MATH 527 FALL 2009 LECTURE 21 (Nov. 23, 2009)

SECOND-ORDER ELLIPTIC EQUATIONS: EIGENVALUES AND EIGENFUNCTIONS

In this lecture we study the boundary-value problem
Lw=Xw inU; w=0 on JU. (1)

Such problem is called “eigenvalue problem”. When it admits a non-zero solution (note that 0 is automati-
cally a solution for all \), the corresponding A is called an “eigenvalue”, and any one of the non-zero solu-
tion is called an “eigenfunction”. The importance of understanding the properties of the eigenvalues/eigen-
function is that one can expand other functions in them.!

1. Eigenvalues of symmetric elliptic operators.

We consider
n

Lu=-— Z (aijuxi)mv (2)

J
=1
with '/ € C*>(U ). As usual, we assume that a’/ = a’" and the corresponding bilinear form is bounded an
coercive. Then it turns out that the eigenfunctions have properties similar to that of the Fourier modes.
Theorem 1. (Eigenvalues of symmetric elliptic operators)
i. FEach eigenvalue of L is real;
it. If we repeat each eigenvalue according to its (finite) multiplicity, we ahve
Z = {)\k}zo:p (3)
where
O< A < A< (4)
and
A — 00 as k— 0. (5)
iti. There exists an orthonormal basis {wy},-, of L*(U), where wy € Hy(U) is an eigenfunction corre-
sponding to \j:
Lwi= M, wy, in U, w=0 on OU (6)
for k=1,2,...
Remark 2. Note that each wy is in fact C*°(U). Furthermore if OU € C*°, so is wy.

Proof. For i, assume ) is an eigenvalue, let w be a corresponding eigenfunction. We have
Lw=\w = Lw*=\w* (7
where * denotes the complex conjugate. Now we have (taking w such that [ |w|2 =1)

)\:/ (Lw)w*:/w (Lw*)= A" (8)

Thus eigenvalues must be real.
To see that the eigenfunctions corresponding to different eigenvalues are orthogonal, we check

/)\wu?:/ (Lw)wz/w(m)z/mm. (9)

As A# X, we must have [ w1 =0.
It is also easy to see that the eigenvalues are positive.

1. For example, when U = (0, 1), the eigenfunctions are just the Fourier (sine) modes sin(nwn x). For a general domain U,
one cannot use Fourier analysis as the Fourier modes do not respect the boundary conditions. In these cases the eigenfunc-
tions are used.



For the remaining properties, the idea is the consider the inverse operator
S:=L% L% L? (10)

which exists due to the existence theory.
It is clear that S is linear. Now we show that S is bounded. Recall that Sf=w if and only if Lu= f.
Now using the coercivity of L, we have

0 llull® < (Lu,u)=(f,u) <|fllzz ull = 1SFflla=Ilul <O f]lL> (11)

Next we show that S is compact. Taking f; bounded in L?. From the above we see that ||Sf;| g are uni-
formly bounded. The compact embedding H' € L? tells us that we can subtract a convergent (in L?) sub-
sequence from {Sf;}.

In summary, S = L~! is a linear bounded compact operator from L? to itself. The properties follow
from genearl operator theory. O

Next we study the first eigenvalue and its corresponding eigenfunction. Usually A\; > 0 is called the
principal eigenvalue.
Theorem 3. (Variational principle for the principal eigenvalue)
i. We have
A =min {Bu,u] | u € Hy(U), ||lul,2=1}. (12)
1. Furthermore, the minimum is attained. The minimizer is an eigenfunction.

1i. The eigenspace corresponding to A1 is one-dimensional. And its eigenfunctions are either positive
or negative.

Proof.

i. Since {wy} form an orthonormal basis of L?, we can write any function u € Hj as

UZZ Uk WE. (13)
1

lullpz=1 <= S ui=1.
Now compute?

B[u,u]zz Ak UR. (17)
It is clear that
Blu,ul >\ Y ui =X (18)
and the minimum is A;.

ii. It is clear that the minimum is attained at a function which is a combination of eigenfunctions cor-
responding to A1, and thus is itself an eigenfunction corresponding to A;.

2. A technical issue here. As {wg} is an orthonormal basis for L2, the relation u = Zi’o up wy, only holds in L2. In other
words, the infinite sum in the RHS converges in L2. As Blu, u] involves Du, we need the infinite sum to converge in H! too
to be able to write

B[u,u]zz Bluj wy, Uy W) (14)

L,m

We overcome this difficulty as follows. First note that, thanks to the coercivity of the operator and the Poincare

1/2

inequality, (B[u,u])"/? is an equivalent norm on H{. Thus we have

lwiell gz ~ (Blwe, wi)Y/? = A2 wg |l 2= A% (15)

To show that Zfr ug wg is a Cauchy sequence on H&, it suffices to show that Zfr Uk A,lc/z is a Cauchy sequence on R.
But this follows from the fact that u € H§, which translates to

oo
Z u? A\, < 00. (16)
1



iii. First we show that any eigenfunction corresponding to \; is either positive or negative. Let u be
such that

Lu=M\u, u=0 on JU. (19)
We need to show that either ut or v~ must vanish.

First we show that u* must also be eigenfunctions corresponding to A;. Note that u® cannot be
nonzero at the same time, therefore

AlzB[u,u]:B[qu,qu] —I—B[u*,u*] 2)\1/
U

(u+)2+/\1/ (u=)* =1 (20)

U
This implies that

Blu®, u*] :)\1/ (ujt)2 (21)
which in turn gives

Lu* =\ u*, ut=0on dU. (22)

But then the strong maximum principle tells us that if u™ =0 at one point, it has to vanish every-
where. As a consequence, either v =0 or u~ =0.

Now let u, @ be two different eigenfunctions corresponding to A;. We can always find a number
1 € R such that [ w — pa =0. Thus u — p @ is either identically zero or takes both positive and
negative values. But v — p 4 is also an eigenfunction for A\;. Therefore we must have

u—pu=0. (23)
Thus ends the proof. O

2. Eigenvalues of nonsymmetric elliptic operators.
Now we consider the nondivergence form.

n n
Lu—=— Z Qijuxixj‘FZ biuzi—l—cu. (24)
i,j=1 i=1

Assume the coefficients are all smooth up to the boundary, which is also smooth. Further assume that a®J
is symmetric, and ¢ > 0. Note that in this case L is not symmetric anymore. More specifically, we do not

have
[ wwyo= fwo) (25)

and as a consequence, the eigenvalues are not real anymore. Nevertheless, we still have the following.

Theorem 4. (Principal eigenvalue for nonsymmetric elliptic operators)

i. There exists a real eigenvalue \1 for the operator L, taken with zero boundary conditions, such that
if A€ C is any other eigenvalue, we have

RAZ> A1 (26)
1. There exists a corresponding eigenfunction wy > 0.

115. Any other eigenfunction corresponding to \1 is a multiple of wy.

Proof. The proof is highly technical. It seems hard to even sketch “main ideas” here. Those interested
should read Evans pp. 341-344. O



