
Math 5 2 7 Fall 2 009 Lecture 2 1 ( Nov. 2 3 , 2 0 0 9 )

Second-Order Elliptic Equations : Eigenvalues and Eigenfunctions

In this lecture we study the boundary-value problem

Lw = λ w in U ; w = 0 on ∂U. ( 1 )

Such problem is called “eigenvalue problem”. When it admits a non-zero solution ( note that 0 is automati-
cally a solution for all λ ) , the corresponding λ is called an “eigenvalue”, and any one of the non-zero solu-
tion is called an “eigenfunction”. The importance of understanding the properties of the eigenvalues/ eigen-
function is that one can expand other functions in them. 1

1 . Eigenvalues of symmetric elliptic operators.
We consider

Lu = −
∑

i , j= 1

n (
ai j ux i

)
x j

( 2 )

with ai j ∈ C∞
(
Ū
)
. As usual, we assume that a i j = aji and the corresponding bilinear form is bounded an

coercive. Then it turns out that the eigenfunctions have properties similar to that of the Fourier modes.

Theorem 1 . ( Eigenvalues of symmetric elliptic operators)

i. Each eigenvalue of L is real;

ii. If we repeat each eigenvalue according to its (finite) multiplicity, we ahve
∑

= {λk } k= 1
∞

, ( 3)

where

0 < λ 1 6 λ2 6 � ( 4)

and

λk
� ∞ as k � ∞ . ( 5)

iii. There exists an orthonormal basis {wk } k= 1
∞ of L2 (U ) , where wk ∈ H0

1 (U ) is an eigenfunction corre-
sponding to λk :

Lwk = λk wk in U ; wk = 0 on ∂U ( 6)

for k = 1 , 2 , �

Remark 2. Note that each wk is in fact C∞ (U ) . Furthermore if ∂U ∈ C∞ , so is wk .

Proof. For i, assume λ is an eigenvalue, let w be a corresponding eigenfunction. We have

Lw = λ w
�

Lw∗ = λ∗ w∗ ( 7)

where ∗ denotes the complex conjugate. Now we have ( taking w such that
∫
| w | 2 = 1 )

λ =

∫
(Lw ) w∗ =

∫
w (Lw∗ ) = λ∗ . ( 8)

Thus eigenvalues must be real.
To see that the eigenfunctions corresponding to different eigenvalues are orthogonal, we check

∫
λ w w̃ =

∫
(Lw ) w̃ =

∫
w (Lw̃ ) =

∫
λ̃ w w̃ . ( 9)

As λ
�
λ̃ , we must have

∫
w w̃ = 0 .

It is also easy to see that the eigenvalues are positive.

1 . For example, when U = ( 0 , 1 ) , the eigenfunctions are just the Fourier ( sine) modes sin (π n x ) . For a general domain U ,
one cannot use Fourier analysis as the Fourier modes do not respect the boundary condit ions. In these cases the eigenfunc-
tions are used.



For the remaining properties, the idea is the consider the inverse operator

S � L− 1 : L2 � L2 ( 1 0)

which exists due to the existence theory.
It is clear that S is linear. Now we show that S is bounded. Recall that Sf = u if and only if Lu = f .

Now using the coercivity of L , we have

θ ‖ u ‖ 2 6 〈Lu , u 〉 = 〈 f , u 〉 6 ‖ f ‖ L 2 ‖ u ‖ � ‖ Sf ‖ H 1 = ‖ u ‖ 6 θ− 1 ‖ f ‖ L 2 . ( 1 1 )

Next we show that S is compact. Taking fi bounded in L2 . From the above we see that ‖ Sfi ‖ H 1 are uni-
formly bounded. The compact embedding H1 b L2 tells us that we can subtract a convergent ( in L2 ) sub-
sequence from {Sfi } .

In summary, S = L− 1 is a linear bounded compact operator from L2 to itself. The properties follow
from genearl operator theory. �

Next we study the first eigenvalue and its corresponding eigenfunction. Usually λ 1 > 0 is called the
principal e igenvalue .

Theorem 3. (Variational principle for the principal eigenvalue)

i. We have

λ 1 = min
{
B [u , u ]

�
u ∈ H0

1 (U ) , ‖ u ‖ L 2 = 1
}
. ( 1 2 )

ii. Furthermore, the minimum is attained. The minimizer is an eigenfunction.

iii. The eigenspace corresponding to λ 1 is one-dimensional. And its e igenfunctions are either positive
or negative .

Proof.

i. S ince {wk } form an orthonormal basis of L2 , we can write any function u ∈ H0
1 as

u =
∑

1

∞
uk wk . ( 1 3)

‖ u ‖ L 2 = 1 �
∑

uk
2 = 1 .

Now compute2

B [u , u ] =
∑

λk uk
2 . ( 1 7)

It is clear that

B [u , u ] > λ 1

∑
uk

2 = λ 1 ( 1 8)

and the minimum is λ 1 .

i i . It is clear that the minimum is attained at a function which is a combination of eigenfunctions cor-
responding to λ 1 , and thus is itself an eigenfunction corresponding to λ 1 .

2 . A technical issue here. As {wk } is an orthonormal basis for L2 , the relat ion u =
∑

1
∞ uk wk only holds in L2 . In other

words, the infinite sum in the RHS converges in L2 . As B [u, u ] involves Du , we need the infinite sum to converge in H1 too
to be able to write

B [u, u ] =
∑

l , m

B [ul w l , um wm ] . ( 1 4)

We overcome this difficulty as follows. F irst note that , thanks to the coercivity of the operator and the Poincare
inequality, (B [u, u ] ) 1 / 2 is an equivalent norm on H0

1 . Thus we have

‖ wk ‖ H 1 ∼ (B [wk , wk ] )
1 / 2 = λk

1 / 2 ‖ wk ‖ L 2 = λk
1 / 2
. ( 1 5 )

To show that
∑

1
N uk wk is a Cauchy sequence on H0

1 , it suffices to show that
∑

1
N uk λk

1 / 2 is a Cauchy sequence on R .
But this follows from the fact that u ∈ H0

1 , which translates to

∑

1

∞
uk

2 λk < ∞ . ( 1 6 )



iii . First we show that any eigenfunction corresponding to λ 1 is either positive or negative. Let u be
such that

Lu = λ 1 u , u = 0 on ∂U. ( 1 9)

We need to show that either u+ or u− must vanish.
First we show that u± must also be eigenfunctions corresponding to λ 1 . Note that u± cannot be

nonzero at the same time, therefore

λ 1 = B [u , u ] = B
[
u+ , u+

]
+ B

[
u− , u−

]
> λ 1

∫

U

(
u+
) 2

+ λ 1

∫

U

(
u−
) 2

= λ 1 . ( 20)

This implies that

B
[
u± , u±

]
= λ 1

∫ (
u±
) 2 ( 21 )

which in turn gives

Lu± = λ 1 u± , u± = 0 on ∂U. ( 22 )

But then the strong maximum principle tells us that if u± = 0 at one point, it has to vanish every-
where. As a consequence, either u+ ≡ 0 or u− ≡ 0 .

Now let u , ũ be two different eigenfunctions corresponding to λ 1 . We can always find a number
µ ∈ R such that

∫
u − µ ũ = 0 . Thus u − µ ũ is either identically zero or takes both positive and

negative values. But u − µ ũ is also an eigenfunction for λ 1 . Therefore we must have

u − µ ũ = 0 . ( 23)

Thus ends the proof. �

2. Eigenvalues of nonsymmetric elliptic operators .
Now we consider the nondivergence form.

Lu = −
∑

i , j= 1

n

ai j ux ix j +
∑

i= 1

n

bi ux i + c u. ( 24)

Assume the coefficients are all smooth up to the boundary, which is also smooth. Further assume that ai j

is symmetric, and c > 0 . Note that in this case L is not symmetric anymore. More specifically, we do not
have ∫

(Lw ) v =

∫
w (Lv ) ( 25)

and as a consequence, the eigenvalues are not real anymore. Nevertheless, we still have the following.

Theorem 4. (Principal eigenvalue for nonsymmetric elliptic operators)

i. There exists a real e igenvalue λ 1 for the operator L , taken with zero boundary conditions, such that
if λ ∈ C is any other eigenvalue , we have

<λ > λ 1 . ( 26)

ii. There exists a corresponding eigenfunction w1 > 0 .

iii. Any other e igenfunction corresponding to λ 1 is a multiple ofw1 .

Proof. The proof is highly technical. It seems hard to even sketch “main ideas” here. Those interested
should read Evans pp. 341 –344. �


