
Math 5 2 7 Fall 2 009 Lecture 2 2 ( Nov. 2 5 , 2 0 0 9 )

Second-Order Parabolic Equations

In this lecture we study the initial/boundary-value problem



ut + Lu = f in UT

u = 0 on ∂U × [ 0 , T]
u = g on U × { t = 0}

( 1 )

Here U is an open bounded subset of Rn , and UT � U × ( 0 , T] for some fixed T > 0 .
The operator L either has the divergence form

Lu = −
∑

i , j

n (
ai j(x , t) ux i

)
x j

+
∑

i= 1

n

bi(x , t) ux i + c( x , t) u ≡ − ∇ · (A( x , t) Du) + b( x , t) · Du + c(x , t) u , ( 2 )

or the nondivergence form

Lu = −
∑

i , j= 1

n

ai j(x , t) ux ix j +
∑

i= 1

n

bi(x , t) ux i + c(x , t) u ≡ A( x , t) : D2u + b(x , t) · Du + c( x , t) u. ( 3)

We say the operator ∂t + L is uniformly parabolic if L is uniformly elliptic, that is, if there exists a con-
stant θ such that

∑

i , j= 1

n

ai j( x) ξi ξj > θ | ξ | 2 ( 4)

for a. e. (x , t) ∈ UT and all ξ ∈ Rn .
The simplest example of a parabolic equation is the heat equation.

1 . Weak solutions.

1 . 1 . Definition.
We assume

ai j , bi , c ∈ L∞ (UT) , f ∈ L2 (UT) , g ∈ L2 (U ) . ( 5)

We also always assume ai j = aji .
As usual, we try to obtain the correct integral formulation by multiplying the equation with a test

function v ∈ C0
∞ (U ) and then integrate.

∫

U

f v dx =

∫

U
(ut + Lu) v dx =

∫

U

[
ut v +

∑

i , j= 1

n

ai j( · , t) ux i vx i +
∑

i= 1

n

bi( · , t) ux i v + c( · , t) u v
]

dx. ( 6)

Inspecting the above, we see that we should require u ∈ H0
1 (U ) for every t , and require ut ∈ H− 1 (U ) for

every t . Thus the solution u should be a mapping1

u : [ 0 , T] � H0
1 (U ) ( 7)

such that

u ′ : [ 0 , T] � H− 1 (U ) . ( 8)

Satisfying

〈 u ′ , v 〉 + B [u , v ; t ] = ( f , v ) ( 9)

where

B [u , v ; t ] �
∫

U

[ ∑

i , j= 1

n

ai j( · , t) ux i vx i +
∑

i= 1

n

bi( · , t) ux i v + c( · , t) u v
]

dx. ( 1 0)

1 . At this stage there are two different approaches. The first one is to treat t and x as equivalent and consider weak
solutions through integration by parts in space-t ime; The second one is the single t out and treat the PDE as an ODE in
abstract Banach spaces. Here we take the second approach.



Remark 1 . The weak derivative u ′ is defined aas follows. Let X be a Banach space, and let u ∈ L1 ( 0 , T ;
X ) . A function v ∈ L1 ( 0 , T ; X ) is said to be the weak derivative of u , written

u ′ = v ( 1 1 )

provided ∫

0

T

φ ′( t) u( t) dt = −
∫

0

T

φ ( t) v ( t) dt ( 1 2 )

for all scalar function φ ∈ C0
∞ ( 0 , T) . See Evans E. 5 for the definition of Banach-space valued integrals.

More formally, we have

Definition 2. We say a function

u ∈ L2
(

0 , T ; H0
1 (U )

)
with u ′ ∈ L2

(
0 , T ; H− 1 (U )

)
( 1 3)

is a weak so lution of the parabo lic initial- boundary-value prob lem provided u( 0) = g and

〈 u ′ , v 〉 + B [u , v ; t ] = ( f , v ) ( 1 4)

for each v ∈ H0
1 (U ) and a. e . time 0 6 t 6 T.

Remark 3. The notation u ∈ L2 ( 0 , T ; X ) , where X is a function space, means the norm ‖ u ‖ X , which is a
function of t , belongs to L2 ( 0 , T) .

Remark 4. In fact, one can show that

u ∈ L2
(
0 , T ; H0

1 (U )
)
together with u ′ ∈ L2

(
0 , T ; H− 1 (U )

) �

u ∈ C
(
[ 0 , T] ; L2 (U )

)
. ( 1 5)

See Evans p. 287 Theorem 3. Thus u( 0) ( as the limit limt↘ 0 u( t) ) is well-defined.

