
Math 5 2 7 Fall 2 009 Lecture 2 0 ( Nov. 1 8 )

Second-Order Elliptic Equations : Maximum Principles

Recall that, for Poisson equation, we have

• Weak maximum principle.

− 4u 6 0 in U �
u 6 max

∂U
U in U ( 1 )

and

• Strong maximum principle ( assuming U is connected)

− 4u 6 0 in U , u( x0 ) = max
U

u for some x0 ∈ U �
u ≡ u( x0 ) . ( 2 )

In this lecture we will try to check whether such properties still hold for the general second order elliptic
equations. It turns out, the nondivergence form

Lu = −
∑

i , j= 1

n

ai j ux ix j +
∑

i= 1

n

bi ux i + c u ( 3)

is more appropriate for this.
Before listing and proving theorems, we mention a critical difference between the Poisson equation and

the general case. It turns out that the sign of c plays an important role. To see this, consider the 1D case

− u ′ ′ + c u = 0 . ( 4)

When c < 0 , we easily check that u = sin
(

c
√

x
)
solves the equation. Therefore no maximum principle can

hold.

1 . Weak maximum principle.

Theorem 1 . (Weak maximum principle) Assume u ∈ C2 (U ) ∩ C
(
Ū
)
and c≡ 0 . Then

Lu 6 0
� max

Ū
u = max

∂U
u , ( 5)

and

Lu > 0
� min

Ū
u = min

∂U
u. ( 6)

Proof. It is clear that we only need to prove either one of the two. Without loss of generality we prove

Lu 6 0
� max

Ū
u = max

∂U
u , ( 7)

First consider the case Lu < 0 . Assume that there is x0 ∈ U such that u(x0 ) = maxU u( x0 ) . Then we have

Du( x0 ) = 0 , D2u(x0 ) negative semi-definite . ( 8)

Substitute into the equation, we see that we can have a contradiction if we can show the following:

A, B positive semi-definite � tr(AB ) =
∑

i , j

Ai jBi j > 0 . ( 9)

Take any ε > 0 . We know that Bε : = B + ε I is positive definite and thus we can find C positive definite
such that C2 = Bε . Now we have

tr(A Bε ) = tr
(
CABε C

− 1
)

= tr(CAC ) > 0 . ( 1 0)

Letting ε↘ 0 we get the desired result.
Now consider the general case Lu 6 0 . Write uε ( x) � u(x ) + ε eλ x 1 for some λ > 0 to be determined

later. We compute

Luε = Lu + ε L
(
eλ x 1

)
6 ε eλ x 1

[
− λ 2 a1 1 + λ b1

]
. ( 1 1 )



Now choose λ large enough so that the RHS is negative. We see that

max
Ū

uε = max
∂U

uε . ( 1 2 )

Taking ε↘ 0 we have proved the theorem. �

Theorem 2. (Weak maximum principle for c > 0) Assume u ∈ C2 (U ) ∩ C
(
Ū
)
and c > 0 . Then

Lu 6 0
� max

Ū
u 6 max

∂U
u+ , ( 1 3)

and

Lu > 0
� min

Ū
u 6 min

∂U
u− . ( 1 4)

Remark 3. As we have seen in the example at the beginning of the lecture, when c < 0 we should not
expect maximum principles to hold.

Remark 4. Note that the 6 here cannot be replaced by ′′ = ′′ . A counterexample is u ≡ − 1 . However, if
Lu = 0 , we can indeed conclude the equality

max
Ū
| u | = max

∂U
| u | . ( 1 5)

Proof. Clearly we only need to prove the first one. Let V � {x ∈ U �
u(x ) > 0} . Let Ku � Lu − c u . Then

we have

Ku 6 − c u 6 0 ( 1 6)

in V , and therefore we can apply the case c = 0 here. The proof is finished after noticing that

max
∂V

u = max
∂U

u+ . ( 1 7)

�

2. Strong maximum principle.
Again we have two cases.

Theorem 5. ( Strong maximum principle) Assume u ∈ C2 (U ) ∩ C
(
Ū
)
and c ≡ 0 . Suppose also U is

connected, open and bounded. Then u has to be a constant if either

− Lu 6 0 and u attains its maximum at an interior point, or

− Lu > 0 and u attains its minimum at an interior point.

