family resemblance��un ``air de famille''
in Poincare� 's words��and should be treated by common methods. He also
explained the interest in having completely rigorous proofs, despite the fact
that the models are only an approximation of the physical reality. First,
the mathematician desires to carry through his research in a precise and
convincing form. Second, the resulting theory is applied as a tool in the study
of major mathematical areas, such as the Riemann analysis of Abelian functions.

In the same paper there is also a prophetic insight that quite different
equations of mathematical physics will play a significant role within mathe-
matics itself. This has indeed characterized the basic role of PDE, throughout
the whole 20th century as the major bridge between central issues of applied
mathematics and physical sciences on the one hand and the central develop-
ment of mathematical ideas in active areas of pure mathematics. Let us now
summarize some areas in mathematics which have had a decisive interaction
with PDE's.

The first great example is Riemann's application of a potential theoretic
argument, the Dirichlet principle and its uses, in developing the general
theory of analytic functions of a complex variable and the related theory of
Riemann surfaces. Generalizing the latter was the extension, beginning with
Hodge theory, of comparable tools in the study of algebraic geometry in
several variables. It led to such developments as the Riemann�Roch theorem
and the Atiyah�Singer index theorem.

The next major example is differential geometry, especially in its global
aspects. Topics in differential geometry, such as minimal surfaces and
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imbedding problems giving rise to the Monge�Ampe� re equations, have
stimulated the analysis of PDE's, especially nonlinear equations. On the
other hand, the creation of powerful analytical tools in PDE's (a priori
estimates) have made it possible to answer fundamental open questions in
differential geometry. This interplay has revolutionalized the field of
differential geometry in the last decades of the 20th century.

On the other hand the theory of systems of first order partial differential
equations has been in a significant interaction with Lie theory in the original
work of S. Lie, starting in the 1870's, and E. Cartan beginning in the 1890's.
The theory of exterior differential forms has played an increasingly important
role since their introduction and use by E. Cartan, and the introduction
of sheaf theory by Leray in 1945 has led to a dramatic union of ideas and
techniques from manifold theory, algebraic and differential topology, algebraic
geometry, homological algebra and microlocal analysis (see the book of
Kashiwara and Schapira [Ka-Sc]).

The need for a rigorous treatment of solutions of PDE's and their boundary
value problems (=BVP's), was a strong motivation in the development of basic
tools in real analysis and functional analysis since the beginning of the 20th
century. This perspective on the development of functional analysis was
clearly laid out by J. Dieudonne� [Di] in his history of functional analysis.
Starting in the 1950's and 60's the systematic study of linear PDE's and
their BVP's gave rise to a tremendous extension of techniques in Fourier
analysis. The theory of singular integral operators, which started in the 1930's
in connection with PDE's, has become, through the Calderon�Zygmund
theory and its extensions, one of the central themes in harmonic analysis.
At the same time the applications of Fourier analysis to PDE's through
such tools as pseudo-differential operators and Fourier integral operators
gave an enormous extension of the theory of linear PDE's.

Another example is the interplay between PDE's and topology. It arose
initially in the 1920's and 30's from such goals as the desire to find global
solutions for nonlinear PDE's, especially those arising in fluid mechanics,
as in the work of Leray. Examples, in the 1920's, are the variational theories
of M. Morse and Ljusternik�Schnirelman, and in the 1930's, the Leray�
Schauder degree in infinite dimensional spaces as an extension of the classical
Brouwer degree. After 1960 the introduction of a variational viewpoint in
the study of differential topology gave rise to such important results as
Bott's periodicity theorem, and Smale's proof of the Poincare� conjecture
for dimension �5. More recently, the analysis of the Yang�Mills PDE has
given rise to spectacular progress in low dimensional topology.

Another extremely important connection involving PDE's as a bridge
between central mathematical issues and practical applications takes place
in the field of probabilistic models, the so-called stochastic processes. It
arose initially from the study of Brownian motion by Wiener (in the 20's
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and early 30's) and was extended by Ito, Levy, Kolmogorov and others, to
a general theory of stochastic differential equations. More recently it has
given rise to the Malliavin program using infinite dimensional Sobolev
spaces. This theory is closely connected to diffusion PDE's, such as the heat
equation. Stochastic differential equations are now the principal mathe-
matical tool for the highly active field of option pricing in finance.

Another striking example is the relationship between algebraic geometry
and the soliton theory for the Korteweg�DeVries PDE. This equation was
introduced in 1896 as a model for water waves and has been decisively
revived by M. Kruskal and his collaborators in the 1960's; see Section 20.

The study of the asymptotic behavior of solutions of nonlinear equations
of evolution, particularly those governing fluid flows and gas dynamics, has
been an important arena for the interaction between PDE's and current
themes in chaos theory. This is one of the possible approaches to the central
problem of turbulence��one of the major open problems in the physical
sciences.

There are many other areas of contemporary research in mathematics
in which PDE's play an essential role. These include infinite dimensional
group representations, constructive quantum field theory, homogeneous
spaces and mathematical physics.

Finally, and this may be the most important from the practical point of
view, computations of solutions of PDE's is the major concern in scientific
computing. This was already emphasized by Poincare� in 1890, though the
practicality of the techniques available in his time was extremely limited as
Poincare� himself remarked. Today with the advent of high-speed super-
computers, computation has become a central tool of scientific progress.

2. MODELS OF PDE'S IN THE 18TH AND 19TH CENTURY

PDE arose in the context of the development of models in the physics of
continuous media, e.g. vibrating strings, elasticity, the Newtonian gravita-
tional field of extended matter, electrostatics, fluid flows, and later by the
theories of heat conduction, electricity and magnetism. In addition, problems
in differential geometry gave rise to nonlinear PDE's such as the Monge�
Ampe� re equation and the minimal surface equations. The classical calculus
of variations in the form of the Euler�Lagrange principle gave rise to PDE's
and the Hamilton-Jacobi theory, which had arisen in mechanics, stimulated
the analysis of first order PDE's.

During the 18th century, the foundations of the theory of a single first
order PDE and its reduction to a system of ODE's was carried through in
a reasonably mature form. The classical PDE's which serve as paradigms
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for the later development also appeared first in the 18th and early 19th
century.

The one dimensional wave equation

�2u
�t2 =

�2u
�x2

was introduced and analyzed by d'Alembert in 1752 as a model of a
vibrating string. His work was extended by Euler (1759) and later by
D. Bernoulli (1762) to 2 and 3 dimensional wave equations

�2u
�t2 =2u where 2u=:

i

�2

�x2
i

in the study of acoustic waves (� refers to the summation over the corre-
sponding indices).

The Laplace equation

2u=0

was first studied by Laplace in his work on gravitational potential fields
around 1780. The heat equation

�u
�t

=2u

was introduced by Fourier in his celebrated memoir ``The� orie analytique de
la chaleur'' (1810�1822).

Thus, the three major examples of second-order PDE's��hyperbolic, elliptic
and parabolic��had been introduced by the first decade of the 19th century,
though their central role in the classification of PDE's, and related boundary
value problems, were not clearly formulated until later in the century.

Besides the three classical examples, a profusion of equations, associated
with major physical phenomena, appeared in the period between 1750 and
1900:

v The Euler equation of incompressible fluid flows, 1755.

v The minimal surface equation by Lagrange in 1760 (the first major
application of the Euler�Lagrange principle in PDE's).

v The Monge�Ampe� re equation by Monge in 1775.

v The Laplace and Poisson equations, as applied to electric and
magnetic problems, starting with Poisson in 1813, the book by Green in
1828 and Gauss in 1839.
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v The Navier Stokes equations for fluid flows in 1822�1827 by Navier,
followed by Poisson (1831) and Stokes (1845).

v Linear elasticity, Navier (1821) and Cauchy (1822).

v Maxwell's equation in electromagnetic theory in 1864.

v The Helmholtz equation and the eigenvalue problem for the Laplace
operator in connection with acoustics in 1860.

v The Plateau problem (in the 1840's) as a model for soap bubbles.

v The Korteweg�De Vries equation (1896) as a model for solitary
water waves.

A central connection between PDE and the mainstream of mathematical
development in the 19th century arose from the role of PDE in the theory
of analytic functions of a complex variable. Cauchy had observed in 1827
that two smooth real functions u, v of two real variables x, y are the real
and imaginary parts of a single analytic complex function of the complex
variable z=x+iy if they satisfy the Cauchy�Riemann system of first order
equations:

�u
�x

=
�v
�y

�u
�y

=&
�v
�x

.

From the later point of view of Riemann (1851) this became the central
defining feature of analytic functions. From this point of view, Riemann
studied the properties of analytic functions by investigating harmonic functions
in the plane.

3. METHODS OF CALCULATING SOLUTIONS
IN THE 19TH CENTURY

During the 19th century a number of important methods were introduced
to find solutions of PDE's satisfying appropriate auxiliary boundary condition:

(A) Method of separation of variables and superposition of solutions of
linear equations. This method was introduced by d'Alembert (1747) and
Euler (1748) for the wave equation. Similar ideas were used by Laplace
(1782) and Legendre (1782) for the Laplace's equation (involving the study
of spherical harmonics) and by Fourier (1811�1824) for the heat equation.

Rigorous justification for the summation of infinite series of solutions
was only loosely present at the beginning because of a lack of efficient criteria
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for the convergence of functions (this was instituted only after the 1870's as
part of the rigorization of analysis). This question led to extremely important
developments in analysis and mathematical physics, in particular Fourier
series and integrals.

(B) The interplay between the study of 2-dimensional real harmonic func-
tions and analytic functions of a single complex variable which originated in
the work of Riemann (1851) was extensively developed by C. Neumann,
H. A. Schwarz, and E. B. Christoffel around 1870.

(C) The method of Green's functions was introduced in 1835 for the
Laplace equation. It consists of studying special singular solutions of the
Laplace equation. These solutions are then used to represent solutions satisfying
general boundary conditions or with arbitrary inhomogenous terms.

(D) An extremely important principle was discovered by G. Green in
1833 for the Laplace equation. He observed that a solution of the equation

2u=0 in a domain 0/R3

which assumes a given boundary value, u=. on the boundary �0 of 0
(later called the Dirichlet problem), minimizes the integral

|
0

:
3

i=1
\ �v

�xi+
2

among all functions v such that v=. on �0. If there is a minimizer u
which is smooth, then it is a harmonic function. Related arguments were
carried out independently by Gauss. Their work was followed by W. Thomson
(=Lord Kelvin) in 1847 and by Riemann in his thesis in 1851 where he
named this approach the Dirichlet principle.

(E) Though power series methods had been used by Euler, d'Alembert,
Laplace and others, to obtain particular solutions of PDE's, a systematic
use of power series, especially in connection with the initial value problem
for nonlinear PDE's, was started by Cauchy in 1840. This began work on
existence theory, even when explicit solutions are not available. The method of
Cauchy, known as the method of majorants to obtain real analytic solutions,
i.e., expandable in convergent power series, was extended in 1875 by Sophie
Kowalewsky to general systems and simplified by Goursat in 1898.

A general survey of the development of PDE's in the 18th and 19th
century is given in volume 2 of Kline's book [Kli]. The treatment of the
history of rational mechanics and PDE's in the 18th century is based on
the publications of C. Truesdell as in his very interesting paper [Tru].
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4. DEVELOPMENTS OF RIGOROUS THEORIES OF SOLVABILITY
IN THE LAST DECADES OF THE 19TH CENTURY

Up to about 1870 the study of PDE was mainly concerned with heuristic
methods for finding solutions of boundary value problems for P.D.E.'s, as
well as explicit solutions for particular problems. Under the influence of the
rigorization program for analysis led by Weierstrass around 1870, systematic
attention began to be paid to finding rigorous proofs of basic existence results.
The most conspicuous case was the Dirichlet problem introduced by Riemann
in 1851 which asks for the solution of the equation

2u=0 in 0/R2

which satisfies the boundary condition

u=. on �0.

Riemann had reduced the solvability of this problem to the existence of a
smooth minimizing function for the Dirichlet integral

E(v)=|
0

:
i \

�v
�xi+

2

over the class of functions satisfying the condition v=. on �0. Though
he had given an electrostatic model for the Dirichlet principle, he had not
proved the existence of a minimizer by any mathematically satisfactory
method, as was pointed out by Weierstrass and his school.

The criticism of Riemann's argument was in two directions. First, for
functionals apparently similar to the Dirichlet integral it was shown that
no minimizer exists. On the other hand, F. Prym, in 1871, gave an example
of a continuous boundary datum defined on the circle for which no extension
in the disc has finite energy. Thus, the legitimacy of Riemann's Dirichlet
principle as a tool for proving existence of harmonic functions was put in
serious doubt for several decades. This program was reinstated as a major
theme of mathematical research by Hilbert in 1900 and gave rise to an
extensive development of methods in this domain (see Section 6).

As a result of the attention drawn by Riemann to the significance of
the study of harmonic functions (potential theory) in geometric function
theory, other approaches to the existence of a solution for the Dirichlet
problem were developed in the last three decades of the 19th century. The
alternating method of H. A. Schwarz (around 1870) consists of splitting the
domain 0 into two pieces and then solving in alternation the Dirichlet
problem on each of these domains. In 1877 C. Neumann introduced the
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method of integral equations for the Dirichlet problem in a convex domain
via the representation of possible solutions by double layer potentials. This
approach was developed more systematically during the next decade by
Poincare� (see Section 5) and later by Fredholm and Hilbert (see Section 6
and [Kli, Vol. 3]).

5. THE PERIOD 1890-1900: THE BEGINNING OF
MODERN PDE AND THE WORK OF POINCARE�

The main contributions of Poincare� to the theory of PDE's are the
following:

(a) In 1890 Poincare� [Po1] gave the first complete proof, in rather
general domains, of the existence and uniqueness of a solution of the Laplace
equation for any continuous Dirichlet boundary condition. He introduced the
so-called balayage method; this iterative method relies on solving the Dirichlet
problem on balls in the domain and makes extensive use of the maximum
principle and Harnack's inequality for harmonic functions. A systematic
exposition of this method was given in his lectures of 1894�95 at the Sorbonne
and published in [Po4]. Together with books of Harnack and Korn this
is the origin of the extensive development of potential theory in the following
decades. The interested reader will find a detailed summary of potential theory
up to 1918 in the Encyklopa� dia article [Li2] of Lichtenstein. We note that,
as pointed out in Section 19, the maximum principle for second order elliptic
and parabolic equations has played a central role throughout the 20th century.

(b) In a fundamental paper of 1894, Poincare� [Po2] established the
existence of an infinite sequence of eigenvalues and corresponding eigen-
functions for the Laplace operator under the Dirichlet boundary condition.
(For the first eigenvalue this was done by H. A. Schwarz in 1885 and for
the second eigenvalue by E. Picard in 1893.) This key result is the beginning
of spectral theory which has been one the major themes of functional analysis
and its role in theoretical physics and differential geometry during the 20th
century; for more details, see Dieudonne� 's history of functional analysis
[Di] and Section 18.

(c) Picard and his school, beginning in the early 1880's, applied the
method of successive approximation to obtain solutions of nonlinear problems
which were mild perturbations of uniquely solvable linear problems. Using
this method, Poincare� [Po3] proved in 1898 the existence of a solution of
the nonlinear equation

2u=eu
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which arises in the theory of Fuchsian functions. Motivated by this problem
as well as many nonlinear problems in mathematical physics, Poincare�
formulated the principle of the continuity method. This attempts to obtain
solutions of nonlinear equations by embedding them in a one-parameter
family of problems, starting with a simple problem and attempting to extend
solvability by a step-by-step change in the parameter. This became a major
tool in the bifurcation theory of A. M. Lyapunov, E. Schmidt and others,
as well in the existence theory for nonlinear elliptic equations as developed
by S. Bernstein, J. Leray and J. Schauder (see Sections 7, 9 and 21).

6. THE HILBERT PROGRAMS

In his celebrated address to the international mathematical Congress in
Paris in 1900, Hilbert presented 23 problems (the so-called Hilbert problems),
two of which are concerned with the theory of nonlinear elliptic PDE's.
Though initially restricted to a variational setting, Hilbert's problems 19
and 20 set the broad agenda for this area in the 20th century.

Problem 19 addresses the theme of regularity of solutions (specifically
in this case analyticity of solutions). Problem 20 concerns the question of
existence of solutions of boundary value problems and, in particular, the
existence of solutions which minimize variational principles.

In connection with Problem 20, Hilbert revived the interest in Riemann's
approach to the Dirichlet principle. The methods originally proposed by
Hilbert during the period 1900�1905 for the Dirichlet principle are complex
and difficult to follow, but gave rise to an extensive attack by numerous
authors, e.g. B. Levi, H. Lebesgue, G. Fubini, S. Zaremba, L. Tonelli and
R. Courant, which was very fruitful in creating new tools, e.g. see [Li2].
The original suggestion of Hilbert [Hi1] was to take a minimizing sequence
for the Dirichlet integral and to prove that an appropriate modified sequence
converges uniformly to a minimizer. A variant of this approach was carried
through a few years later by S. Zaremba using a ``mollified'' form of the
original minimizing sequence. Another version was presented by R. Courant
(e.g. see his book [Co]). These arguments, following Hilbert's original sugges-
tion, rely upon a compactness argument in the uniform topology, namely
Ascoli's theorem. One must recall that in 1900 the theory of L p spaces in
terms of the Lebesgue integral, and their completeness had not yet been
formulated. It was B. Levi [LB] who first observed in 1906 that a general
minimizing sequence for the Dirichlet integral is a Cauchy sequence in the
Dirichlet norm, and therefore converges in an appropriate completion
space (with respect to the Dirichlet norm) to a generalized function. With
this observation he began the essential study of function spaces associated
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with the direct method of the Calculus of Variations; they are now called
the Sobolev spaces; see Section 12.

A solution of Problem 19 was carried through for general second order
nonlinear elliptic equations in 2 dimensions by S. Bernstein beginning in
1904 (see Section 7). His methods gave rise to essential techniques of estab-
lishing a priori estimates for solutions and their derivatives, in particular,
using the linearization of nonlinear equations in a neighborhood of a solution.
(For a detailed discussion of developments arising from Hilbert problems
19 and 20, see the articles by J. Serrin and G. Stampacchia in the volume
``Mathematical developments arising from Hilbert problems'' published by
the AMS in 1976.)

Following up on the results of Poincare� and J. Fredholm (1903), Hilbert,
in his papers on linear integral equations [Hi2], formulated a general
program for establishing the existence and completeness of eigenfunctions
for linear self adjoint integral operators and applying these results to PDE's.

7. S. BERNSTEIN AND THE BEGINNING OF
A PRIORI ESTIMATES

In his papers [Be2], beginning in 1906, on the solvability of the Dirichlet
problem for nonlinear elliptic equations, S. Bernstein observed that in order to
carry through the continuity method, it is essential to establish that the size
of the interval in the parameter in the step-by-step argument does not shrink
to zero as one proceeds. This fact will follow if one shows that the solutions
obtained via this continuation process lie in a compact subset of an appropriate
function space. Such a property is usually established by showing that prospec-
tive solutions and their derivatives of various orders satisfy a priori bounds.
In the case that Bernstein studied��second order nonlinear elliptic equations
in the plane��he developed the first systematic method for such estimates.
These techniques were extensively sharpened over many decades; see Sections
8, 16, 19 and 23.

As a simple illustration of the possibilities and the difficulties of this
approach let us consider two simple examples of a semilinear elliptic
equation:

(a) {&2u+u3=f (x)
u=0

in 0/Rn,
on �0.

(b) {&2u&u2=f (x)
u=0

in 0/Rn,
on �0.
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The continuity method amounts to introducing a parameter t # [0, 1]
connecting the given problem to a simpler equation, usually linear. For
example, in the two cases above the equations become

(at) {&2u+tu3=f (x)
u=0

in 0,
on �0.

(bt) {&2u&tu2=f (x)
u=0

in 0,
on �0.

To show the solvability for t=1 one tries to prove that the set of parameter
values of t in [0, 1] for which the problem (at) or (bt) is solvable is both
open and closed.

If for a given parameter value t0 , u0 is the corresponding solution of (at0
)

for example, the solvability of the problem for t near t0 in a given func-
tional space X would follow from the implicit function theorem once the
linearized problem in the new variable v is uniquely solvable. For example,
for (at), the linearized problem is

(Lt0
) {&2v+3t0u2

0 v=g
v=0

in 0,
on �0,

with v # X.
The coefficients of the linearized problem depend on u0 which is an

element of the function space X. This fact became a major impetus in the
fine study of linear equations with coefficients in various function spaces
(see Section 8). The choice of the function space X is not arbitrary but also
depends on the other step, i.e., whether the set of parameter values for
which solvability holds, is closed in [0, 1].

The proof that the set of values of t # [0, 1] for which (at) or (bt) has a
solution ut is closed, relies on estimates which hold for all possible solutions.
Usually, one proves that (ut) lies in a compact set of the function space X.
For a sequence tk � t we can therefore extract a convergent subsequence
utk

in X which converges to a solution ut of (at).
Thus, we have opposite requirements on X. For Step 1 to hold it is useful

to have as much regularity as possible for the functions in X. For Step 2
and the a priori estimate it is preferable to require as little as possible. The
successful completion of the argument requires a choice of X which balances
these requirements.

For example, in the cases we have listed above, in (at), the most natural
space is X=C2(0� ). But as was observed at the beginning of this century
the linear equations 2u= g does not necessarily have a solution in C2 for
g # C0. Thus, the invertibility of linear elliptic operators in function spaces
became a matter of serious concern. The space which is useful in place of
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C0 is the space C 0, : of functions g satisfying a Ho� lder condition with
exponent : # (0, 1)

| g(x)&g( y)|�C |x& y|:.

For further details see Section 8.
An important consideration in carrying both Step 1 and Step 2 has been

the application of the celebrated maximum principle for a linear elliptic
equation of second order (see Section 19). In the maximum principle, for
linear operators, the sign of the coefficient of the zero order term plays a
decisive role. For example, the positivity of this coefficient in Lt0

insures
that the maximum principle applies and the linear problem is uniquely
solvable. The continuity method can be carried through for problem (a)
and yields a solution for every given f. By contrast this method cannot be
applied to problem (b) because lack of control of the sign of the coefficient
of v. Indeed, problem (b) can be shown to have solutions only for restricted
choices of f.

In applying his methods to existence proofs, Bernstein restricted himself
to cases where the perturbed problem can be solved by successive approxima-
tion. Thirty years later, J. Leray and J. Schauder combined the techniques
of a priori estimates a� la Bernstein with concepts drawn from topology, e.g.
the degree of mappings. This considerably enlarged the class of application
by removing the restriction of unique solvability of the linearized problem;
see Section 9.

S. Bernstein [Be1], in 1904, gave a positive solution of Hilbert's Problem 19.
He proved that a C3 solution of a general fully nonlinear second order elliptic
equation (the precise meaning of these terms is given in Section 23) in the
plane,

F(x, y, u, Du, D2u)=0

is analytic whenever F is analytic. To carry through this proof, S. Bernstein
established estimates for derivatives of solutions given in the form of power
series. At the end of his argument he observed that such methods could be
used to obtain a positive solution of Hilbert's Problem 20 concerning the
existence of solutions of the Dirichlet problem. In subsequent papers over
several decades, Bernstein developed this program and established the first
systematic method to obtain existence via a priori estimates.

Schauder [Sca2] returned to this problem in 1934 and disconnected
the topics of analyticity and existence. He observed that the appropriate
estimates for the existence in the quasilinear case are C2, : estimates. It is
these estimates which were applied by Leray�Schauder (see Section 9).

By contrast, the initial regularity in which existence is established via the
direct method of the calculus of variations is much weaker than C3: the
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solution belongs to some Sobolev space W1, p (see Section 12) and the
question arises whether such weak solutions are smooth. This problem was
successfully solved by C. Morrey [Mor2] in 1943 in 2 dimensions and the
general case was finally settled by E. DeGiorgi and J. Nash in 1957 (see
Section 19).

8. SOLVABILITY OF SECOND ORDER LINEAR
ELLIPTIC EQUATIONS

Following the work of Neumann and the development of a systematic
theory of integral equations by Poincare� , Fredholm, Hilbert and others,
there was a general attack on studying the solutions of second order linear
elliptic equations obtained by integral representation. The construction of
elementary solutions and Green's functions for general higher order linear
elliptic operators was carried through in the analytic case by E. E. Levi
(1907) [Le]. The parametrix method was also applied by Hilbert and his
school in the study of particular boundary value problems.

An important technical tool in this theory was the introduction of Ho� lder
conditions by O. Ho� lder in 1882 in his book [Hol] on potential theory. The
study of single and double layer potentials with densities lying in Ho� lder
spaces became the subject of intensive investigations through the works of
Lyapunov (1898), A. Korn [Kor] (1907), in connection with the equations
of elasticity, L. Lichtenstein starting in 1912 (see the scholarly exposition
[Li2] in the volume on potential theory in the Encyklopa� dia der Math.
Wiss.) and P. Levy (1920).

Following the treatment of harmonic functions by Kellogg in his book
[Ke] on potential theory (1929), Schauder [Sca2] and, shortly afterwards
Cacciopoli [Ca1], applied these techniques to obtain a priori estimates in
C2, : spaces for the solutions of the Dirichlet problem for linear elliptic
equations of second order with C0, : coefficients. More specifically if one
postulates a priori the existence of a C2, : solution for the equation

{Au=:
ij

aij (x)
�2u

�xi �xj
+:

i

ai (x)
�u
�xi

+a0(x) u= f (x) in 0,

u=. on �0,

then there is a constant C, depending only on the domain 0 and the
coefficients, such that

&u&C 2, : (0� )�C(& f &C O, : (0� )+&.&C 2, : (�0)+&u&C0 (0� )).
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Here, the Ho� lder norms are given by

&v&C 0, :=Sup
x{ y

|v(x)&v( y)|
|x& y|: +Sup

x
|v(x)|

and

&v&C2, :=:
i, j "

�2v
�xi �xj "C0, :

+:
i "

�v
�xi "C 0, :

+&v&C 0, : .

In his paper [Sca2], Schauder explicitly carries through the program of
establishing existence results for these linear problems combining the method
of a priori estimates with the theory of F. Riesz for linear compact operators
in Banach spaces. This became a major bridge between functional analysis and
the theory of PDE. It is this viewpoint of Schauder, combined with algebraic
topology, which was carried over to nonlinear equations by Leray�Schauder;
see Section 9.

9. LERAY�SCHAUDER THEORY

In the work of S. Bernstein (see Section 7) existence results, obtained by
continuation techniques, relied upon uniqueness conditions for the solutions
of the linearized problem. This restricted considerably the class of equations
which could be treated by that method. The contribution of Leray�Schauder
in their famous paper [L-S] of 1934 was to get rid of the uniqueness condition
and rely exclusively upon a priori estimates and topological methods.

The principal tool which they applied was a major advance in nonlinear
functional analysis, the extension to infinite dimensional spaces of the degree
of mappings. Following earlier partial results of Birkhoff�Kellogg on exten-
sions of the Brouwer fixed point theorem to infinite dimensions, Schauder
[Sca1] in 1930 had established the fundamental fixed point theorem asserting
that a compact mapping from a ball into itself has a fixed point (a mapping
is said to be compact if it is continuous and has relatively compact image).
In 1929�32 Schauder generalized the Brouwer principle of invariance of
domains for maps of the form (I&C ) where C is compact and I denotes
the identity map. In 1934 Leray and Schauder [L-S] extended the Brouwer
degree of mappings to the class of maps of the form (I&C ) and applied
this theory, combined with a priori estimates to obtain existence theorems
for quasilinear second order equations in the plane. This generated a vast
new program to obtain further existence results by establishing appropriate
a priori estimates.
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The heart of this method lies in the most important property of degree.
The degree, deg (I&C, G, p), is an algebraic count of the number of
solutions of the equation

(I&C) u= p, u # G

where G is a bounded open set in a Banach space X. This degree is only
defined if there is no solution of that equation on the boundary of G.
The degree is invariant under continuous deformation Ct of the mapping,
provided that it remains defined during a continuous compact deformation,
i.e., no solution of the equation appears on the boundary during the
deformation.

To apply this principle, for example when G is a ball, one must show
that no solution appears on the boundary of the ball. In practice, one
shows by a priori estimates, that all solutions lie inside a fixed ball. One
constructs the deformation Ct to connect the given problem C=C1 with a
simple problem for which the degree can be computed easily, e.g. C0=0.
The proof of the necessary a priori estimates has often posed difficult problems,
some of which have been resolved only after decades of intensive work. The
most striking example is the Monge�Ampe� re equation

det(D2u)= f (x)

for which the estimates were completed only in the 1980's (see Section 23).

10. HADAMARD AND THE CLASSIFICATION OF PDE'S
AND THEIR BOUNDARY VALUE PROBLEMS

One knows, in the study of classical PDE's (Laplace, heat, wave equations),
that there are very specific kinds of boundary conditions usually associated
with each of these equations. For the Laplace equation one has the Dirichlet
condition (u=. on �0) or the Neumann condition (where one prescribes the
normal derivative �u��n on �0). For the heat equation the classical boundary
condition is to prescribe the initial value of the solution (and in the case
of a bounded domain, the Dirichlet condition on the boundary of the domain
for positive time). In the case of the wave equation, the most classical bound-
ary value problem is the Cauchy problem which prescribes both the initial
position and the initial velocity (at t=0).

The ground for telling whether a boundary condition is appropriate for
a given PDE is often physically obscure. It has to be clarified by a fundamental
mathematical insight. The basic principle for distinguishing ``legitimate'' or
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well-posed problems was stated clearly by Hadamard in 1923 in his book
[Ha] on the Cauchy problem in the following terms: the solution should
exist on a prescribed domain for all suitable boundary data, should be
uniquely determined by such data and be ``stable'' in terms of appropriate
norms.

Thus, for example, for the Cauchy problem, the theorem of Cauchy-
Kowalevska, proved in the 19th century for equations with analytic data,
establishes the existence of solutions in power series for equations which
are not characteristic with respect to the initial surface. This includes the
Laplace equation for example. However, in this case, the domain of existence
of the solution varies drastically with the data and the solutions are highly
unstable with respect to the boundary data. Thus, this problem is ill-posed
in the Hadamard sense.

Hadamard also proposed to find general classes of equations having
distinctive properties for their solutions in terms of the characteristic poly-
nomials. This is the polynomial obtained by replacing each partial derivative
���xj by the algebraic variable !j and keeping the top order part in each
variable. We thus obtain, in particular, basic classes of second order operators,
called elliptic, hyperbolic and parabolic which are, respectively, generaliza-
tions of the Laplace operator, the wave operator and the heat operator.
The elliptic operators are defined by quadratic polynomials which vanish
only at !=0. The hyperbolic ones correspond, after a change of variables
at each point, to !2

1&(!2
2+ } } } +!2

n), while the parabolic case corresponds,
after a change of variables to !1+!2

2+ } } } +!2
n .

This classification was subsequently extended to linear PDE's of arbitrary
order, to nonlinear equations, and to systems. It provides the basic framework
in terms of which the theory of PDE's has been systematically studied. Indeed,
there are several such theories corresponding to this basic system of classi-
fication, including the theory of elliptic equations, hyperbolic equations,
parabolic equations and many borderline cases.

Continuing the work of Volterra on the wave equation, Hadamard built
up in the 1920's, a systematic theory of the solution of the Cauchy problem
for linear second order hyperbolic equations in an arbitrary number of
dimensions, including the famous Huygens property for the wave equation
in an odd number of space dimensions. In general, solutions of hyperbolic
equations depend only on the Cauchy data in a finite domain, the cone of
dependence. In the case of the wave equation in odd space dimension the
solution depends only on the Cauchy data on the boundary of that cone.
The well-known Hadamard conjecture suggests that the wave equation in
odd dimensions is the only PDE for which this property holds.

The property of finite dependence for the wave equation is closely
connected to the finite speed of propagation in signals governed by equa-
tions of this type. The heat equation does not have that property and has
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infinite speed of propagation. Such considerations are fundamental in the
applications of hyperbolic equations in electromagnetic theory where
solutions of Maxwell's equation propagate at the speed of light as well as
in the equations of relativity where, from the first principles, signals cannot
propagate at velocity greater than the speed of light.

The work of Hadamard on second order hyperbolic equations was extended
by M. Riesz [RiM] in the late 1940's. Systematic theories of hyperbolic
equations and systems of arbitrary order were developed by a number of
mathematicians, especially Petrovski [Pet] and Leray [Le4].

11. WEAK SOLUTIONS

Until the 1920's solutions of PDE's were generally understood to be classical
solutions, i.e., Ck for a differential operator of order k. The notion of
generalized or weak solution emerged for several different reasons.

The first and simplest occurred in connection with the direct method of
the calculus of variations (see Section 6). If one has a variational problem,
e.g. the Dirichlet integral E and a minimizing sequence (un) for E of
smooth functions, it was observed by B. Levi and S. Zaremba that (un) is
a Cauchy sequence in the Dirichlet norm, and by a simple inequality, in
the L2 norm. Hence, it was natural to introduce the completion H under
the Dirichlet norm of the space of smooth functions satisfying a given
boundary condition. This was a variant of the process began a decade
earlier in the case of the L2 spaces. The space H is a linear subspace of L2

and is equipped with a different norm. By definition, for any element u of
H there is a sequence of smooth functions (un) such that grad un converges
in L2 to a limit. That limit can be viewed as grad u, interpreted in a
generalized sense. This is represented in the work of B. Levi and L. Tonelli
and was pursued by many people including K. O. Friedrichs, C. Morrey
and others.

The second point of view occurs in problems where the solution is
constructed as a limit of an approximation procedure. The estimates on the
approximate solutions may not be strong enough to guarantee that the
limit is a solution in a classical sense. On the other hand, it may still be
possible to show that this limit shares some properties that classical solutions
may have, and in particular, relations derived from multiplying the equation
by a smooth testing function and integrating by parts. This is most familiar
in the case of a linear equation; for example a classical solution u of the
Laplace equation

2u=0 in 0 (1)
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satisfies

| grad u } grad .=0,
(2)

\. # C �
0 (0)=smooth functions with compact support in 0,

and

| u 2.=0, \. # C �
0 (0). (3)

The main observation is that (2) makes sense for any function u # C1

(and even u # H introduced just above). Relation (3) makes sense if u # L2

(or even just u # L1
loc).

In the case of linear problems, particularly for elliptic and parabolic
equations, it is often possible to show that solutions, even in the weakest
sense (3) are classical solutions. The first explicit example is the celebrated
Weyl's lemma [We3] proved in 1940 for the Laplace equation. This
viewpoint has been actively pursued in the 1960's (see Section 14).

The existence of weak solutions is an immediate consequence of the
completion procedure described above. The introduction of the concept of
weak solutions represents a central methodological turning point in the study
of PDE's and their BVP's since it presents the possibility of breaking up the
investigation of PDE's into 2 steps:

(1) Existence of weak solutions.

(2) Regularity of weak solutions.

In many cases the second step turns out to be technically difficult or even
impossible; sometimes one can obtain only partial regularity. This is especially
the case in nonlinear equations. Among the earliest and most celebrated
examples are the Navier�Stokes equation:

{
�ui

�t
&& 2ui+:

j

uj
�ui

�xj
=

�p
�xi

, 1�i�n,

div u=:
i

�ui

�xi
=0

(4)

and the Euler equation:

{
�ui

�t
+:

j

uj
�ui

�xj
=

�p
�xi

, 1�i�n
(5)

div u=0
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both describing incompressible fluid flows; the Euler equation is the
nonviscous limit of (4).

Local existence and uniqueness (i.e., for a small time interval) of a classical
solution for the Euler equation was established beginning with the work of
L. Lichtenstein [Li4] in 1925 and more recent contributions by V. Arnold
[Arn] (1966), D. Ebin and J. Marsden [E-M] (1970), J. P. Bourguignon
and H. Brezis [B-B] (1974) and R. Temam [Te1] (1975). In 2-d (=2 space
dimensions) the existence of a global (i.e., for all time) classical solution
was treated by W. Wolibner [Wo] in 1933 and completed by T. Kato [Ka2]
in 1967. The existence of global classical solutions in 3-d is open.

For the Navier�Stokes equation the existence of a weak global solutions
(with given initial condition) was obtained first by J. Leray in 1933 (see
[Le1,2,3]) and in a slightly different form by E. Hopf [Hop2] in 1950.
In 2-d such solutions have been shown to be regular; see [L1]. In 3-d the
regularity and the uniqueness of weak solutions is one of the most celebrated
open problems in PDE's. For a detailed presentation of the Navier�Stokes
equation see e.g. the books of O. Ladyzhenskaya [L1] and R. Temam [Te2].

For some other well-known physical models, such as the theory of
nonlinear hyperbolic conservation laws, for example Burger's equation

�u
�t

+u
�u
�x

=0,

weak solutions can be defined and are not regular, i.e., discontinuities may
appear in finite time, even if the initial condition is smooth. They give rise
to the phenomenon of shock waves with important implications in physics
(see Section 20).

12. SOBOLEV SPACES

An important systematic machinery to carry through the study of
solutions of PDE's was introduced by S. L. Sobolev in the mid 1930's: the
definition of new classes of function spaces, the Sobolev spaces, and the proof
of the most important property, the Sobolev imbedding theorem (see [So1,2]).

In a contemporary notation the space Wm, p(0) consists of functions u in
the Lebesgue space L p(0), 1�p<�, having generalized derivatives of all
orders, up to m in L p(0), i.e., there exist functions u: in L p(0) such that

| u D:.=(&1)|:| | u:. \. # C �
0 (0) \: with |:|�m
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where : is a multi-index, :=(:1 , :2 , ...,:n),

D:.=
�:1

�x:1
1

} } }
�:n

�x:n
n

,

and |:|=� :i . When u # Wm, p(0), the functions u: are called the generalized
derivatives D:u of u.

Another possible approach to such spaces would consist of defining them
as the completion of smooth functions with respect to the norm

&u& p
Wmn, p= :

|:|�m

&D:u& p
Lp .

The equivalence of the two definitions for general domains was established
in 1964 by N. Meyers and J. Serrin [M-S].

The most important result in the theory of Sobolev spaces concerns
inequalities relating the various Sobolev norms. A major precursor is the
Poincare� inequality from 1894, [Po2]:

" f &|3 f"L2
�C &grad f&L2

(where �% f denotes the average of f ). In a more general form the Sobolev
imbedding theorem provides a link between Wm, p and W j, r for j<m and
r>p (under suitable mild regularity condition on the boundary). The
precise form asserts that

Wm, p(0)/W j, r(0)

with

&u&W j, r�C &u&W m, p

and

1
r

=
1
p

&
m& j

n
,

provided r>0 and 0 is bounded and smooth. Moreover if s<r, this
imbedding of Wm, p(0) into W j, s(0) is compact.

If r<0 a variant of the above states that

Wm, p(0)/Ck, :(0� )

and

&u&C k, :�C &u&Wm, p

where k is the integer part of (m&(n�p)) and :=m&(n�p)&k.
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In this context the concept of generalized derivatives and generalized
solutions of PDE's was placed on a firm foundation. Together with the L p

spaces, the Sobolev spaces have turned out to be one of the most powerful
tools in analysis created in the 20th century. They are commonly used and
studied in a wide variety of fields of mathematics ranging from differential
geometry and Fourier analysis to numerical analysis and applied mathe-
matics. For a basic presentation of Sobolev spaces, see e.g. the book of
R. A. Adams [Ad]. For more sophisticated results on Sobolev spaces, see
the books of V. Mazya [Maz2] and D. R. Adams and L. I. Hedberg [A-H].

13. THE SCHWARTZ THEORY OF DISTRIBUTIONS

Laurent Schwartz, in his celebrated book ``La the� orie des distributions''
(1950) [Scw] presented the generalized solutions of partial differential
equations in a new perspective. He created a calculus, based on extending
the class of ordinary functions to a new class of objects, the distributions,
while preserving many of the basic operations of analysis, including addition,
multiplication by C� functions, differentiation, as well as, under certain
restrictions, convolution and Fourier transform. The class of distributions
(on Rn), D$(Rn), includes all functions in L1

loc(R
n), and any distribution T

has well defined derivatives of all orders within that class. In particular, any
continuous function (not necessarily differentiable in the usual sense) has a
derivative in D$. If

L= :
|:|�m

a:(x) D:

is a linear differential operator with smooth coefficients, then L(T ) is well
defined for any distribution T and L(T ) is again a distribution.

The definition of distributions by L. Schwartz is based on the notion of
duality of topological vector spaces. The space D$(Rn) consists of continuous
linear functionals on C �

0 (Rn), i.e., the dual space of the space of testing
functions C�

0 (Rn) equipped with a suitable topology involving the conver-
gence of derivatives of all orders. This definition implies that each distribution
T can be represented locally as a (finite) sum of derivatives (in the distribution
sense) of continuous functions, i.e.,

T(.)= :
|:|�m

| f: D:. \. # C �
0

for some continuous functions f: and some m.
This theory systematized and made more transparent related earlier

definitions of generalized functions developed by Heaviside, by Hadamard,
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Leray and Sobolev in PDE, and by Wiener, Bochner and Carleman in Fourier
analysis.

Other significant motivations for the theory of distributions included:

(a) Giving a more transparent meaning to the notion of elementary
(or fundamental) solution E of an elliptic operator L, which in the language
of the theory of distributions is

L(E)=$0

where $0 is the Dirac measure at 0, i.e., $0(.)=.(0).

(b) D'Alembert's solution of the 1-d wave equation is u(x, t)=f (x+t)
+g(x&t). This u is a classical solution if f, g are smooth and u is a distri-
bution solution if f, g are merely continuous (or just L1

loc).
In terms of the theory of distributions, Sobolev spaces can be defined as

Wm, p=[u # L p; D:u # L p in the sense of distributions, \:, |:|�m].

Many of the applications of the theory of distributions have been in problems
formulated in terms of Sobolev spaces. However there are other significant
classes which play an important role. An example is the space of functions
of bounded variation

BV={u # L1;
�u
�xi

is a measure, \i=1, 2, ..., n= .

This definition clarified a complex field of competing notions (in particular
in the works of L. Tonelli and L. Cesari). The BV space is very useful in the
calculus of variations (e.g. geometric measure theory, fracture mechanics
and image processing) as well as in the study of shock waves for nonlinear
hyperbolic conservation laws (see Section 20).

For a special subclass of distributions, the tempered distributions, S$,
L. Schwartz defined a Fourier transform which carries S$ into S$. The
class S$ is defined again as the dual space of a larger class of test functions

S(Rn)=[u # C�(Rn); |x|m D:u(x) # L�(Rn), \m, \:].

Using the class S$ one can exploit the very important fact that the
Fourier transform of D:u is

F(D:u)(!)=(i) |:| !:F(u)(!)
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where

F( f )(!)=
1

(2?)n�2 |
Rn

e&ix } !f (x) dx

and !:=!:1
1

} } } !:n
n .

For a linear differential operator L with constant coefficients

L=: a: D:

the study of the solution of the equation Lu= f, after Fourier transform,
reduces to the study of an algebraic equation

P(!)(Fu)=Ff

where P(!)=� a:(i) |:| !:. Thus, this problem is equivalent to the study of
division by polynomials in various spaces of distributions. This viewpoint
and, in addition, the introduction of the Fourier Transform in the complex
domain (as first suggested by Leray [Le4]), has been the subject of intensive
investigation beginning in the mid-1950's in the work of L. Ehrenpreis [Eh],
B. Malgrange [Mal] and L. Ho� rmander [Hor1].

This gives rise to a theory of local solvability for linear PDE's with
constant coefficients, which has since been generalized to a theory of local
solvability for equations with variable coefficients (see H. Lewy [Lew],
A. Calderon [Cal2], L. Nirenberg and F. Treves [N-T], R. Beals and
C. Fefferman [B-F]).

In the ensuing decades the theory of distributions provided a unifying
language for the general treatment of solutions of PDE's. In addition to
its universal use in analysis, it has been widely adopted in many areas of
engineering and physics. An important extension of the machinery of the
theory of distributions was the development of the theory of analytic func-
tionals by Sato and his school and other related theories of hyperfunctions.
For a general treatment of distribution theory in the theory of PDE, see
[Hor4]. For some other topics on the use of distribution theory in PDE's,
see [G-S].

14. HILBERT SPACE METHODS

One of the great mathematical advances in the 1930's was the develop-
ment in a conceptually transparent form of the theory of self-adjoint linear
operators and the more general framework for linear functional analysis in
the work of S. Banach and his school. Though the first was based on earlier
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work of Fredholm, Hilbert and F. Riesz on integral equations, the reformu-
lation of the basic principle of quantum mechanics in operator theoretic
terms gave an enormous impetus to the more sophisticated development of
operator theory in Hilbert spaces, in geometric and analytic forms. At the
same time, except for isolated work of K. O. Friedrichs and H. Weyl, few
applications were made of these ideas to PDE's. This situation changed very
quickly in the late 1940's especially because of the early work of M. I. Visik
(1951) under the influence of I. M. Gelfand. M. I. Visik [Vi1] considered the
formulation of the Dirichlet problem for a general nonselfadjoint uniformly
elliptic linear operator (not necessarily second order). When written in
generalized divergence form, such operator becomes

Lu= :

|;|�m
|:|�m

D:(a:;(x) D;u) (6)

where

Re :
|:|=|;| =m

a:;(x) !:!;�c0 |!| 2m \x # 0, \! # Rn, c0>0. (7)

These results were sharpened in the work of L. Ga# rding (1953) [Ga# 1] as
well as in related works of F. Browder [Bro1], K. O. Friedrichs [Fd],
P. Lax and A. Milgram [L-M], and J. L. Lions [Lio1]. Ga# rding's most
important contribution was to introduce the explicit use of Fourier analysis
into this field and, in particular, the central role of Plancherel's theorem
(1910) which states that the Fourier transform is a unitary mapping of L2(Rn)
into itself. As we have already noted the Fourier transform F carries the
differential operator D: into the operator of multiplication by (i) |:| !:. In
terms of this operation the Sobolev space Hm=Wm, 2 becomes, under
Fourier transform,

Wm, 2(Rn)=[u # L2(Rn); !:F(u) # L2(Rn), \:, |:|�m],

with equivalence of norms, namely,

&u&2
m, 2=&u&2

W m, 2 & :
|:|�m

&!:F(u)&2
L2 ,

giving an alternative perspective on the Sobolev imbedding theorem for
p=2. As opposed to the Sobolev space Wm, p, p{2, Wm, 2 is a Hilbert
space with inner product

(u, v)= :
|:|�m

| D:u D:v.
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In terms of this formalism, L. Ga# rding established the well-known Ga# rding
inequality: If 0 is a bounded domain in Rn and if W m, 2

0 (0) is the closure
of C �

0 (0) in Wm, 2(0), then for every L of the form (6) with the top
order coefficients a:; satisfying (7), uniformly continuous on 0, and all
coefficients bounded, then there exist constants c0>0 and k0 such that

Re | (Lu) u� �c0 &u&2
m, 2&k0 &u&2

0, 2 \u # W m, 2
0 (0).

This inequality plays an essential role in reducing the existence problem to
standard results in Hilbert space theory.

The classical Dirichlet problem

Lu=f in 0

D:u=0 on �0, \:, |:|<m,

can be extended from smooth solutions u # C2m(0) & Cm&1(0� ) to generalized
solutions u # W m, 2

0 (0) satisfying

:
:, ;

| a:; D:u D:v=| fv� \v # C �
0 (0)

and a fortiori for all v # Wm, 2
0 (0). This latter problem is called the generalized

Dirichlet problem and follows the same pattern as the completion process
described in Section 11 for the Dirichlet problem associated with the Laplace
equation.

By the Frechet�Riesz representation theorem there exists a bounded linear
operator A from H=W m, 2

0 (0) to H such that

(Au, v)H=(Lu, v)L2 \u, v # H.

Similarly there exists an element g # H such that

( f, v)L2=(g, v)H \v # H

and a compact linear map C of H into H such that

(u, v)L2=(Cu, v)H \u, v # H.

The generalized Dirichlet problem is immediately translatable into the
functional equation

Au= g, u # H
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and the Ga# rding inequality into

Re(Au, u)H�c0 &u&2
H&(Cu, u) \u # H.

If C=0, we may apply the Lax�Milgram lemma [L-M], which asserts that
every bounded linear operator A from H to H for which

Re(Au, u)�c0 &u&2
H \u # H,

is an isomorphism of H onto itself. In this case the Dirichlet problem is
solvable uniquely for every f. In the general case

A=A0+C

where An is an isomorphism and C is compact. By the classical theory of
F. Riesz [RiF], A is a Fredholm operator of index zero. In particular, one
has the Fredholm alternative, namely the equation Au= f has a solution if
and only if f is orthogonal to the finite dimensional nullspace of A*,
N(A*), and dim N(A*)=dim N(A).

To obtain the completeness of the eigenfunctions of the Dirichlet problem
for a formally self-adjoint A of order 2m one may apply the spectral decom-
positions of compact self-adjoint operators in Hilbert spaces. One introduces
a new inner product on H given by

[u, v]=(Au, v)H+k(u, v)L2 .

By Ga# rding's inequality this is a scalar product if k is sufficiently large
and the associated norm is equivalent to the original norm on H. If one
introduces the operator C by

[Cu, v]=(u, v)L2 ,

C is a compact self-adjoint operator in H with respect to the new inner
product. The eigenvalue problem Lu=*u, u # Wm, 2

0 (0), is equivalent to the
functional equation

u=(k+*) Cu, u # H

and therefore the spectral structure of C goes over to the eigenvalue
decomposition for L. The asymptotic distribution of eigenvalues for the
Dirichlet problem has been extensively studied following the initial result of
H. Weyl (1912) [We1] (see Section 18).

Another equivalent viewpoint of treating the Dirichlet problem lies in
using the duality structure of Banach spaces more explicitly. Following a
definition introduced by J. Leray [Le4] in the treatment of hyperbolic
equations and independently by P. Lax [La1] in the treatment of elliptic
equations, one can define the Sobolev space W&m, 2(0) as the conjugate
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space of W m, 2
0 (0), where this new space is considered as a space of distri-

butions. Similarly one defines W&m, p$(0) as the conjugate space of W m, p
0 (0)

where p$= p�( p&1). In the case p=2 the Riesz representation theorem
establishes an isomorphism between Wm, 2

0 (0) and W&m, 2(0). It is this
isomorphism which we apply above to represent the mapping L, which is
more naively defined as a mapping of W m, 2

0 (0) onto W &m, 2(0) by the new
operator A mapping W m, 2

0 (0) into itself. For the extensions of this procedure
to a nonlinear setting, where in general p{2, see Section 21.

These results on the existence (and uniqueness) of solutions of the
generalized Dirichlet problem must be supplemented��when all data are
smooth��by results on the regularity of these generalized solutions to obtain
a classical solution. Such results involve both regularity in the interior as well
as regularity up to the boundary. Results of the first kind were obtained by:

1. Use of fundamental solutions for elliptic operators of higher order as
established by F. John [J1], generalizing classical results of E. E. Levi [Le] in
the analytic case.

2. Use of Friedrichs' method of mollifiers involving convolutions of the
given u with a sequence of smoothing kernels; see [Fd].

3. Use of the Lichtenstein finite difference method as revived by Morrey
[Mor2].

The first two methods apply to a somewhat broader problem, namely prov-
ing that all distribution solutions of Lu= f, i.e., u # D$(0) satisfies Lu= f in
the distribution sense, are C� when L is elliptic with smooth coefficients and
f is C�. When L is the Laplacian and u # L2 this result was established by
H. Weyl [We3] in 1940, and this so-called Weyl lemma was the inspiration for
the whole field of studying the regularity of distribution solutions of elliptic
equations. This is the central example of a situation where every distribution
solution u of the equation Lu= f with f # C� must lie in C�. Such a property
has been extensively studied for general operators under the name of hypoellip-
ticity.

These results were also applied to obtain solutions of equations of evolution
involving L of the parabolic and generalized wave equation type; see Sec-
tion 17.

A related development of major importance was the application of energy
methods to the study of the Cauchy problem for linear strictly hyperbolic
PDE's and systems of PDE's. After initial work in 1938 by J. Schauder on
second order hyperbolic equations and later work by K. O. Friedrichs on
symmetric hyperbolic systems, the full generality of the pre-war results of
Petrovski [Pet] was recovered and amplified by J. Leray [Le4] using global
energy estimates. These estimates were later localized by L. Ga# rding [Ga# 3].
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15. SINGULAR INTEGRALS IN L p:
THE CALDERON�ZYGMUND THEORY

An essential tool in the study of regularity properties of solutions of
PDE's has been the L p theory of singular integral operators developed by
Calderon and Zygmund in 1952. Singular integral operators on Rn are
operators of the form

(Sf )(x)= pv |
R n

K(x& y)
|x& y| n f ( y) dy= lim

= � 0 ||x& y|>=

K(x& y)
|x& y|n f ( y) dy,

where K(x)=k(x�|x| ) and k satisfies some smoothness condition together
with

|
Sn&1

k(!) d_(!)=0.

Two principal examples motivate this theory:

1. The Hilbert transform H which is an important tool in Fourier
analysis on R corresponds to n=1, k(+1)=+1 and k(&1)=&1.

2. If E is the fundamental solution for the Laplace operator in Rn,
i.e.,

E(x)={c�|x| n&2

c log(1�|x| )
if n>2,
if n=2,

then for every i, j

K(x)=|x|n �2E
�xi �xj

satisfies the above conditions. In view of the results of Section 14, for any
solution u of the Laplace equation &2u= f, u&(E V f ) is harmonic and
thus C�. Therefore the regularity properties of u are the same as those of
(E V f ). Moreover

�2

�xi �xj
(E V f )=

�2E
�xi �xj

V f,

at least formally; more precisely �2E��xi �xj is not an L1 function and thus
the convolution cannot be defined as the integral of an L1 function. It must
be considered as a principal value (this is already true in the case of the
Hilbert transform H). Singular integral operators have been considered in
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connection with PDE's in the works of F. E. Tricomi (1926-28), G. Giraud
(1934) and especially S. G. Mikhlin starting in 1936; see [Mik].

For H, M. Riesz, in 1927, proved that H carries L p(R) into L p(R) for
all 1<p<�. From the point of view of PDE's, the most important
contribution of Calderon�Zygmund, in their celebrated 1952 paper [C-Z],
was to generalize this result about H to show that every singular integral
operator S as above maps L p(Rn) into L p(Rn) and satisfies the inequality

&Sf &L p�Cp & f &L p \f # L p(Rn).

Applications of this result were made to important problems in PDE's,
within a few years, by Calderon and others. In particular, Calderon [Cal1]
obtained the uniqueness of the Cauchy problem for operators with simple
characteristics. The Calderon�Zygmund estimates were applied by L. Bers
to obtain basic theorems about Teichmuller spaces. In addition, Calderon
developed representation theorems for solutions of BVP, for general linear
elliptic equations in terms of singular integrals applied to the boundary data.

The calculus was extended to singular integral operators

(Sf )(x)= pv | K(x, x& y)
|x& y|n dy

where, for each x, K(x, } ) is a singular integral kernel in the above sense.
The symbol _ of these operators plays a strategic role, where

_(x, !)=F(K(x, } ))(!).

The composition of two such operators is a singular integral operator modulo
smoothing operators and its symbol is the product of the two symbols. When
in the early 1960's, Atiyah and Singer [A-S] attacked the problem formulated
by Gelfand of calculating the index of a linear elliptic system of differential
operators acting on a vector bundle over a compact manifold in terms of
topological invariants, the technical framework of their theory, in terms of
analysis, was the deformation of systems of differential operators through
systems of operators whose coefficients were singular integral operators. In
this study the principal tool was the use of the symbol of the singular integral
operators and the fact that the composite operators define Fredholm
mappings in appropriate function spaces, which vary continuously with the
symbol. It was this application of the singular integral operators which
gave rise in 1965 to the definition of pseudo-differential operators by J. J.
Kohn and L. Nirenberg [K-N], (and also by R. T. Seeley, L. Ho� rmander,
A. Unterberger and J. Bokobza) thereby providing a unified framework for
the concepts of singular integral operators and differential operators with
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powerful rules of computation. This calculus also includes the one devised
in 1927 by H. Weyl [We2] in connection with problems of quantum mechanics.

More explicitly, the pseudo-differential operator associated with the
symbol _(x, !) is given by

(Pf )(x)=| eix } !_(x, !)(Ff )(!) d!

=
1

(2?)n�2 || ei(x& y) } !_(x, !) f ( y) dy d!.

Note that differential operators correspond to symbols _ which are
polynomials in the ! variable while the singular integral operators described
above correspond to symbols _ which are homogeneous of order zero in !.

A more general class of transformations, called Fourier integral operators, is
given with respect to a phase function .(x, y, !) by

1
(2?)n�2 || ei.(x, y, !)a(x, y, !) f ( y) dy d!.

The theory of such transformations, which has been initiated by P. Lax
[La2] and V. P. Maslov [Mas], and developed by L. Ho� rmander [Hor3],
Yu. V. Egorov, J. J. Duistermaat, R. Melrose and others, provides a powerful
tool for studying solutions of linear hyperbolic equations. An important use
of both transformations is the study of propagation of singularities along
their bicharacteristics in conjunction with the important notion of wave
front set, first introduced by Sato for hyperfunctions and then by L. Ho� rmander
for distributions. This area of attack on solutions of PDE's is usually called
microlocal analysis.

Another important tool, the theory of paradifferential operators, was intro-
duced by J. M. Bony [Bon] for the study of propagation of singularities for
solutions of nonlinear hyperbolic equations.

A significant strengthening of the Calderon�Zygmund theory was the
development of the theory of commutators with Lipschitz continuous
kernels initiated by Calderon and continued by R. Coifman, Y. Meyer and
A. MacIntosh; see e.g. [Me, Vol. 3]. An interesting domain of application
to PDE's is the work of C. Kenig [Ken] on elliptic equations in irregular
domains.

For a detailed account, see the books of L. Ho� rmander [Hor4], J. J.
Duistermaat [Du], F. Treves [Tre], M. Taylor [Ta1] [Ta2], Yu. V. Egorov
and M. A. Shubin [E-S] and E. Stein [Ste].
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16. ESTIMATES FOR GENERAL LINEAR ELLIPTIC
BOUNDARY VALUE PROBLEMS

In the tradition of J. Schauder and his predecessors (see Section 8) a
general treatment of solvability and a priori estimates for higher order linear
elliptic problems was carried out in the late 1950's. The class of problems
for which such results hold was described by the Soviet mathematicians
Ya. B. Lopatinski [Lo] and Z. Shapiro [Sh]. In terms of the characteristic
polynomial of the elliptic operator

L= :
|:|�2m

a:(x) D:

and the system of boundary operators

Bj= :
|;| �mj

b;(x) D;, mj�m, j=1, 2, ..., m,

an algebraic condition, at all boundary points, involving the characteristic
polynomials

a(x, !)= :
|:|=2m

a:(x) !:

and

bj (x, !)= :
|;|=mj

b;(x) !;

is essentially equivalent to the solvability (in a reasonable sense) of the
problem

{Lu=f
Bj u=gj

in 0
on �0, j=1, 2, ..., m.

A particular case is the Dirichlet BVP for a uniformly elliptic operator of
order 2m; here Bj=� j��n j, j=0, 1, ..., m&1.

The study of such equations (and systems) in various function spaces,
such as C:, L p, etc..., was begun by a number of mathematicians, culminat-
ing in the celebrated and very general paper by S. Agmon, A. Douglis and
L. Nirenberg [A-D-N]. Following the example of L. Lichtenstein, Kellogg
and Schauder in the case of the Dirichlet problem for second order equa-
tions, the technical study of the theory is reduced to a model problem:
the representations of solutions of the constant coefficient operators in a
half-space with homogenous, constant coefficient, boundary conditions. Such
representations were given in the most explicit form in the so-called Poisson
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kernel. Estimates for such problems can be perturbed to yield local estimates
for variable coefficient problems under suitable hypotheses on the coefficients
(C: for C: estimates and uniformly continuous for L p estimates). The
estimates are of the following type

&u&C2m, : (0� )�C \& f &C0, : (0� )+&u&C0, : (0� )+:
j

&gj &C 2m&mj, : (�0)+
and

&u&W 2m, p (0)�C \& f &L p (0)+&u&L p (0)+:
j

&gj &W2m&mj&(1� p), p(�0)+ .

Here, the boundary term involves a fractional Sobolev norm. When 0<s<1
the norm in Ws, p over a domain or manifold of dimension d is given by

&u& p
W s, p=||

|u(x)&u( y)| p

|x& y|d+sp dx dy+| |u(x)| p dx.

Similar estimates can be obtained for higher order derivatives and the original
estimates can be used to derive existence theorems in various function spaces
(as well as the fact that such operators are Fredholm); see F. Browder
[Bro3,4], M. Schechter [Sce], the book of J. L. Lions and E. Magenes
[Li-Ma] and the references therein.

An additional result involves the application of interpolation procedures
in Sobolev spaces. The most systematic form is the Gagliardo�Nirenberg
inequality [Ga1,2] and [Ni2]. An especially useful case states that

&u&2
W1, q�C &u&W 2, p &u&L r

where

1
q

=
1
2 \

1
p

+
1
r+ .

The combination of the a priori estimates with interpolation properties of
Sobolev spaces has been an important device in studying nonlinear problems
and has made the calculus in Sobolev spaces an essential tool.

17. LINEAR EQUATIONS OF EVOLUTION:
THE HILLE�YOSIDA THEORY

The classical BVP's of mathematical physics include, besides the elliptic
equations, the initial BVP for the heat equation and the Cauchy problem
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for the wave equation; in addition, following the development of quantum
mechanics, the initial value problem for the Schro� dinger equation.

All these problems can be written in a common form:

{
du
dt

=Au, t # [0, �)
(8)

u(0)=u0

where:

(1) for the heat equation A=2,

(2) for the wave equation, u=( u1
u2

) is a vector, u1=u, u2=�u��t and
A is the matrix

A=\0
2

I
0+ ,

(3) for the Scho� dinger equation A=i(2+V), where V(x) is a
potential function.

One can replace the Laplace operator 2, in the above examples, by a
general elliptic operator provided one establishes appropriate results on the
spectral properties of L under the given homogenous boundary condition.
For problems (2) and (3) this traditionally means that L is formally self-
adjoint, so that the corresponding operators in Hilbert spaces are Hermitian
and have real spectrum.

A general treatment of initial value problems of this type was given in
1948, independently by E. Hille [H-P] and K. Yosida [Yo1,2]. Their theorem
(in a slightly generalized form) asserts that if X is a Banach space and
A: D(A)/X � X is a possibly unbounded closed linear operator such that

{(A&*I )&1 exists for all *>| and satisfies
&(A&*I )&n&�M(*&|)&n for all *>|,

(9)

for some constants | and M, then (8) has a unique solution u(t) for each
u0 # D(A). The mapping U(t): u0 [ u(t) satisfies

&U(t)&�Me|t \t�0 (10)

as well as the semi-group property

U(0)=I, U(t+s)=U(t) U(s), \t, s�0.
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Moreover, every continuous semi-group satisfying (10) is obtained in this
way, for some operator A, called the infinitesimal generator of U(t). If both
A and &A satisfy (9), e.g. A=iH where A is a Hermitian operator in a
Hilbert space, then equation (8) can be solved both for positive and negative
time and U(t) is a one-parameter group. Physically this corresponds to time
reversibility; it occurs, for example, in the wave and Schro� dinger equations,
but not in the heat equation.

In applying Hille�Yosida theory to the concrete examples mentioned above,
one obtains results on (A&*I )&1 by showing that the equation

Au&*u= f

has a unique solution u in D(A) for any given f # X. This is an existence
(uniqueness) statement for an elliptic stationary problem and is treated by
the methods of Sections 8, 14, 16. The interested reader will find a detailed
presentation of the theory of semigroups and its applications in the books
of E. B. Davies [Da1], J. Goldstein [Go], A. Pazy [Pa], M. Reed and
B. Simon [R-S], Vol 2.

18. SPECTRAL THEORIES

The considerations above provide one of the principal motivations for the
study of the spectral theory of elliptic operators under homogenous boundary
conditions, which has been extensively developed over the 20th century in
a number of different directions.

For some classical operators, particularly the Schro� dinger operator A=
&2+V, this investigation began in the work of Friedrichs and Rellich (in
the 1930's and 40's) and was actively pursued by T. Kato (in the 1950's and
60's) and many others. The main purpose is to study the effect on the spectrum
of small perturbations of A (e.g. on the potential V). The spectral properties
of the operator A are closely related to the asymptotic properties of U(t)
as t � �, which have been studied under the name of scattering theory. For
the time dependent Schro� dinger equation, this is the classical scattering
problem of quantum mechanics. We refer to the books of T. Kato [Ka1],
L. Ho� rmander [Hor4], M. Reed and B. Simon [R-S]. A related problem
has been extensively investigated by P. Lax and R. Phillips [L-P] for the wave
equation in exterior domains; further results were obtained by C. Morawetz
and W. Strauss [Mo-St] as well as by J. Ralston, R. Melrose and J. Rauch.

Among the many developments in the spectral theory of elliptic self-adjoint
operators (as well as more general linear PDE's) let us mention the theory of
singular eigenfunctions expansion (analogous to the Fourier integrals) for
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operators without compact resolvents. If A is such an operator, by the abstract
spectral theorem in Hilbert space

A=| * dE*

where [E*] is the spectral measure corresponding to A. The problem of
singular eigenfunction expansions is that of expressing E* as a transform
using eigenfunctions of A. This was initiated in a paper of Mautner [Mau]
(1952) and developed in full by F. Browder [Bro2], L. Ga# rding [Ga# 3]
and I. M. Gelfand (see the book of Gelfand and Shilov [G-S, Vol. 3]).

In the case of a compact resolvent an important topic of investigation is
the asymptotic distribution of eigenvalues begun by H. Weyl for the Laplacian
in his famous paper [We1] in 1912. The question was posed by the physicist
H. Lorenz (in 1908) as an important tool in proving the equipartition of energy
in statistical mechanics. H. Weyl established the necessary result, i.e., if
N(*) denotes the number of eigenvalues �*, then

N(*)&cn*n�2 vol(0) as * � �,

where cn depends only on n.
Weyl's method applied the minimax principle for eigenvalues of Hermitian

matrices introduced by Fisher [Fis] and extended by Weyl to integral
operators. This method used a decomposition of the domain into pieces on
which the eigenvalue problem can be solved explicitly. (A similar approach
based on the minimax principle was used later by Courant to obtain the
first estimates on the order of magnitude of the error term, (see [C-H],
Vol. I).

An important transformation of the problem was carried through by
Carleman [Car] in 1934 who began the estimation of the spectral function

e(x, y, *)= :
*i�*

ei (x) ei ( y)

where [ei] is the family of orthonormalized eigenfunctions. The function
e(x, y, *) is the kernel of the spectral projection operator E* and N(*)=
�0 e(x, x, *) dx.

Carleman observed that for the Green's function G(x, y, *) of A+*I,

G(x, y, *)=| e(x, y, +)
d+

++*
,

and obtained asymptotic estimates on e(x, y, *) by applying Tauberian
theorems to corresponding asymptotic estimates for G(x, y, *). Later
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Minakshisundaram and Pleijel [M-P] observed that if one uses the fact
that the solution of the initial value problem equation �u��t=&Au is given
by

u(t)=U(t) u0 , U(t)=| e&*t dE* ,

then a similar Tauberian argument gives asymptotic estimates for e(x, y, *)
in terms of estimates for the kernel of U(t). Still later, Ho� rmander applied
an analogous argument for the generalized wave equation

�2u
�t2 &Au=0

for which the solution of the Cauchy problem can be expressed in terms of
the kernel of the operator

| eit - * dE* .

The asymptotics of the spectral function as well as of the trace of heat
kernel, � e&*i t, especially popular among geometers, have attracted much
attention, for elliptic operators, even of higher order, and on manifolds. We
mention, in particular, the works of B. M. Levitan (1952�55). L. Ga# rding
[Ga# 2], S. Mizohata and R. Arima (1964), H. P. McKean and I. Singer
[M-S] (1967), L. Ho� rmander [Hor2] (who introduced, in 1968, Fourier
integral operators as a tool for estimating remainder terms in the expansion
of the spectral function), J. J. Duistermaat and V. W. Guillemin [D-G] (1975),
A. Weinstein (1977), R. T. Seeley (1978�1980), Y. Colin de Verdie� re (1979),
V. Ivrii [I] (1980) and others (see a detailed presentation in the books
[Hor4] and [Ta1]). For more recent results in spectral theory, see E. B.
Davies [Da2] and Safarov�Vassiliev [S-V].

The celebrated problem of M. Kac [Ka] ``Can one hear the shape of a
drum?'', i.e., does the spectrum of the Laplacian fully determine the geometry
of the domain? has received a negative answer in 1991 (see [G-W-W]), but
the question remains how much of the geometry is recoverable from the
spectrum.

A related set of questions, going under the name of inverse problems, asks
for the determination of the potential V(x) in the Schro� dinger operator
(&2+V) in terms of the spectral data. This problem was first posed in
connection with quantum mechanics and is also of significance in seismology.
The positive solution to this problem was achieved in 1-d by the Gelfand�
Levitan theory [G-L] in 1951 and eventually, proved to be an essential
tool in the analysis of soliton solutions for the K dV equation (see Section 20).
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Another inverse problem introduced by A. P. Calderon in 1980 asks
whether the coefficient function a(x) in the operator L=div(a(x) grad) can
be determined from the knowledge of the mapping which associates to
every function . on �0 the value of a(�u��n) on �0 where u is the solution
of Lu=0 in 0, u=. on �0. This problem is of great importance in engineering
because, in practice, measurement can only be made on the boundary. Recent
results of R. Kohn and M. Vogelius (1984), J. Sylvester and G. Uhlmann
(1987) indicate that the answer is positive in dimension �3 (see [Sy-Uh]
and the references therein).

19. MAXIMUM PRINCIPLE AND APPLICATIONS:
THE DEGIORGI�NASH ESTIMATES

A characterizing principle for a harmonic function in a domain 0 of Rn

is that, at each x,

u(x)=|3
Br(x)

u( y) dy

for any ball Br(x) in 0, where �% denotes the average. A consequence is that
u cannot assume a maximum value at an interior point unless it is constant.
Starting with the work of Paraf in 1892 and continued by Picard and
Lichtenstein, this conclusion was extended to second order linear uniformly
elliptic operators

L=:
i, j

aij (x)
�2

�x0 �xj
+:

i

ai (x)
�

�xi
+a0(x),

with smooth coefficients provided that a0<0. An important sharpening of this
theorem was established by E. Hopf [Hop1] in 1927 without any assumptions
of continuity on the coefficients (just boundedness). His result asserts that
if u # C2 satisfies

{Lu=f (x)
u=.(x)

in 0
on �0

(11)

with f�0 in 0 and if u attains a nonnegative maximum M at an interior
point in 0 then u#M. In particular if u satisfies (11) with f�0 in 0 and
.�0 on �0 then u�0 everywhere in 0. Thus the map ( f, .) [ u is order
preserving, i.e., f1� f2 and .1�.2 imply u1�u2 . A consequence of this is
uniqueness of the solution of (11). The weak assumptions in Hopf 's result
imply that this result goes over to very general solutions of nonlinear equations.
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Starting with S. Bernstein (see Section 7) the maximum principle has
provided a decisive instrument in proving a priori estimates and existence.
The procedure has always consisted of ingenious choices of auxiliary
functions satisfying elliptic partial differential inequalities.

Important early application of the maximum principle was the use of
subharmonic functions, that is,

u(x)�|3
Br(x)

u( y) dy

for all Br(x)/0 (or equivalently 2u�0 in the sense of distributions), as
a useful concept in potential theory. For example, the solution of 2u=0
in 0 with u=. on �0 coincides with supi # I ui where (ui) i # I denotes the
family of all subharmonic functions on 0 such that ui�. on �0. This is
called after O. Perron [Per] who initiated this approach in 1923. N. Wiener
[Wi] extended this result in 1924 to obtain a necessary and sufficient criterion
for proving that, at a given x0 # �0, the above u satisfies u=..

From such considerations one derives a constructive method for solving
a class of nonlinear elliptic equations via a monotone iteration, in the presence
of an ordered pair of sub and supersolutions.

A related, but sharper result is Harnack's inequality (1887) which states
that if u is harmonic in 0, u�0 in 0 then for each compact subdomain K,

sup
K

u�CK inf
K

u

where CK depends only on K. This principle provides a useful compactness
property for harmonic functions.

Important progress in this direction was made by E. DeGiorgi [Dg1] in
1957 and subsequently refined by J. Moser [Mos1] and G. Stampacchia
[Sta]. The main point is that the maximum principle, as well as Harnack's
inequality, hold for second order elliptic operators in divergence form

Lu=:
i, j

�
�xj \aij (x)

�u
�xi++:

i

ai
�u
�xi

+a0u

with a0�0, under the very weak assumption that the coefficients aij are
bounded measurable and satisfy a uniform ellipticity condition

� aij (x) !i !j�: |!| 2 \! # Rn, :>0, for a.e. x # 0.

The solutions are assumed to lie in H1(0)=W1, 2(0). A fundamental result,
whose proof relies on a sophisticated application of the above principles,
asserts that every solution u # H 1(0) of Lu=0 is continuous, and more
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precisely belongs to some C0, :. A similar conclusion was derived independ-
ently by J. Nash [Na2] for the corresponding parabolic equation.

As we have already mentioned in Section 7 these estimates are the first
and basic steps in solving Hilbert's 19th problem, i.e., in proving that the
variational problem associated with the functional

|
0

F(x, u, grad u)

with u=. on �0 has a smooth minimum provided F is smooth and the
corresponding Euler�Lagrange equation is uniformly elliptic. This result
completed a long lasting effort to establish regularity of weak solutions for
scalar problems, i.e., where u is a real valued function.

In a number of important physical and geometrical situations u is not a
scalar but a vector and the corresponding Euler�Lagrange equation is a
system. The question arose naturally whether the previous theory extends
to systems. In 1968 E. DeGiorgi [Dg2] constructed a surprising counterexample
of a second order linear elliptic system Lu=0 where the solution has the
form x�|x|:, :>1, and thus is not continuous. DeGiorgi [Dg2] and inde-
pendently Mazya [Maz1] also found a scalar equation Lu=0 with L
linear elliptic of order 4 for which the solution is unbounded. For nonlinear
variational systems Giusti and Miranda [G-M] constructed an example
involving a smooth F, where the minimizer has the form x�|x|. This ruled
out any transparent theory of regularity for solutions of systems. In 2-d
such regularity does hold as was established by C. B. Morrey [Mor2] in
the 1940's. In higher dimensions partial regularity was established starting
with the works of Almgren, DeGiorgi, Federer, Giusti, M. Miranda and
Morrey in the late 1960's, showing that the singular set of a solution is small
in the sense of appropriate Hausdorff measure. There has been renewed
interest in partial regularity during the 1980's, motivated in particular by
nonlinear elasticity and harmonic maps, with contributions by a number
of authors including Evans, Gariepy, Giaquinta, Giusti, Hildebrandt,
G. Modica, Necas; see e.g. the books of Giaquinta [Gia1,2] and Necas
[Nec]. A remarkable result of Schoen�Uhlenbeck [S-U] asserts that the
singular set of a minimizing harmonic map in Rn has Hausdorff dimension
�n&3. For example, the singular set in 3-d consists of isolated points;
moreover Brezis, Coron and Lieb [B-C-L] have shown that every singu-
larity has the form x�|x|. This is consistent with the observation of point
defects in some physical problems (e.g. in the theory of materials, such as
liquid crystals). Line singularities (in 3-d), e.g. Ginzburg�Landau vortices,
occurring in superconductors and superfluids, have recently been investigated
by Bethuel, Brezis and He� lein [B-B-H].

Another sophisticated class of applications of the maximum principle,
in conjunction with the method of moving planes of A. D. Alexandrov,
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consists of establishing geometric properties of the solutions. This program
was initiated by J. Serrin [Ser2] in 1972 and pursued among others by
B. Gidas, W. M. Ni and L. Nirenberg [G-N-N] who established that any
positive solution of

&2u=f (u)
u=0

in 0=a ball
on �0

has radial symmetry. Here f can be very general��a Lipschitz condition
suffices. Again, little is known about the analogue for systems.

As the above observations indicate, the validity of the maximum principle
is restricted to second order, scalar, elliptic operators and does not extend in
any natural way to systems of second order operators or to higher order scalar
equations. This creates a discontinuity in the type of conclusions for those
two cases.

For questions discussed in this Section we refer the reader to the books
of Protter�Weinberger [P-W], Stampacchia [Sta], Gilbarg�Trudinger [G-T],
Giaquinta [Gia1,2], Ladyzhenskaya�Uraltseva [L-U], Morrey [Mor3]
and Necas [Nec].

20. NONLINEAR EQUATIONS OF EVOLUTION:
FLUID FLOWS AND GAS DYNAMICS

A wide variety of problems of the greatest importance in physics and
engineering are formulated in terms of nonlinear equations of evolution.
The most general form of such equations is given by

�u
�t

=Au

where the nonlinear operator A and the space of functions on which it acts
are specified by the nature of the problem.

Historically, the equations which have received the most intensive study,
particularly from the point of view of constructing a rigorous mathematical
theory, arise in the description of incompressible fluid flows: the Navier�
Stokes equation (4) and the Euler equation (5). In this case the possibility
of a blow-up of the solution, i.e., a time T* in which either the solution or
some of its derivatives become infinite somewhere, has been associated by
J. Leray and others with the physical phenomenon of turbulence, one of the
most significant macroscopic problem in physics. The study of possible sin-
gularities for Navier�Stokes in 3-d which was begun by J. Leray in 1933 (see
Section 11) has been carried further by V. Scheffer (1977) and L. Caffarelli,
R. Kohn and L. Nirenberg [C-K-N] in 1982 to exclude for example a line
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of singularities in space-time. Whether singular points exist at all in the 3-d
Navier�Stokes and Euler equations is still a major open problem.

In 2-d, global existence and regularity have been proved (see Section 11)
and the question of the description of the behavior of the solution as t � �
has focused on concepts from dynamical systems, in particular the study of
attractors. It was suggested by D. Ruelle and F. Takens in a much discussed
paper that the phenomenon of turbulence might be derived from the possible
existence of a complicated attractor. Such attractors and their chaotic behavior
have been studied in great detail for some finite dimensional systems by
S. Smale and his school. In 1963 the meteorologist E. Lorenz discovered a
simple system of three ordinary differential equations for which numerical
computations indicated a complicated asymptotic structure as t � �.
Much of the recent research in dissipative nonlinear equations of evolution
having global solutions has focused on the question of reducing the study to
the solution as t � � to a finite dimensional situation, especially through the
works in the 1980's of Babin and Visik, Foias and Temam, and Ladyzhenskaya;
see e.g. the books of Temam [Te3] and Ladyzhenskaya [L2]. A strong
stimulus for these investigations has been provided by the discovery of the
Feigenbaum cascade describing some universal phenomena in the iteration
of mappings. Such cascades have also been discovered experimentally in
certain investigations of fluid flows.

Besides the Navier�Stokes equation, other equations have been studied from
the point of view of their attractors, such as the Kuramoto�Sivashinski equation

�u
�t

+&
�4u
�x4+

�2u
�x2+

1
2 \

�u
�x+

2

=0, &>0

arising in combustion theory, or the Cahn�Hilliard equation

�u
�t

+&22u&2(u3&:u)=0

where &>0, arising in phase transitions.
Still in the context of global solutions of fluid flows, a different phenomenon

appears in the Korteweg�DeVries (KdV) equation

�u
�t

+6u
�u
�x

+
�3u
�x3=0

which describes waves in shallow channels. Here, one has the phenomenon
of soliton solutions, first noticed by J. S. Russell in 1834. These are
solutions which preserve their shape indefinitely and even interact with
other such solutions without losing their individuality. A theory of soliton
solutions for KdV was initiated in the mid 1960's by M. Kruskal and his
collaborators (see [Z-K] and [G-G-K-M]). The main idea is to introduce
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a change of variable, based on inverse scattering for the 1-d Schro� dinger
operator (the Gelfand�Levitan theory, see Section 18) which makes the
problem linear and explicitly solvable. Shortly afterwards P. Lax [La4]
formalized this method and introduced the so-called ``Lax pair''. In 1971
V. E. Zakharov and A. B. Shabat recognized that the Lax formalism is not
restricted to the KdV equation, but can also be used for the nonlinear
Schro� dinger equation

i
�u
�t

+
�2u
�x2+k |u| 2 u=0, k # R.

This has given rise to a broad attack in the 1970's on the study of other
nonlinear equations of evolution in a wide variety of physical and engineering
contexts, for example the sine-Gordon equation

�2u
�t2 &

�2u
�x2+sin u=0

and the Toda lattice. The systems involved have the property of being
completely integrable and have a large or infinite number of invariants of
motion, something which is not the case for dynamical systems or equations
of evolution in general. The generalization of this theory has led to an
extremely fruitful interaction in the 1980's between PDE's and areas of
mathematics and physics like algebraic geometry, group theory (quantum
groups) topology (connections between knot theory, Jones polynomials,
and integrable systems) and quantum gravity. We refer to the books [New],
[F-T] and [F-Z].

Going back to the original motivation in fluid mechanics, long waves in
nonlinear dispersive systems have been studied by a number of authors, e.g.
T. B. Benjamin, J. L. Bona and J. J. Mahony [B-B-M].

Another direction of investigation which arises in gas dynamics and
compressible flows is the theory of nonlinear conservation laws and shock
waves. For a scalar equation they have the form

�u
�t

+:
i

�
�xi

.i (u)=0, (12)

where the functions .i are smooth. A special case is Burger's equation already
mentioned in Section 11. Solutions corresponding to special initial conditions
were constructed by Riemann (1858). The general theory of such equations
was started in 1950 by E. Hopf [Hop3] and continued in 1957 by O. Oleinik
[O1] and P. Lax [La3] (see also the important programmatic paper of
Gelfand [Ge]). Shock waves, i.e., solutions with jump discontinuities, appear
as a natural and inevitable structure of the problem. For most smooth initial
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data there is no global smooth solution. For a given initial condition a
plenitude of weak solutions (in the sense of distributions, see Section 13)
exist. A selection mechanism, which singles out the physically interesting
solution is the entropy condition. This special solution can also be characterized
as the limit for small viscosity & of the solution of

�u
�t

&& 2u+:
i

�
�xi

.i (u)=0

which admits globally defined smooth solutions for each &>0. A fairly complete
existence and uniqueness theory is available in this situation. More precisely any
two entropy solutions u, v satisfy

| |u(x, t)&v(x, t)| dx�| |u(x, 0)&v(x, 0)| dx \t�0 (13)

This was first established by S. Kruzhkov in 1970 and then revisited by
M. Crandall in the framework of nonlinear semigroups (see Section 21).

No broad theory yet exists for systems of conservation laws. Despite an
important advance made in 1965 by J. Glimm [Gl], in 1970 by J. Glimm�
P. Lax [Gl-La], and in the 1970's and 80's by C. Dafermos, J. Smoller,
R. DiPerna and T. P. Liu, many difficult questions still remain open. We
refer to the book of J. Smoller [Sm] for a survey of the field up to 1983;
the book of Courant and Friedrichs [C-F] provides a good description of
results obtained during the first half of this century.

A nonlinear, physically fundamental, equation of evolution is the celebrated
Boltzman equation

{
�u
�t

+! } gradx u=Q(u, u) x # Rn, ! # Rn, t>0

u(x, !, 0)=u0(x, !)

where u is a function of (x, !, t) and Q is a quadratic collision term.
Existence (in an appropriate weak sense) has been established in 1983 by
R. DiPerna and P. L. Lions [D-L]. As in the 3-d Navier�Stokes equation
the questions of global regularity and uniqueness of the weak solution remain
open.

The actual existence of blow-up solutions in some nonlinear equations of
evolution (both parabolic, hyperbolic and Schro� dinger) is easy to verify as
was observed e.g. by H. Fujita [Fu] in 1966 for the equation

ut&2u=u p, p>1.
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The blow-up mechanism for semilinear heat equations has been carefully
investigated in the 1980's and 1990's. In some cases there is a blow-up profile,
i.e., limt A T* u(x, t) exists and is finite, except for x in a small set, where T*
denotes the blow-up time. A number of authors have analyzed the behavior of
u(x, t) as t A T*, e.g. F. Weissler [Wei], Y. Giga and R. Kohn, M. A. Herrero
and J. J. L. Velasquez, A. Friedman and J. B. McLeod. Others have
investigated the delicate question whether the solution can be extended in
a natural way beyond blow-up time, e.g. P. Baras and L. Cohen, V. A.
Galaktionov and J. L. Vazquez; we refer to the book of [B-C].

Similar questions are currently studied for semilinear wave and Schro� dinger
equations

utt&2u\|u| p&1 u=0

iut&2u\|u| p&1 u=0.

Important advances have been made beginning with K. Jorgens and conti-
nued by many writers including Ginibre, Velo, Brenner, Grillakis, Struwe,
Klainerman, Kenig, Ponce and Bourgain. Difficult problems remain open.
The characterization of situations where blow-up actually occurs is one of
the important questions of the theory of nonlinear equations of evolution.
An interesting direction of current research is the discovery by F. John,
S. Klainerman and others, that for n�4, the nonlinear wave equation

utt&2u=F(x, t, u, ut , ux), x # Rn, t # R

where F starts with quadratic terms at 0, has global solutions for small initial
data. When n=3 a similar conclusion fails but special conditions on F (the
so-called null conditions) give rise to global solutions for small initial data.
This is in sharp contrast with the case n=1 where singularities develop in
finite time for arbitrarily small (but not identically zero) initial data as in the
case of shock waves described above. Christodoulou and Klainerman [C-K]
have partially extended this analysis to other hyperbolic equations such as
Einstein's equation in general relativity and Yang�Mills equation.

Special solutions of various nonlinear evolution equations, called travelling
waves (or fronts), have the form u(x, t)=.(x&ct) in 1&d or u(x, t)
=.(x1&ct, x$) with x=(x1 , x$) in general. They occur in a variety of
applications, such as population genetics, combustion and other propagation
phenomena. This subject has been extensively studied since the pioneering
paper of A. Kolmogorov, I. G. Petrovsky and N. S. Piskunov [K-P-P]; see
e.g. D. G. Aronson and H. F. Weinberger [A-W] and H. Berestycki and
L. Nirenberg [Be-N].
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21. NONLINEAR PDE'S AND NONLINEAR
FUNCTIONAL ANALYSIS

The method of successive approximation extensively studied since Picard
in the 1880's (see Section 5) was stated in an elegant and general setting by
S. Banach in 1922. It asserts that in a complete metric space X a mapping
f : X � X which satisfies

d( f (x), f ( y))�kd(x, y) \x, y # X, k<1

has a unique fixed point x0 given by x0=limn � � f n(a) for any initial
point a # X.

A consequence of this is the inverse function theorem which states that
if F maps a neighborhood U of u0 # X into Y, where X and Y are Banach
spaces and F is C1 on U with L=F $(u0) one-to-one and onto Y. Then the
equation F(u)= f has a unique solution in a neighborhood of u0 , for every
f in a neighborhood of f0=F(u0).

A program of extending such results when F $(u0) is not invertible, called
bifurcation theory, originated in the work of A. M. Lyapunov (1906) and
E. Schmidt (1908) to deal with problems first posed in 1885 by H. Poincare�
in connection with astrophysics. The typical situation concerns a one para-
meter family of maps F*(u) with * # R where F*(0)=0, \*, and F0(u) has
a derivative at 0, F $0(0)=L which has a nullspace of dimension one and a
closed range of codimension one. Under simple hypotheses one establishes
the existence for * near 0 of a branch of nonzero solutions u(*) of F*(u(*))=0.
Such results have proved to be enormously useful in a wide variety of appli-
cations in physics and engineering such as buckling problems in elasticity,
thermal convection and rotating fluids. The extension to the case where the
dimension of the nullspace of L is greater than one was carried through in
the early 1950's by M. A. Krasnoselskii and his school using variational
and topological methods (see [Kra]). The most definitive result on the
existence of global branches, i.e., * running through R, was obtained in
1971 by P. Rabinowitz [Ra1] applying the degree theory of Leray�Schauder
(see Section 9). It asserts that under compactness hypotheses each branch
either extends to infinity (in X_R) or runs into another bifurcation point.

This illustrates a persistent division of results between local and global.
Local results are often obtained by a perturbation argument from a linear
situation by some variant of successive approximations, while global results
usually require some sophisticated tools, such as variational or topological
arguments, often combined with a priori estimates.

The most general and sophisticated form of the perturbation argument
was devised in 1956 by J. F. Nash [Na1] in his proof of the existence of
C� isometric imbeddings of Riemannian manifolds in Euclidean space. In
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this case one has a mapping F of the space X=C�(M) into another space
Y=C�(N) such that F $(u0) has a continuous inverse L which does not
completely recover the regularity lost under the action of the differential
operator F. Since X and Y are not complete normed spaces the inverse
function theorem does not apply. J. F. Nash devised an argument for
obtaining a local inverse for F by combining iterations of L, F and smooth-
ing operators. This argument was modified in 1966 by J. Moser [Mos2]
and applied to the problem of establishing the C� analogue of the results
of Kolmogorov and Arnold in the analytic case on the existence of quasi-
periodic orbits as perturbations of periodic orbits in Hamiltonian systems
(like those of celestial mechanics). A comprehensive survey may be found
in the paper by R. Hamilton [Ham1].

Concerning global results one of the key advances was the Leray�Schauder
degree theory (see Section 9). Another very powerful approach was the
introduction of topological tools into the study of variational problems.
Though this approach was foreshadowed by Poincare� and Birkhoff the
force of these ideas was realized in the late 1920's and early 1930's in the
works of Ljusternik and Schnirelman [Lj-Sc] and Morse [Mrs1,2]. In
particular, Ljusternik and Schnirelman, in the case of variational problems
on finite dimensional manifolds, gave a lower bound for the number of critical
points in terms of topological invariants, e.g. the Ljusternik�Schnirelman
category. Morse's theory for nondegenerate functions 8 gives a finer classi-
fication of critical points in terms of the quadratic forms associated with
8"(u0). Morse applied this method to the study of a classical problem
posed by Poincare� : the existence of infinitely many geodesics on an elliptic
energy surface. In the early 1960's the ideas of Morse theory were put into
the framework of differential topology on infinite dimensional manifolds M
by R. Palais and S. Smale [P-S] who replaced the finite dimensionality
assumption in the original theory by an assumption of compactness type:
condition (C) (or (PS)) which states that if one has a sequence (un) in M
for which |8(un)| is bounded and 8$(un) � 0 then (un) is relatively compact
in M. This generalization opened the door for a wide range of applications
in PDE's where the basic framework consists of infinite dimensional spaces
(or manifolds) of functions. Later, other problems falling outside the Palais�
Smale framework were considered, using sophisticated modifications of
the Morse and Ljusternik�Schnirelman theory. Some of these are of great
importance in geometry and physics (see Section 24).

In particular, it is not always possible to minimize a nonnegative continuous
function 8 on a complete metric space. A useful principle due I. Ekeland
[Ek] asserts e.g. that for a nonnegative C1 function on a Banach space
there is always a minimizing sequence (un) such that 8$(un) � 0.

One specific method, which extends ideas already present in Poincare�
and Birkhoff and is simpler than the theories mentioned above, is the
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well-known ``mountain pass'' lemma of A. Ambrosetti and P. Rabinowitz
[A-R]. It asserts that if 8 is a C1 function on a Banach space X, satisfies
condition (C) above and the following geometric condition:

{8(0)=0, 8(v)�:>0 for all v # X with &v&=R and
8(v0)�0 for some v0 # X with &v0&>R,

then there exists a nontrivial critical point u of 8, i.e., 8$(u)=0 and 8(u)�:.
A simple consequence is the existence of solutions for problems of the

form

&2u=u p in 0/Rn

{ u>0 in 0,

u=0 on �0,

where p is subcritical, i.e., 1<p<(n+2)�(n&2).
The critical points obtained by the topological methods described above

are generally nonstable critical points which are neither maxima nor
minima (they are sometimes called saddle points). For a survey of these
questions we refer to the books [Ra2], [Ch], [M-W], [Str2] and [Ze].

The simplest method in the calculus of variations is the direct method:
one looks for a minimum of 8 which is to be obtained as limit (in some
appropriate sense) of a minimizing sequence. As we have already mentioned
in Section 6 this raises serious issues about the convergence of minimizing
sequences. Though the domain of the functional 8 is almost never compact
in the infinite dimensional case, one uses other properties of the functional
to enforce convergence of the minimizing sequence. An important topology
in which such arguments can be carried out is the weak topology on a reflexible
Banach space (such as L p(0) or Wm, p(0) for 1<p<�) in which the unit
ball is weakly compact. The decisive property for the functional 8 is its
weak lower semicontinuity (l.s.c.), i.e., if uk tends to u weakly (denoted
uk ( u), then 8(u)�lim infk � � 8(uk).

A basic sufficient condition for a continuous 8 to be weakly l.s.c. is that
8 is convex, i.e.,

8(tu+(1&t) v)�t8(u)+(1&t) 8(v) \u, v # X, \t # [0, 1].

If one expresses convexity in terms of the derivative 8$ of 8 it becomes

(8$(u)&8$(v), u&v) �0 \u, v # X (14)
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where 8$(u) is considered as an element on the dual space X* of the space
X on which 8 is defined. Inequality (14) leads to the introduction of
mappings A from X into X* satisfying

(Au&Av, u&v)�0 \u, v # X

called monotone mappings. Such inequalities can even be applied to multi-
valued mappings which are not necessarily defined at each point of X. The
study of monotone mappings in Hilbert spaces was begun in 1962 by G. Minty
[Min], who proved that if A is maximal monotone, i.e., A cannot be extended
to a larger (multivalued) monotone mapping, then A+I is surjective. This
is a nonlinear generalization of the Lax�Milgram lemma (see Section 14).

An important domain of applications of this concept to PDE's is the class
of elliptic differential operators in the generalized divergence form, introduced
in 1963 by M. I. Visik [Vi2]:

Au= :
|:|�m

(&1): D:A:(x, u, Du, ..., Dmu)

where A: is a general nonlinear function. If there is a function f such that
A:=�f��p: , where p: corresponds to D:, then A is the derivative of 8
defined by

8(u)=|
0

f (x, u, Du, ..., Dmu)

i.e., A is the Euler�Lagrange differential operator associated to the
functional 8.

In general, if the functions A: satisfy the algebraic monotonicity conditions

:
|:|�m

(A:(x, !)&A:(x, !>), !:&!>
:)�0, \!, !>, (15)

where !=(!:) is the m-jet of u, then under suitable growth conditions
on A: , the operator A maps X=W m, p

0 (0) into X*=W&m, p$(0) and is
monotone. If in addition

:
|:|�m

(A:(x, !), !:)�c |!| p \!, with c>0,

then A is coercive, i.e.,

(Au, u)
&u&Wm, p

� � as &u&Wm, p � �.
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In 1963 F. Browder [Bro5] showed that monotonicity, continuity and coercive-
ness imply surjectivity in a reflexive Banach space. In 1965, J. Leray and J. L.
Lions ([L-L] and [Lio2]) weakened the hypothesis (15) to a monoto-
nicity condition involving only the top order terms. In 1968 H. Brezis [Bre1]
subsumed their results under a more general theory, that of pseudo-monotone
operators. An operator A from X into X* is pseudo-monotone if for any
weakly convergent sequence uk ( u such that lim supk � � (Auk , uk&u)�0
one has

Auk ( Au and (Auk , uk&u) � 0.

(See also the later paper of Landes and Mustonen [Lan-M].)
Such a definition illustrates the principle that nonlinear mappings are,

in general, not continuous in the weak topology (unlike the bounded linear
operators). This is a major source of complications in the study of nonlinear
PDE's. More recent treatments of this theme can be found in the survey by
Evans [Ev2] and in [Dac]. The topics discussed include weak lower semi-
continuity for quasi-convex functionals as defined by Morrey [Mor3] and
applied to nonlinear elasticity by Ball [Bal], (see also Antman [Ant]).
Another topic is compensated compactness as defined by L. Tartar and
F. Murat, and applied to nonlinear hyperbolic problems by DiPerna [DiP].

In addition, the degree theory of Leray�Schauder has been extended to the
framework of operators of monotone type by F. Browder and W. Petryshyn
[B-P], F. Browder [Bro7] and I. Skrypnik [Sk]. Though there has been
extensive activity on degree theory for noncompact operators in the last
two decades, we refer only to another area relevant to PDE's. This is the
theory of nonlinear mappings of Fredholm type (proper mappings of index
zero) sketched by R. Cacciopoli [Ca2] in 1936 and by S. Smale [Sma] in
1965 and carried through in detail by K. Elworthy and A. Tromba [E-T].

A different area of applications for monotone operators is their role as
the infinitesimal generators of nonlinear semi-groups of contractions. If one
has the abstract differential equation

{
du
dt

=Au, t�0,

u(0)=u0

in a Hilbert space H, the transition operator U(t): u0 [ u(t) satisfies the
contraction property

&U(t) u0&U(t)v0&�&u0&v0&, \u0 , v0 , \t�0,

if and only if &A is monotone. A fairly complete generalization of the
Hille�Yosida theory in Hilbert spaces has been developed by many authors
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including F. Browder, T. Kato, Y. Komura, M. Crandall, A. Pazy and
H. Brezis. The principal result asserts that there is a one-to-one corre-
spondence between continuous semi-groups of contractions and maximal
monotone operators. We refer to the books of H. Brezis [Bre2], F. Browder
[Bro6] and V. Barbu [Bar].

In the case of Banach space the theory involves the notion of m-accretive
operator, i.e., A: D(A)/X � X satisfies R*=(I+*A)&1 is well defined on
all of X for all *>0 and is a contraction. A noteworthy result from 1971
by M. Crandall and T. Liggett [C-L] asserts that, in a general Banach
space X, every m-accretive operator generates a contraction semi-group in
a suitable generalized sense.

The results that we have mentioned, as well as recent developments, have
the important property of moving the study of nonlinear problems beyond
the framework of compactness required in the Leray�Schauder theory or the
Palais�Smale condition. This remains a fundamental question in the future
development of nonlinear functional analysis; see e.g. Section 24 and [Bre3].

22. FREE BOUNDARY VALUE PROBLEMS:
VARIATIONAL INEQUALITIES

Up to this point we have considered BVP's for equations, linear or
nonlinear, on a given domain. A class of problems of importance in many
applications concerns free boundary problems. The domain on which the
solution is defined is part of the unknown of the problem. The boundary
data, in turn, are overdetermined in the classical sense.

One of the simplest example is the following. Let f (x) be a given function
on a given domain 0 in Rn. Find a subdomain D and a function u on D
satisfying

&2u=f in D,

u=0 on �D,

�u
�&

=0 on (�D) & 0,

where & denotes the normal to �D. Similar problems occur in evolution
equations. Such problems arise in fluid mechanics, e.g. the Stefan problem
for a mixture of ice and water, filtration through a porous dam, wakes and
cavities.

There are two levels of basic difficulties:

(1) Establishing existence and uniqueness of the solution (u, D),

(2) Establishing regularity properties of (u, D).
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Methods of studying such problems have been relatively ad hoc. One
fairly systematic approach to the existence problem lies through the theory
of variational inequalities extensively studied in the late 1960's and 1970's.
This arises as an extension of the Dirichlet principle. Here one minimizes
the Dirichlet integral

1
2 |

0
|grad u| 2&|

0
fu

over the class of testing functions in a convex set K, e.g. u�0 in 0. The
minimizer exists, is unique and satisfies

&2u= f in D=[x # 0; u(x)>0].

Moreover it can be proved (see H. Lewy and G. Stampacchia [Le-St],
H. Brezis and G. Stampacchia [B-S]) that u # C1, :(0) and (16) holds.

Reduction of free boundary value problems to variational inequalities
can often be sophisticated, see e.g. C. Baiocchi [Ba]. The regularity of the
free boundary has been studied by numerous authors including H. Lewy,
D. Kinderlehrer, L. Nirenberg and L. Caffarelli. The interested reader will
find an extensive presentation of free boundary value problems in the books
of Baiocchi and Capelo [Ba-Ca], A. Friedman [Fr], and Kinderlehrer and
Stampacchia [K-S].

23. QUASILINEAR AND FULLY NONLINEAR
ELLIPTIC EQUATIONS

As we have already mentioned (see Sections 7 and 9) one of the key
tools for proving existence of solutions of BVP consists of finding a priori
estimates for the solutions. This was begun in the work of S. Bernstein and
was continued for almost a century. We recall that a quasilinear elliptic
equation of second order is an equation of the form

:
i, j

aij (x, u, Du)
�2

�xi �xj
= f (x, u, Du) (17)

where the (aij) are elliptic. On the other hand, a fully nonlinear elliptic
equation is one of the form

F(x, u, Du, D2u)=0 (18)
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where F is elliptic at a solution u provided the linearized equation at u is
elliptic, i.e.,

:
i, j

�F
�pij

(x, u, Du, D2u) !i!j�c |!| 2 \! # Rn, c>0,

where ( pij) corresponds to the Hessian matrix (D2u).
As we have noted in Section 19 regularity results involving a priori

estimates in C2, : are essentially limited to two cases:

�� a single equation for any dimension n�2

�� fairly general systems for n=2.

The earlier development of a priori estimates in C2, : and in C k, k�3,
was carried through first in the quasilinear case. The pioneering work of
S. Bernstein was continued by many authors including J. Leray, J. Schauder,
C. Morrey, L. Bers, L. Nirenberg, O. Ladyzhenskaya, N. Uraltseva, and
J. Serrin. A complete theory, developed by O. Ladyzhenskaya�N. Uraltseva
[L-U], provides interior estimates of solutions of (17), as well as estimates
up to the boundary for the same equation with a boundary condition. For
a detailed account see [L-U], [G-T] and [Ser1]. For a broad survey of
the theory of singularities for quasilinear equations we refer to the book of
L. Veron [Ve] which covers e.g. the early work of L. Bers and J. Serrin.

More recently, corresponding results have been established for a broad
class of fully nonlinear equations (18), notably including the Monge�Ampe� re
equation

det(D2u)= f (x, u, Du) (19)

of great importance in geometrical problems, and the Hamilton�Jacobi�
Bellman equation

Sup
i # I

[Ai u& fi]=0 (20)

where (Ai) i # I are a family of linear second order elliptic operator. The
latter equation appears in stochastic control theory.

In 2-d, a complete theory of a priori estimates for fully nonlinear equa-
tions (18) was derived in 1953 by L. Nirenberg [Ni1] using techniques
developed earlier by C. Morrey [Mor1].

In 3-d and higher dimensions, the general problem (18) is still open,
namely, to find C2, : a priori estimates for C2 solutions in the fully non-
linear case. Once one obtains C2, : estimates, standard techniques yield C�

(or even analytic) regularity provided F is C� (or analytic). The earliest
results for the Monge�Ampe� re equation are due to A. D. Aleksandrov,
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A. V. Pogorelov, I. Bakelman, S. Y. Cheng and S. T. Yau, and for the
Hamilton�Jacobi�Bellman equation to N. V. Krylov using techniques of
probability (via a representation formula for the solution). A further treatment
of the equation (20) was carried through in the early 1980's by a number
of authors including H. Brezis, L. C. Evans, A. Friedman and P. L. Lions
using purely PDE methods. Complete estimates up to the boundary for the
Monge�Ampe� re equation (19) are due to Caffarelli, Nirenberg and Spruck
[C-N-S] and to Krylov [Kry2]. For the Hamilton�Jacobi�Bellman equation,
the final result, C2, : estimates up to the boundary, was obtained by
N. V. Krylov [Kry1,2,3] in the mid-1980's.

For the more general class of fully nonlinear equations (18), the most
striking result was obtained independently by L. C. Evans [Ev] and N. V.
Krylov [Kry1] who proved C2, : estimates if in addition F is concave in (D2u).
On these questions we refer to the books [Au], [G-T], [Kry3] and [C-C].

A fundamental new tool in this context is the discovery in 1980 by
Krylov and Safonov [Kr-Sa] that Harnack's inequality and C0, : estimates
hold for second order linear elliptic equations with bounded measurable
coefficients in nondivergence form (this is the analogue of the DeGiorgi�Nash
estimates for equations in divergence form).

24. PDE'S AND DIFFERENTIAL GEOMETRY

In the past decades there has been a powerful tendency to merge geometry
and theoretical physics, embodied in such areas as general relativity, Yang�
Mills equations and other gauge theories, and most recently in super-symmetric
string theories. In all these contexts, as well as in the more classical geometrical
applications, the use of PDE's takes place on two different levels: the linear
and the nonlinear.

Beginning with classical potential theory and its application to the study
of Riemann surfaces and algebraic curves, the development of the theory of
linear PDE's, as we have mentioned in Section 5, went hand in hand with
the rise of classical function theory and algebraic geometry. This was extended
in the proof of Hodge's theorem to manifolds of dimension greater than two,
especially in the work of Kodaira and Spencer, made possible a significant
extension of the earlier results to the higher dimensional case. Even more
recently, the PDE approach to holomorphic functions of one variable in terms
of harmonic functions and the Dirichlet problem has been extended to
holomorphic functions of several variables using the �� -Neumann problem
first solved by J. J. Kohn [Koh]. This has given rise to an extensive analysis
of the structure of holomorphic functions in several variables, by reducing
such problems to subelliptic BVP's.
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When one turns to nonlinear equations, the most conspicuous is the Plateau
problem for minimal surfaces; it consists of finding a surface with least area
spanning a given contour in R3. In non-parametric form such a surface is
described by a function u satisfying the minimal surface equation

div \ grad u
(1+|grad u| 2)1�2+=0 (21)

which is the Euler�Lagrange equation for the area functional

| (1+|grad u| 2)1�2.

Equation (21) is nonlinear, but the successful solution of Plateau's problem
in 1931 by J. Douglas [Do] used a ``linearization'' of the problem in terms
of the theory of holomorphic functions. This is an example of a process which,
when it works, may achieve dramatic results: namely, an ad-hoc mechanism,
usually of ingenious form, for transforming the nonlinear problem into a linear
one. A second example is the use of linear scattering theory by Kruskal and
his collaborators to reduce the study of the K dV equation to spectral proper-
ties of the Schro� dinger operator (see Section 20). A third striking example was
the linearization in certain cases by Atlyah and Ward of the instanton theory
for the Yang�Mills equations using Penrose's theory of twistors. In most cases
there seems to be no possibility of reducing the nonlinear equations which
arise in various geometric or physical contexts to linear problems. Hence
one must apply the full strength of the nonlinear theory with all the technical
difficulties that it incurs, e.g. a priori estimates and delicate analytical inequalities.
Let us describe briefly some of the most prominent nonlinear PDE's arising
in geometry:

(1) The minimal surface equation (21) in n dimensions which was
studied, using a combination of techniques from geometric measure theory
and PDE's, by many authors including Federer, Fleming, Reifenberg,
DeGiorgi, Bombieri, Giusti, M. Miranda, Finn, J. Nitsche, Jenkins, Serrin,
Almgren, Allard, Simons and others. A central result of minimal surface
theory, from the point of view of PDE's, asserts that an entire solution
(i.e., a solution on all of Rn) of the minimal surface equation (21) is linear
if n�7. This was first established by S. Bernstein in 1916 when n=2.
A celebrated counterexample was produced in 1969 by Bombieri, De Giorgi
and Giusti [B-D-G] in R8. An important consequence, via a blow-up
analysis, is the regularity of minimal hypersurfaces in dimension �7 and
an estimate for the dimension of the singular set in higher dimension (its
Hausdorff dimension cannot exceed n&8). The interested reader may consult
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the books by E. Giusti [Gi] and V. Dierkes, S. Hildebrandt, A. Ku� ster and
O. Wohlrab [D-H-K-W] and J. Nitsche [Nit].

(2) The Yamabe equation. In 1960 Yamabe claimed to have proved
that for a compact Riemannian manifold (M, g) of dimension n�3 there
is a metric g$, conformal to the original metric g, for which the scalar
curvature is constant. This is equivalent to finding a positive function u
satisfying the nonlinear elliptic equation

&4
(n&1)
(n&2)

2gu+Ru=Ku(n+2)�(n&2) (21)

where R is the scalar curvature of the metric g and K is a constant.
As was pointed out by N. Trudinger, the original argument contained a

major gap which attracted much attention. The positive result was obtained
by T. Aubin in 1975 for n�6 (see [Au]), making extensive use of the theory
of Sobolev spaces (see Section 12) and the best constants in the Sobolev
imbedding. The most important missing cases were treated by R. Schoen
[Sco] in 1984 with the help of the positive mass conjecture established by
R. Schoen and S. T. Yau.

A more general form of the Yamabe problem, dealing with equation (21)
where K=K(x) is a function, has been investigated since the mid-1970's by
numerous authors, e.g. Kazdan and Warner, Escobar and Schoen, Bourguignon
and Ezin, Bahri and Coron, S. Y. Chang and P. Yang, and others.

This type of problem is particularly interesting since it can be formulated
as a variational problem on the Sobolev space H1 for a functional 8 which
does not satisfy the Palais�Smale condition (C) (see Section 21); it is a
borderline case for the Sobolev imbedding and this may create an obstruc-
tion to existence as was first pointed out by Pohozaev [Poh]. This lack of
compactness, caused by scale and conformal invariance, is connected with
the ``bubbling'' phenomenon originally identified in 1981 by Sacks and
Uhlenbeck [Sa-Uh]. If the Palais�Smale condition fails, the corresponding
functions concentrate at a finite number of points. Such sequences have
been carefully analyzed, see e.g. Brezis and Nirenberg [B-N], Brezis and
Coron [Br-Co] and Struwe [St1,2]. In order to bypass the lack of com-
pactness and apply variational techniques, such as Morse theory, Bahri
and Coron [Ba-Co] have been led to a new tool: the critical points at
infinity.

(3) The complex Monge�Ampe� re equation has the same form as the
real Monge�Ampe� re equation:

det \gi}� +
�2u

�zi �z }� +=eF( } , u) det(gi}� ) on M,
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where M is a compact complex manifold with a Ka� hler metric � gi}� dzi

�dz}� , u is a real valued unknown and F is a given function on M_R. This
equation arises in the study of Calabi's conjecture which asserts that every
form representing the first Chern class C1(M) is the Ricci form of some
Ka� hler metric on M. Calabi's conjecture was established in the mid-1970's
by S. T. Yau in case the first Chern class is vanishing and by Aubin and
Yau, independently, in case the first Chern class is negative; see [Au] and
[Ya]. The method of Yau used ideas developed earlier by Calabi and Pogorelov
for the real Monge�Ampe� re equation. On the other hand, Yau's approach
was a great stimulus for the completion of the study of the real Monge�
Ampe� re equation (see Section 23). A complex Monge�Ampe� re equation
also occurs in the work of Fefferman [Fe] on the Bergman kernel for several
complex variables. See also the work of Hamilton [Ham2] on Ricci flows.

(4) The Yang�Mills equations correspond to the Euler�Lagrange
equation of the Yang�Mills functional

YM(A)=|
M

|FA | 2

where FA=dA+A 7 A is the curvature of a connection A. From the point
of view of calculus of variations this is again a borderline case for compact-
ness when dim M=4 (because of the Sobolev imbedding H 1/L4). This
equation is of importance in the description of elementary particles as
proposed by Yang and Mills in 1954. It has also found a remarkable
application in Donaldson's study of four dimensional manifolds.

The Yang�Mills equations and, more generally, gauge theory have been
extensively investigated since the mid-1970's by a number of people includ-
ing M. Atiyah, S. K. Donaldson, C. Taubes, K. Uhlbenbeck, E. Witten,
N. Seiberg and many others.

25. COMPUTATION OF SOLUTIONS OF PDE'S:
NUMERICAL ANALYSIS AND COMPUTATIONAL SCIENCE

One of the most important and striking phenomena of the applications
of PDE's in the physical sciences and engineering since the second world
war has been the impact of high speed digital computation. Despite the
strikingly optimistic predictions of some of the pioneers and prophets in
the field, including J. van Neumann, this has not turned out to be a panacea
for all the problems of the field. It has however drastically changed the
structure of practice in applied mathematics and has given rise to new
problems and new perspectives. In some cases, e.g. meteorology (an area in
which van Neumann saw the greatest theoretical consequences for the
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digital computers) the worldwide practice of meteorological prediction has
been absorbed into the dual task of gathering atmospheric data over a
planetary basis and analyzing it using the most elaborate supercomputers
available. On the other hand, it has become increasingly clear, on the basis
of intrinsically chaotic structures of the situation (as in the theory of chaos,
first applied to this domain by E. Lorenz) that there are inherent limita-
tions, in principle, to long term predictions which cannot be overcome
simply by massive computing power.

On a practical level, almost all PDE's are studied by computational
means. Such studies take one of two forms, which are somewhat discordant
in practice. The first and narrower form is that of classical numerical analysis,
a branch of analytical applied mathematics, which obtains results with error
bounds on the basis of relatively rigorous arguments. It uses finite dimensional
function spaces and relies on solving the approximate problem in the finite
dimensional context. Another mode of practice, which is used on a broader
scale, is the approach which is often described as computational science. In
this approach one sets up simplified computational models for the given
equations and one computes the solution in the simplified situations without
attempting to obtain a strict control of the mathematical validity of this
process. The justification is in terms of the phenomenology of the results,
although this often gives rise to ambiguity and to controversies about the
validity of the computational process, particularly in situations which are
difficult to analyze from a theoretical standpoint, e.g. turbulence.

In summary, the situation has seen the development of an enormously
powerful tool to obtain concrete results on PDE's arising in a variety of
applied contexts, but the tool itself in its application has created very
difficult problems to be resolved in the future. A compensating feature of
the new situation is the use of computations as an experimental instrument
to generate conjectures for analytic arguments and to study the numerical
simulations as a source of suggestions for rigorous treatment. Thus, as in
all fields of science, the triad of methodologies, theoretical, experimental
and computational, must be integrated to make possible an adequate attack
upon the most difficult and most fundamental problems.
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