MATH 527 FALL 2009 LECTURE 22 (Nov. 25, 2009)

SECOND-ORDER PARABOLIC EQUATIONS

In this lecture we study the initial/boundary-value problem

ur+Lu = f in Up
u = 0 on U x[0,T] (1)
u = g onU x {t=0}

Here U is an open bounded subset of R", and Ur:=U x (0,7 for some fixed T > 0.

The operator L either has the divergence form
Lu=-— i (a'(x,1) Um)zj + i bi(z,t) ug, +c(x,t)u=—V - (A(z,t) Du) +b(z,t) - Du+c(z,t) u, (2)
4, i=1

or the nondivergence form

Lu=— i at(z,t) umimj—i-i bi(z,t) ug, + c(z, t) u= Az, t): D*u+b(z,t) - Du+c(z,t) u. (3)

i,j=1 i=1

We say the operator 0; + L is uniformly parabolic if L is uniformly elliptic, that is, if there exists a con-
stant 6 such that

PIRCELET (4)

2,7

for a.e. (z,t)€Ur and all {€R™.
The simplest example of a parabolic equation is the heat equation.

1. Weak solutions.

1.1. Definition.
We assume
atd bt ce L>=(Ur), feL?*Ur), ge L*(U). (5)
We also always assume a'/ = a7*.

As usual, we try to obtain the correct integral formulation by multiplying the equation with a test
function v € C§°(U) and then integrate.

/vadxz/[](ut—i-l/u)vdx _ /

Inspecting the above, we see that we should require u € Hg(U) for every ¢, and require u, € H~*(U) for
every t. Thus the solution u should be a mapping!

utv—I—Z at( umlvml—i—z b(- ) ug,v+c(-, t)uv|de.  (6)

u: [0.7) > HY(U) (7)

such that
u’: [0, T)+— H-Y(U). (8)

Satisfying
<ulvv>+B[u=v;t]:(f=v) (9)

where
Blu,v;t]: / l atd( Uzlvmﬁ'z V(- ) ug,v+e(-,t)uv | de. (10)
i,j=1

1. At this stage there are two different approaches. The first one is to treat ¢ and z as equivalent and consider weak
solutions through integration by parts in space-time; The second one is the single ¢ out and treat the PDE as an ODE in
abstract Banach spaces. Here we take the second approach.



Remark 1. The weak derivative u’ is defined aas follows. Let X be a Banach space, and let u € L*(0, T}
X). A function v e L'(0,T; X) is said to be the weak derivative of u, written

u'=v (11)
provided

[ swuma=- [ s (12)
for all scalar function ¢ € C§°(0,T'). See Evans E.5 for the definition of Banach-space valued integrals.
More formally, we have
Definition 2. We say a function
uwe L*(0,T; Hy(U)) with u'€ L*(0,T; H-Y(U)) (13)
is a weak solution of the parabolic initial-boundary-value problem provided u(0) =g and
(u',v)y+ Blu,v;t] = (f,v) (14)
for each v e H&(U) and a.e. time 0<t<T.

Remark 3. The notation u € L?(0, T; X), where X is a function space, means the norm ||u||x, which is a
function of ¢, belongs to L?(0,T).

Remark 4. In fact, one can show that

ue L*(0,T; Hy(U)) together with u'€ L?(0,T; H-Y(U)) = ueC([0,T); L*(U)). (15)
See Evans p.287 Theorem 3. Thus u(0) (as the limit lim;\ ou(t)) is well-defined.
1.2. Existence.

The dominant approach in the study of existence for parabolic equations is the Galerkin’s method,
which takes advantage of the eigenvalue/eigenfunction theory of the elliptic equations. A special case is
when U is the torus (periodic boundary condition), in that case Galerkin’s method reduces to the spectral
method.

The idea is as follows. Let {wy},, be the orthonormal basis of L*(U) consisting of eigenfunctions of
L. Note that it is also an orthogonal basis for H}. Then we expect

u(t) = i d®(t) wy. (16)

Substituting this into the PDE, and equating coefficients for each wy to 0, we obtain an ODE system with
infinite size. Now we “cut-off” this system by disgarding all equations for wy, k > m. The resulting m x m
system usually admits a global solution. Finally we let m 700 and try to prove that the solutions con-
verge. The limit is the solution to the original problem.

Fix an integer m. Consider the m equations
(U, Wi) 4 Bltgm, wi; t] = (f, wi), k=1,...,m. (17)

To make this system well-posed, we look for u,, of the form

U ()= dby(t) w. (18)
with !

d5 (0) = (g, k). (19)
Thus we have m equations and m unknowns dJ,, ..., d. Substituting the formula for U, (t) into the equa-

tions, we see that the ODE system is actually linear, and therefore has a unique solution that exists for all
time.



Now the task is to show that we can take limit lim,, ~o u,, and the limit is the solution to the original
problem. The idea is to obtain uniform bounds on them and then apply certain compactness theorems.

Theorem 5. (Energy estimates) There exists a constant C, depending only on U, T and the coeffi-
cients of L, such that

Jnax Jum(t) [l 2wy + [wm | 220,713 0y ) + 1um | 20,7 -1 0)) < C (1L f 220, 75220 + 9l L20ry)- (20)
form=1,2,...

Proof. We sketch the main steps. For details see Evans pp. 354-356. The basic idea is the use u,, as the
test function in

(U, v) + Blum,v;t] = (f,v), v € span{wi, ..., W, }. (21)
This gives
d d
aHUmH%?(U) < a”um”%?(U) +2p ||Um||3qg(U) <O um | F2wry + C2 1 f 1 720r) (22)

which in turn gives us the correct bound for maxo<¢<7 [|[tm | L2y through Gronwall’s inequality.
Next integrate

EHUWH%%U) +2p HUWH%I%(U) < C1 um|F2@wy + Ca 1 f 7200y (23)

from 0 to 7T, and use the bound for maxo<i<r |[umllL2), We easily obtain the correct bound for
Hum||L2(0,T;H5(U))~

Finally, take arbitrary v € H&(U). We can decompose v = vy + v2 where vy € span{wi, ..., Wy, } and
vy Lspan{w, ..., wy,} in Hj. We have
(U, 0) = (U, v1) = (f,01) = Blttm, v1; ] (24)
using the equation. This leads to
| (um, )| <C (I Fl2w) + Numll ) ol oy < C (1 2@y + lum | zz o) 1ol w)- (25)
As this holds for all v € H§(U), we obtain the correct bound for fOT vl -1 0y O

Theorem 6. (Existence) There exists at least one weak solution.

Proof. From the energy estimates, we know that
e {um} is uniformly bounded in L*(0,T; Hq(U)),
. {u,’n} is uniformly bounded in L2(O,T; H_l(U)).

Thus there exists subsequence converging weakly to some function u € LQ(O, T; H&(U)) with u’ € LQ(O, T
H‘l(U)). One can show that u is a weak solution of the original problem. See Evans p.357 for details. [

1.3. Uniqueness.
As the equation is linear, it suffices to show that u =0 if f=g=0. Take u as the test function. Then
we obtain the estimate

d
EH’UJH%Q(U)gO HUH%F(U) (26)

with ||u|\%2(U) =0 at t=0. The conclusion follows from Gronwall’s inequality.

1.4. Regularity.

If we assume more on g and f, we can conclude that u has higher regularity than in the definition of
the weak solution. We will not go into details here. See Evans 358 — 367. We just mention that if we
assume

geC>=(U), feCc> (27)



then
ueC>(Ur). (28)

2. Maximum principles.
We assume that L takes the nondivergence form.

n n
Lu=— Z atd Uocﬂf"Z bl ug, + cu. (29)
i,j=1 i=1
We assume the coefficients are continuous. Let I'r be the reduced/parabolic boundary. Then we have

Theorem 7. (Weak maximum principle) Assume u € CZ(Ur)N C(UT) and ¢c=0. Then

ur+ Lu<0 = max u=max u; (30)
UT FT
ug+ Lu>0 = minu=minu. (31)
UT l—‘T
Proof. The proof is almost identical to the one for the heat equation. O

As before, weak maximum principles continue to hold in the case ¢ > 0, if the modify the conclusions
to

max u=max vt and minu=minu". (32)
Ur I'r Ur I'r

Using the weak maximum principle we can prove the following Harnack’s inequality. See Evans pp.371-
374.

Theorem 8. (Parabolic Harnack inequality) Assume u € C3(Ur) solves u; + Lu =0 in Ur, and also
uw>=0 in Up. Then for any V €U, and each 0 <ty <ty <T, there exists a constant C such that

supu(-,t1) < Cinfu(-,ts). (33)
\% 14

The constant C' depends only on V ,t1,ts and the coefficients of L.
Remark 9. Note that t; <t3. So the bound is only one sided.
Finally we mention the strong maximum principle.

Theorem 10. (Strong maximum principle) Assume u € CF(Ur) N C’(UT) and ¢ =0 in Ur. Suppose
also that U is connected. Then u is a constant on Uy, if either

us+ Lu <0, u attains mazimum at (zg,to) (34)
or

ug+ Lu >0, u attains minimum at (o, o). (35)

Remark 11. For the case ¢ > 0, we modify the conclusions in the standard way.

Proof. Recall that, in the case of the heat equation, we prove strong maximum principle using mean
value formula. Such formula is not available in the general case.

Here instead we use the Harnack’s inequality. Take a smooth, open set W & U, with xo € W. Let v
solve

v+ Lv=0 (36)

in W and takes u as its boundary values. As u; + Lu < 0, weak maximum principle yields u < v. Since v
takes u as its boundary value, we know v < u(zo, o). Thus

u < v < u(zg, to) (37)



and in particular v(xo, to) = u(zo, fo).
Now let 0 := u(xo, to) —v. We have 0+ Lo =0, v > 0. For any V € W, with x9 € V, we now can apply
the Harnack inequality to conclude that ¢ =0 in V,. Thus ¢ =0 in Wy, and v =u(=xo, to) in Wi,. But this
implies v = u(zo, o) along the reduced boundary of W;,. Using weak maximum principle again, we see
that v =u(xo,to) in Wy,.
The strong maximum principle then follows from the arbitrariness of W.

O



