
Math 527 A1 Homework 5 (Due Nov. 26 in Class)

Exercise 1. (15 pts) (Evans 4.7.7) Consider the viscous conservation law

ut +F (u)x
−a uxx = 0 in R× (0,∞) (1)

where a > 0 and F is uniformly convex.

i. (5 pts) Show u solves (1) if u(x, t)= v(x − σ t) and v is defined implicitly by the formula

s =

∫

c

v(s) a

F (z)− σ z + b
dz (s∈R), (2)

where b and c are constants.

ii. (5 pts) Demonstrate that we can find a traveling wave satisfying

lim
s→−∞

v(s) =ul, lim
s→∞

v(s) =ur (3)

for ul > ur, if and only if

σ =
F (ul)−F (ur)

ul −ur
. (4)

iii. (5 pts) Let uε denote the above traveling wave solution of (1) for a = ε, with uε(0, 0) =
ul + ur

2
. Compute

limε→0 uε and explain your answer.

Proof.

i. Set u = v(x− σ t), the equation becomes

− σ v ′+ F (v)
′− a v ′′=0. (5)

Integrating, we have

−σ v + F (v)− a v ′=− b. (6)

This gives
dv

ds
=

F (v)− σ v + b

a
� ds

dv
=

a

F (v)−σ v + b
. (7)

ii. ”Only if”. Let s→±∞, naturally we require v ′→ 0. thus

−σ ul +F (ul)=− b, − σur +F (ur) =− b. (8)

The conclusion then follows.
”If”. It is clear that for lim v = ul,r as s� ∓ ∞ to be possible, F has to have two roots. This is
possible when σ =

ul + ur

2
. Since F is uniformly convex, we have F > 0 for v < ur and v > ul, F < 0

for v ∈ (ur, ul). Now let s ր+∞

s =

∫

c

v(s) a

F (z)−σ z + b
dz (s∈R), (9)

using argument similar to that in iii, we see that v takes limit ur when c ∈ (ur, ul). Similar argu-
ment works for s� −∞.

iii. First note that, v(s) cannot “cross” ul or ur. In other words, either v(s) > ul, or v(s) 6 ur, or v(s) ∈
[ur, ul]. To see this, assume the contrary. Wlog assume v has values above and below ul. Then as
v → ul as s→−∞, there is s0 such that v reaches maximum vmax > ul. At this point, we have v ′ =
0 and therefore vmax solves

−σ v + F (v)=− b. (10)

But as − σ v + F (v) is uniformly convex (thus strictly convex), there can be at most two solutions.
As ul and ur already solve it, we obtain contradiction.1

Next we show that, in fact for all s finite, v(s)∈ (ur, ul). To see this, study the formula

s =

∫

c

v(s) ε

F (z)− σ z + b
dz. (11)

1. From this it is clearly see that in the condition uε(0, 0) =
ul + ur

2
, the RHS can be replaced by any value in (ur, ul), as

the purpose is just to restrict all v in [ul, ur].



As F is strictly convex, the behavior of the denominator close to ul and ur is like (z − z0)
−1. And

thus if v(s)= ul or ur, necessarily s =∓∞.
Finally, fix any s� 0 finite, we have

s

ε
=

∫

c

v(s) 1

F (z)− σ z + b
dz. (12)

When ε ց 0, the LHS → ∓ ∞, consequently v(s) → ul or ur. Thus we see that as ε ց 0, vε con-
verges to v at every s� 0. �

Exercise 2. (5 pts) (5.10.3) Denote by U the open square
{

x∈R2 N |x1|< 1, |x2|< 1
}

. Define

u(x) =



















1− x1 x1 > 0, |x2|< x1

1 + x1 x1 < 0, |x2|<−x1

1− x2 x2 > 0, |x1|< x2

1 + x2 x2 < 0, |x1|<−x2

. (13)

For which 1 6 p 6∞ does u belong to W 1,p(U)?

Solution. First we can easily check that u ∈ C
(

Ū
)

and is smooth inside each triangle. If we define v

piecewisely such that v = Du in each triangle, it is clear that v ∈W 1,p for any p. Now what is left to show
is that v = Du in U .

Take any φ∈C0
1(U). Denote by Ui, i= 1,	 , 4, the triangles. We have

∫

U

v φ=
∑

i

∫

Ui

Duφ =−
∑

i

∫

u Dφ+
∑

i

∫

∂Ui

ni u φ. (14)

As u is continuous across any common boundary of any two Ui’s, and φ = 0 on ∂U , the boundary terms
sum up to 0.

Exercise 3. (10 pts) (5.10.14) Verify that if n > 1, the unbounded function u = loglog
(

1 +
1

|x|

)

belongs to W 1,n(U),

for U =B0(0, 1).

Proof. Compute

Du =
1

log
(

1 +
1

|x|

)

1

1 +
1

|x|

(

−
x

|x|3

)

(15)

Thus we have

|Du|6 C
1

log
(

1+
1

|x|

)

1

|x|
. (16)

Now we have
∫

B(0,1)

|Du|
n dx 6 C

∫

0

1 1

log
(

1+
1

r

)n

1

r
dr (17)

Setting z = log
(

1+
1

r

)

, we have
∫

B(0,1)

|Du|
n dx6 C

∫

log 2

∞ 1

zn
dz < +∞ (18)

when n > 1. �


