MatH 527 A1 HOMEWORK 5 (DUE Nov. 26 IN CLASS)

Exercise 1. (15 pts) (Evans 4.7.7) Consider the viscous conservation law

us+ F(u), —auz,=0 in R x (0, 00) (1)

where a >0 and F' is uniformly convex.

i. (5 pts) Show u solves (1) if u(z,t) =v(x —ot) and v is defined implicitly by the formula

o(s) "
s:/c Ol GeR), )

where b and ¢ are constants.

ii. (5 pts) Demonstrate that we can find a traveling wave satisfying

Proof.

i.

ii.

iii.

lim  v(s) =uy, lim v(s)=wu, 3)
for u; > u,, if and only if ° - T
— Fur) — F(ur) (4)
up— Uy
iii. (5 pts) Let u® denote the above traveling wave solution of (1) for a = e, with v®(0, 0) = % Compute
lim. .o u® and explain your answer.
Set u=v(x —ot), the equation becomes
—ov' + F(v) —av"=0. (5)
Integrating, we have
—ov+F(v)—av'=—b. (6)
This gives
d F(v)— b d
dv_Fr)—ovtb  ds___ o (7)
ds a dv F(v)—ov+b
”Only if”. Let s — & oo, naturally we require v/ — 0. thus
—ou+ F(u) =—b, —oup+ F(uy)=—». (8)

The conclusion then follows.
"If”. Tt is clear that for lim v = u; , as s — F oo to be possible, F' has to have two roots. This is
possible when o = “tur Since F is uniformly convex, we have F' >0 for v < u, and v > u;, FF <0

for v € (ur,uw;). Now let s /4 00

" - d R 9
e e — = s

§ /C F(z)—oz+b : (s€R) ®)
using argument similar to that in iii, we see that v takes limit u, when ¢ € (u,, u;). Similar argu-
ment works for s — — co.

First note that, v(s) cannot “cross” u; or u,. In other words, either v(s) > w;, or v(s) < u,, or v(s) €
[ur, w]. To see this, assume the contrary. Wlog assume v has values above and below u;. Then as
v— u; as § — — 00, there is sg such that v reaches maximum vyayx > u;. At this point, we have v’ =
0 and therefore vy solves

—ov+F(v)=-b. (10)

But as — o v+ F(v) is uniformly convex (thus strictly convex), there can be at most two solutions.
As u; and u, already solve it, we obtain contradiction.?
Next we show that, in fact for all s finite, v(s) € (u,,w;). To see this, study the formula

W e 11
S_/c F(z)—oz+Db = (11)

1. From this it is clearly see that in the condition u*(0, 0) =

ur+ Ur

5 the RHS can be replaced by any value in (u,, u;), as

the purpose is just to restrict all v in [u, u.].



As F is strictly convex, the behavior of the denominator close to u; and w, is like (z — zo)fl.

thus if v(s) =wu; or u,, necessarily s=7F co.
Finally, fix any s=0 finite, we have

s v(®) 1
== ———dz.
€ /2 F(z)—oz+b

And

(12)

When ¢ \, 0, the LHS — F oo, consequently v(s) — u; or u,. Thus we see that as € \, 0, v° con-

verges to v at every s 0.

O

Exercise 2. (5 pts) (5.10.3) Denote by U the open square {x € R?||z1| <1, |z2| <1}. Define

1—x
14+ 2
1—x9
14 2o

u(x) =

21> 0, |z2| <1
21 <0,|z2| < — 21
22> 0, |z1] < x2
22 <0, |21 < —x2

(13)

For which 1 <p < oo does u belong to Wl'p(U)?

Solution. First we can easily check that u € C (U) and is smooth inside each triangle. If we define v
piecewisely such that v = Du in each triangle, it is clear that v € WP for any p. Now what is left to show
is that v=Du in U.

Take any ¢ € C§(U). Denote by U;, i=1,...,4, the triangles. We have

/UWZZ/m Du¢z—Z/uD¢+Z/9Uiniu¢.

As w is continuous across any common boundary of any two U,’s, and ¢ = 0 on 9U, the boundary terms
sum up to 0.

(14)

Exercise 3. (10 pts) (5.10.14) Verify that if n > 1, the unbounded function u = loglog(l + i) belongs to W1:™(U),

0 ||
for U=B"(0,1).

Proof. Compute

Du= L L (—i) (15)
1 1 3
1og(1+m>1+m |z
Thus we have
Duj<C—F (16)
log(l—i—m) ||
Now we have
n ! 1 1
|[Dul|"dz < C —M—dr (17)
B(0,1) 0 log(l—i—;) "
Setting z =log (1 —l—%), we have
/ |Du|"dx<c/ L dctoo (18)
B(0,1) log2 #
when n > 1. |