Theorem 6. ( Strong maximum principle with c 6 0) Assume u ∈ C2 (U ) ∩ C
(
Ū
)
and c > 0 . Suppose

also U is connected, open and bounded. Then u has to be a constant if either

− Lu 6 0 and u attains a nonnegative maximum at an interior point, or

− Lu > 0 and u attains a nonnegative minimum at an interior point.

Recall that we establish the strong maximum principle for the Poisson equation using the mean value for-
mula. Unfortunately for the general equation, the mean value formula does not hold anymore. Instead, we
need the following more technical Hopf lemma.

Lemma 7. (Hopf’ s Lemma) Assume u ∈ C2 (U ) ∩ C
(
Ū
)
, Lu 6 0 in U, and there exists a point x0 ∈ ∂U

such that

u
(
x0
)
> u( x) ( 1 8)

for al l x ∈ U. Assume finally that U satisfies the interior bal l condition at x0 ; that is, there exists an open
bal l B ⊂ U such that x0 ∈ ∂B . Then

− If c≡ 0 , then ∂u

∂ν
( x0 ) > 0 where ν is the outer normal to B at x0 ;



− If c > 0 , then the same holds if u(x0 ) > 0 .

Remark 8. The lemma is nontrivial because instead of ∂u
∂ν
> 0 , we can conclude the strict inequality.

Remark 9. With the help of the Hopf’ s lemma, the proof of strong maximum principle is rather easy.
Let V ⊂ U be the points where u < max u . As u ∈ C2 , ∂V ∩ U satisfies the interior ball condition. Take any
x0 ∈ ∂V ∩ U , we have, by Hopf’ s Lemma, ∂u

∂ν
> 0 . But this x0 is at the same time an interior maximizer of

u which means Du = 0
� ∂u

∂ν
= 0 . Contradiction.

Proof. It is clear that we can simply take U = B . The idea is to construct an auxliary function v with
∂v

∂ν
> 0 on ∂B and furthermore u + ε v still reaches maximum at x0 .
Without loss of generality, assume B is in fact the ball Br ( 0) . As we cannot specify where x0 is, neces-

sarily v should be radially symmetric. Furthermore since we would like u + ε v to reach maximum at x0 ,
we should take v ≡ 0 on ∂B .

Guided by this, we set

v (x ) � e− λ | x |
2 − e− λ r 2

( 1 9)

with λ to be specified later.
Thus u + ε v = u on ∂B and therefore u

(
x0
)

= max∂B (u + ε v ) . To conclude that u
(
x0
)
is also larger

than u + ε v inside B , we need to show that

L (u + ε v ) 6 0 ( 20)

inside. Or equivalently we need Lv 6 0 .
We compute

Lv = −
∑

i , j

n

ai j vx ix j +
∑

i= 1

n

bi vx i + c v

= e− λ | x |
2

[ ∑

i , j

n

ai j
(
− 4 λ 2 x i xj + 2 λ δi j

)
−
∑

i= 1

n

bi 2 λ xi

]
+ c
(
e− λ | x |

2 − e− λ r 2
)

6 e− λ | x |
2
(
− 4 θ λ 2 | x | 2 + 2 λ trA + 2 λ | b | | x | + c

)
. ( 21 )

Now it is clear that, no matter what λ we choose, Lv 6 0 cannot hold in the whole ball B .
However, if we consider the annular region R � B \Br/ 2 ( 0) , then we can take λ large enough that

Lv 6 0 in R . Thus we have

L( u + ε v ) 6 0 in R ; max
∂B

( u + ε v ) = u
(
x0
)
. ( 22 )

To apply the weak maximum principle, we need

max
∂Br / 2

(u + ε v ) 6 u
(
x0
)
. ( 23)

This is done as follows. S ince u
(
x0
)
> u( x) for all x ∈ ∂Br/ 2 , u

(
x0
)
> max∂Br / 2

u . Thus the above is true
as long as ε is small enough. �


