MATH 527 A1 HOMEWORK 5 (DUE NOV. 26 IN CLASS)

Exercise 1. (15 pts) (Evans 4.7.7) Consider the viscous conservation law

$$u_t + F(u)_x - a u_{xx} = 0 \qquad \text{in } \mathbb{R} \times (0, \infty)$$
 (1)

where a > 0 and F is uniformly convex.

i. (5 pts) Show u solves (1) if $u(x,t) = v(x - \sigma t)$ and v is defined implicitly by the formula

$$s = \int_{c}^{v(s)} \frac{a}{F(z) - \sigma z + b} dz \qquad (s \in \mathbb{R}),$$
(2)

where b and c are constants.

ii. (5 pts) Demonstrate that we can find a traveling wave satisfying

$$\lim_{s \to -\infty} v(s) = u_l, \qquad \lim_{s \to \infty} v(s) = u_r \tag{3}$$

for $u_l > u_r$, if and only if

$$\sigma = \frac{F(u_l) - F(u_r)}{u_l - u_r}.\tag{4}$$

iii. (5 pts) Let u^{ε} denote the above traveling wave solution of (1) for $a = \varepsilon$, with $u^{\varepsilon}(0, 0) = \frac{u_l + u_r}{2}$. Compute $\lim_{\varepsilon \to 0} u^{\varepsilon}$ and explain your answer.

Proof.

i. Set $u = v(x - \sigma t)$, the equation becomes

$$-\sigma v' + F(v)' - a v'' = 0. (5)$$

Integrating, we have

$$-\sigma v + F(v) - a v' = -b. \tag{6}$$

This gives

$$\frac{\mathrm{d}v}{\mathrm{d}s} = \frac{F(v) - \sigma v + b}{a} \implies \frac{\mathrm{d}s}{\mathrm{d}v} = \frac{a}{F(v) - \sigma v + b}.$$
 (7)

ii. "Only if". Let $s \to \pm \infty$, naturally we require $v' \to 0$. thus

$$-\sigma u_l + F(u_l) = -b, \qquad -\sigma u_r + F(u_r) = -b. \tag{8}$$

The conclusion then follows.

"If". It is clear that for $\lim v = u_{l,r}$ as $s \longrightarrow \mp \infty$ to be possible, F has to have two roots. This is possible when $\sigma = \frac{u_l + u_r}{2}$. Since F is uniformly convex, we have F > 0 for $v < u_r$ and $v > u_l$, F < 0 for $v \in (u_r, u_l)$. Now let $s \nearrow + \infty$

$$s = \int_{c}^{v(s)} \frac{a}{F(z) - \sigma z + b} dz \qquad (s \in \mathbb{R}),$$
(9)

using argument similar to that in iii, we see that v takes limit u_r when $c \in (u_r, u_l)$. Similar argument works for $s \longrightarrow -\infty$.

iii. First note that, v(s) cannot "cross" u_l or u_r . In other words, either $v(s) \geqslant u_l$, or $v(s) \leqslant u_r$, or $v(s) \in [u_r, u_l]$. To see this, assume the contrary. Wlog assume v has values above and below u_l . Then as $v \to u_l$ as $s \to -\infty$, there is s_0 such that v reaches maximum $v_{\text{max}} > u_l$. At this point, we have v' = 0 and therefore v_{max} solves

$$-\sigma v + F(v) = -b. \tag{10}$$

But as $-\sigma v + F(v)$ is uniformly convex (thus strictly convex), there can be at most two solutions. As u_l and u_r already solve it, we obtain contradiction.¹

Next we show that, in fact for all s finite, $v(s) \in (u_r, u_l)$. To see this, study the formula

$$s = \int_{c}^{v(s)} \frac{\varepsilon}{F(z) - \sigma z + b} \, \mathrm{d}z. \tag{11}$$

^{1.} From this it is clearly see that in the condition $u^{\varepsilon}(0,0) = \frac{u_l + u_r}{2}$, the RHS can be replaced by any value in (u_r, u_l) , as the purpose is just to restrict all v in $[u_l, u_r]$.

As F is strictly convex, the behavior of the denominator close to u_l and u_r is like $(z-z_0)^{-1}$. And thus if $v(s) = u_l$ or u_r , necessarily $s = \mp \infty$.

Finally, fix any $s \neq 0$ finite, we have

$$\frac{s}{\varepsilon} = \int_{c}^{v(s)} \frac{1}{F(z) - \sigma z + b} \, \mathrm{d}z. \tag{12}$$

When $\varepsilon \searrow 0$, the LHS $\to \mp \infty$, consequently $v(s) \to u_l$ or u_r . Thus we see that as $\varepsilon \searrow 0$, v^{ε} converges to v at every $s \neq 0$.

Exercise 2. (5 pts) (5.10.3) Denote by *U* the open square $\{x \in \mathbb{R}^2 | |x_1| < 1, |x_2| < 1\}$. Define

$$u(x) = \begin{cases} 1 - x_1 & x_1 > 0, |x_2| < x_1 \\ 1 + x_1 & x_1 < 0, |x_2| < -x_1 \\ 1 - x_2 & x_2 > 0, |x_1| < x_2 \\ 1 + x_2 & x_2 < 0, |x_1| < -x_2 \end{cases}$$

$$(13)$$

For which $1 \leq p \leq \infty$ does u belong to $W^{1,p}(U)$?

Solution. First we can easily check that $u \in C(\bar{U})$ and is smooth inside each triangle. If we define \boldsymbol{v} piecewisely such that $\boldsymbol{v} = Du$ in each triangle, it is clear that $\boldsymbol{v} \in W^{1,p}$ for any p. Now what is left to show is that $\boldsymbol{v} = Du$ in U.

Take any $\phi \in C_0^1(U)$. Denote by U_i , i = 1, ..., 4, the triangles. We have

$$\int_{U} \boldsymbol{v} \, \phi = \sum_{i} \int_{U_{i}} Du \, \phi = -\sum_{i} \int u \, D\phi + \sum_{i} \int_{\partial U_{i}} \boldsymbol{n}_{i} \, u \, \phi. \tag{14}$$

As u is continuous across any common boundary of any two U_i 's, and $\phi = 0$ on ∂U , the boundary terms sum up to 0.

Exercise 3. (10 pts) (5.10.14) Verify that if n > 1, the unbounded function $u = \log \log \left(1 + \frac{1}{|x|}\right)$ belongs to $W^{1,n}(U)$, for $U = B^0(0,1)$.

Proof. Compute

$$Du = \frac{1}{\log\left(1 + \frac{1}{|x|}\right)} \frac{1}{1 + \frac{1}{|x|}} \left(-\frac{x}{|x|^3}\right) \tag{15}$$

Thus we have

$$|Du| \leqslant C \frac{1}{\log\left(1 + \frac{1}{|x|}\right)} \frac{1}{|x|}.\tag{16}$$

Now we have

$$\int_{B(0,1)} |Du|^n \, \mathrm{d}x \leqslant C \int_0^1 \frac{1}{\log\left(1 + \frac{1}{r}\right)^n} \frac{1}{r} \, \mathrm{d}r \tag{17}$$

Setting $z = \log\left(1 + \frac{1}{r}\right)$, we have

$$\int_{B(0,1)} |Du|^n dx \leqslant C \int_{\log 2}^{\infty} \frac{1}{z^n} dz < +\infty$$
(18)

when n > 1.