1 . 2 . Existence.
The dominant approach in the study of existence for parabolic equations is the Galerkin’ s method,

which takes advantage of the eigenvalue/eigenfunction theory of the elliptic equations. A special case is
when U is the torus ( periodic boundary condition) , in that case Galerkin’ s method reduces to the spectral
method.

The idea is as follows. Let {wk } k= 1
∞ be the orthonormal basis of L2 (U ) consisting of eigenfunctions of

L . Note that it is also an orthogonal basis for H0
1 . Then we expect

u( t) =
∑

1

∞
dk ( t) wk . ( 1 6)

Substituting this into the PDE, and equating coefficients for each wk to 0 , we obtain an ODE system with
infinite size. Now we “cut-off” this system by disgarding all equations for wk , k > m . The resulting m × m
system usually admits a global solution. Finally we let m↗∞ and try to prove that the solutions con-
verge. The limit is the solution to the original problem.

Fix an integer m . Consider the m equations
(
um
′ , wk

)
+ B [um , wk ; t ] = ( f , wk ) , k = 1 , � , m. ( 1 7)

To make this system well-posed, we look for um of the form

um( t) �
∑

1

m

dm
k ( t) wk . ( 1 8)

with

dm
k ( 0) = ( g , wk ) . ( 1 9)

Thus we have m equations and m unknowns dm1 , � , dm
m . Substituting the formula for um( t) into the equa-

tions, we see that the ODE system is actually linear, and therefore has a unique solution that exists for all
time.



Now the task is to show that we can take limit limm↗∞ um and the limit is the solution to the original
problem. The idea is to obtain uniform bounds on them and then apply certain compactness theorems.

Theorem 5. ( Energy estimates) There exists a constant C, depending only on U , T and the coeffi-
cients ofL , such that

max
06 t6 T

‖ um( t) ‖ L 2 (U ) + ‖ um ‖ L 2
(
0 , T ;H0

1 (U )
) + ‖ um′ ‖ L 2

(
0 , T ;H− 1 (U )

) 6 C
(
‖ f ‖ L 2 ( 0 , T ; L 2 (U ) ) + ‖ g ‖ L 2 (U )

)
. ( 20)

for m = 1 , 2 , �

Proof. We sketch the main steps. For details see Evans pp. 354–356. The basic idea is the use um as the
test function in (

um
′ , v

)
+ B [um , v ; t ] = ( f , v ) , v ∈ span{w1 , � , wm } . ( 21 )

This gives
d

dt
‖ um ‖ L 2 (U )

2 6 d

dt
‖ um ‖ L 2 (U )

2 + 2 β ‖ um ‖ H0
1 (U )

2 6 C1 ‖ um ‖ L 2 (U )
2 + C2 ‖ f ‖ L 2 (U )

2 ( 22 )

which in turn gives us the correct bound for max06 t6 T ‖ um ‖ L 2 (U ) through Gronwall’ s inequality.
Next integrate

d

dt
‖ um ‖ L 2 (U )

2 + 2 β ‖ um ‖ H0
1 (U )

2 6 C1 ‖ um ‖ L 2 (U )
2 + C2 ‖ f ‖ L 2 (U )

2 ( 23)

from 0 to T , and use the bound for max06 t6 T ‖ um ‖ L 2 (U ) , we easily obtain the correct bound for
‖ um ‖ L 2

(
0 , T ;H0

1 (U )
) .

Finally, take arbitrary v ∈ H0
1 (U ) . We can decompose v = v1 + v2 where v1 ∈ span{w1 , � , wm } and

v2⊥span{w1 , � , wm } in H0
1 . We have
(
um
′ , v

)
=
(
um
′ , v1

)
= ( f , v1 ) − B [um , v1 ; t ] ( 24)

using the equation. This leads to
∣∣ ( um′ , v

) ∣∣ 6 C
(
‖ f ‖ L 2 (U ) + ‖ um ‖ H0

1 (U )

)
‖ v1 ‖ H0

1 (U ) 6 C
(
‖ f ‖ L 2 (U ) + ‖ um ‖ H0

1 (U )

)
‖ v ‖ H0

1 (U ) . ( 25)

As this holds for all v ∈ H0
1 (U ) , we obtain the correct bound for

∫
0

T ‖ um′ ‖ H− 1 (U ) . �

Theorem 6. ( Existence) There exists at least one weak solution.

Proof. From the energy estimates, we know that

• {um } is uniformly bounded in L2
(
0 , T ; H0

1 (U )
)
,

•
{
um
′ } is uniformly bounded in L2

(
0 , T ; H− 1 (U )

)
.

Thus there exists subsequence converging weakly to some function u ∈ L2
(
0 , T ; H0

1 (U )
)
with u ′ ∈ L2

(
0 , T ;

H− 1 (U )
)
. One can show that u is a weak solution of the original problem. See Evans p. 357 for details. �

1 . 3. Uniqueness.
As the equation is linear, it suffices to show that u ≡ 0 if f = g = 0 . Take u as the test function. Then

we obtain the estimate
d

dt
‖ u ‖ L 2 (U )

2 6 C ‖ u ‖ L 2 (U )
2 ( 26)

with ‖ u ‖ L 2 (U )
2 = 0 at t = 0 . The conclusion follows from Gronwall’ s inequality.

1 . 4. Regularity.
If we assume more on g and f , we can conclude that u has higher regularity than in the definition of

the weak solution. We will not go into details here. See Evans 358 – 367. We just mention that if we
assume

g ∈ C∞
(
Ū
)
, f ∈ C∞ ( 27)



then

u ∈ C∞
(
ŪT
)
. ( 28)

2. Maximum principles.
We assume that L takes the nondivergence form.

Lu = −
∑

i , j= 1

n

ai j ux ix j +
∑

i= 1

n

bi ux i + c u. ( 29)

We assume the coefficients are continuous. Let ΓT be the reduced/parabolic boundary. Then we have

Theorem 7. (Weak maximum principle) Assume u ∈ C1
2 (UT) ∩ C

(
ŪT
)
and c≡ 0 . Then

ut + Lu 6 0
�

max
ŪT

u = max
ΓT

u ; ( 30)

ut + Lu > 0
�

min
ŪT

u = min
ΓT

u. ( 31 )

Proof. The proof is almost identical to the one for the heat equation. �

As before, weak maximum principles continue to hold in the case c > 0 , if the modify the conclusions
to

max
ŪT

u = max
ΓT

u+ and min
ŪT

u = min
ΓT

u− . ( 32 )

Using the weak maximum principle we can prove the following Harnack’ s inequality. See Evans pp. 371 –
374.

Theorem 8. (Parabolic Harnack inequality) Assume u ∈ C1
2 (UT) solves ut + Lu = 0 in UT, and also

u > 0 in UT. Then for any V b U, and each 0 < t1 < t2 6 T, there exists a constant C such that

sup
V

u( · , t1 ) 6 C inf
V
u( · , t2 ) . ( 33)

The constant C depends only on V, t1 , t2 and the coefficients of L .

Remark 9. Note that t1 < t2 . So the bound is only one sided.

Finally we mention the strong maximum principle.

Theorem 10. ( Strong maximum principle) Assume u ∈ C1
2 (UT) ∩ C

(
ŪT
)
and c ≡ 0 in UT. Suppose

also that U is connected. Then u is a constant on Ut0 if either

ut + Lu 6 0 , u attains maximum at (x0 , t0 ) ( 34)

or

ut + Lu > 0 , u attains minimum at (x0 , t0 ) . ( 35)

Remark 1 1 . For the case c > 0 , we modify the conclusions in the standard way.

Proof. Recall that, in the case of the heat equation, we prove strong maximum principle using mean
value formula. Such formula is not available in the general case.

Here instead we use the Harnack’ s inequality. Take a smooth, open set W b U , with x0 ∈ W . Let v
solve

vt + Lv = 0 ( 36)

in W and takes u as its boundary values. As ut + Lu 6 0 , weak maximum principle yields u 6 v . S ince v
takes u as its boundary value, we know v 6 u(x0 , t0 ) . Thus

u 6 v 6 u( x0 , t0 ) ( 37)



and in particular v (x0 , t0 ) = u(x0 , t0 ) .
Now let ṽ � u(x0 , t0 ) − v . We have ṽt + Lṽ = 0 , ṽ > 0 . For any V b W , with x0 ∈ V , we now can apply

the Harnack inequality to conclude that ṽ ≡ 0 in Vt0 . Thus ṽ ≡ 0 in Wt0 , and v ≡ u(x0 , t0 ) in Wt0 . But this
implies u ≡ u( x0 , t0 ) along the reduced boundary of Wt0 . Using weak maximum principle again, we see
that u ≡ u( x0 , t0 ) in Wt0 .

The strong maximum principle then follows from the arbitrariness of W . �


