MATH 527 A1 HOMEWORK 6 (DUE DEC. 8 IN CLASS)

Exercise 1. (10 pts) (5.10.9) Integrate by parts to prove the interpolation inequality

$$\int_{U} |Du|^{2} dx \leq C \left(\int_{U} u^{2} dx \right)^{1/2} \left(\int_{U} |D^{2}u|^{2} dx \right)^{1/2}$$
(1)

for all $u \in C_c^{\infty}(U)$. Assume ∂U is smooth, and prove this inequality if $u \in H^2(U) \cap H^1_0(U)$. (Hint: Take $\{v_k\} \subset C_c^{\infty}$ converging to u in $H^1_0(U)$, and $\{w_k\} \subset C^{\infty}(\bar{U})$ converging to u in $H^2(U)$.)

Exercise 2. (10 pts) (6.6.2)

Let

$$Lu = -\sum_{i,j=1}^{n} (a^{ij} u_{x_i})_{x_j} + c u$$
 (2)

Prove that there exists a constant $\mu > 0$ such that the corresponding bilinear form $B[\ ,\]$ satisfies the hypothesis of the Lax – Milgram theorem, provided

$$c(x) \geqslant -\mu \qquad (x \in U). \tag{3}$$

Exercise 3. (10 pts) (6.6.8)

Let u be a smooth solution of $Lu = -\sum_{i,j=1}^{n} a^{ij} u_{x_i x_j} = 0$ in U. Set $v := |Du|^2 + \lambda u^2$. Show that

$$Lv \leq 0$$
 in U , if λ is large enough. (4)

Deduce

$$||Du||_{L^{\infty}(U)} \leqslant C\left(||Du||_{L^{\infty}(\partial U)} + ||u||_{L^{\infty}(\partial U)}\right). \tag{5}$$