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SECOND-ORDER HYPERBOLIC EQUATIONS

We consider the initial /boundary-value problem

up+Lu = f inUp
u = 0 on dU x [0,T (1)
u = g onU x {t=0}
uy = h onU x{t=0}

Here L is again the second-order elliptic operator in the divergence or nondivergence forms.
1. Weak solutions.

1.1. Definition.
We assume

a'l b, ce CY(Ur), feL?(Ur), geH{U), helL?*U). (2)

Define the bilinear form

Blu,v;t]: / l i a' uxlvxl—i-z b+ ) ug,v+c( -, t)uv | dr. (3)

1,7=1

Definition 1. (Weak solutions) We say a function
uwe L*(0,T;Hy(U)), with ' €L?*(0,T;L*U)), u"eL*(0,T;HY(U)) (4)

is a weak solution of the hyperbolic initial/boundary-value problem provided that it satisfies the initial con-
ditions, and

<u”7U>+B[u=v;t]:(f7v) (5)
for each v e HY(U) and a.e. time 0<t<T.

1.2. Existence.
As in the parabolic case, we use Galerkin’s method. The procedure is very similar to the parabolic
case. See Evans pp.380-385 for details.

1.3. Uniqueness.
The proof for uniqueness is different from the parabolic case. The main reason is the following. Ide-
ally, we would like to take u’ to be the test function and have

(u",u') + Blu,u'; ] =0 (6)
which leads to
d
5UWW§wyMMMUﬂ)<CUWW%wthMUﬂ) (7)

A[u,u;t]::/U Z a U, Uy, (8)

And Gronwall’s inequality would lead to u =0 and uniqueness follows.
The problem here is that, as u’ € L?(0, T; L2(U)) instead of L?(0, T; H(U)), we cannot use it as a
test function.

where

Proof. (of uniqueness) Fix 0<s< T and set

o(t) = l u(r)dr Ogtgs. (9)

0 s<t<T



Then v(t) € Hg(U) for each 0 <t < T and can be used as a test function. Plug into the equation, we have

(u”,v) + Blu,v;t] =0.

Integrate from 0 to s and then integrate the first term, we have
/ — (u',v") + Blu, v; t] dt =0.
0
For 0 <t < s, by definition v/ = — u. Thuswe have
/ (u',u) — Bv',v;t] dt =0.
0
d/1
') = (3 Vol )

Blv,v;t]+ Clu,v;t] — D[v, v; ]

Now note that

and

with

C[um;t]::—/ Zbivmiu—l—%biiuvdx
Dlu,v;t]: / Z at umlvmj-i-z b};umiv—i—ctuudx.

fdf1 2 1 ) /5
—| = ||u — = Blv,v;t] |dt=— Clu,v;t]|+ Dlv,v;t] dt
[ (5 el - Blows " Ctu.vst)+ Do, vi

It follows that
1 1 s
3 [l (s) = § Blo(0),v(0)it) = = [ Cluvst] +Dlo.vit]

Thus we have

where we have used the fact that »(0) =0 and v(s) =0.
Using the coercivity of B and boundedness of C, D, we have

Iy + 10O gy <C| [ (10l + Ity ) e+ [0 e |
Now recall the definition of v:

u(t)dr 0<t<s
v(t):= /t (7) .

0 s<tLT
If we let

then for 0 <t < s,

Substituting into the estimate, we have
rits = ¢ [ (Il + Bl ) dt + 1ol
- o: | () - w g+ lulae) dt]+c|w I3
o: | T + e >|H5+||u|mdt} | lutolzear
dt.

= Cs|lw(t)|3y+C" / o (t) 3+ lul|32

On the other hand, we have

N

LHS = [[w(s) |33 + 72

(10)

(11)



Now we take s so small that C's <1/2. Then
()l + L) E<C [ (Ol + ulsat (25)

Application of Gronwall’s inequality gives uw =0 on [0, T3] for T} < % We now can apply the same argu-
ment to [Th,2T1], (271,371 and so on. O

1.4. Regularity.
We only mention that

g,heC>(U), feC>(Ur) = ueC>(Ur) (26)
given that the data is compatible.
See Evans pp.389-393 for details.

2. Propagation of disturbance.

Recall that, for the 1D wave equation, we have shown that if u,u; is initially 0 in a ball, then the solu-
tion is 0 in a cone with slope — 1. We show here that the same is true in the general case. For simplicity
we consider the simple case

Lu=-— Z a gz, (27)

where the coefficients are smooth, independent of time.
Consider the Hamilton-Jacobi equation

L 1/2
= (D aipeps,) =0, (28)

If we write

p(z,t) = q(x) +1 —to, (29)
then ¢ solves
Z a" gz, gz, =1 in R"™ — {z0}, q(zo) =0. (30)
Now we write
C:={(z,t)| p(z,t) <0} ={(x,t)| g(z) <to—t}. (31)
For each t >0, we further define
Ci={x|q(x)<to—t} (32)

which is the cross section of C' at time ¢.

Theorem 2. (Finite propagation speed) Assume u is a smooth solution of the hyperbolic equation. If
u=u;=0 on Cy, then u=0 within the cone C.

Proof. Define the energy

e(t) ::%/C u%—l-z a g, Uy, di. (33)

Differentiating, we have

- 1 - 1
é(t) = Up Ut + " Uy, U ——/ (u2+ a”umiuw,)—ds 34
() ‘/Ct t Wit Z gt 2 9G, t Z j |Dq| ( )

where we have used the Co-area formula.
Integrating by parts, we have

/ Ututt"'z aijuxiuxjt = / ut[utt_z (aijuzi)ml dI-l-/ Z &ijuzi viugdS
= —/C Utz a;iuzidx—l—/sc Z atJug, viugdS. (35)
t t



For the first term, we estimate

—/ utz aiﬁumidxgc/ ut2+|Du|2§Ce(t).
Cy Cy

For the second term, we estimate

iy ) g 1/2 CN1/2
‘Za”uziuj’g(Za”umiuzj) (Za”uluj) .

Note that since g=tg—t on Cy, v = ‘g—qq‘. And the equation for ¢ then gives

DR AT ——
Dyl

Therefore

. ) 1 .
a* Uy, v up dS <—/ (u2—|— a”umiuw)—dS’.
‘/actz ' ‘ 2 Joo, \ ' 2 ') |Dq|

As a consequence we have
é(t) < Ce(t).

Combining with e(0) =0, we have e(t)=1 and u=0 follows.

(38)

(39)

(40)



