MATH 527 FALL 2009 LECTURE 20 (Nov. 18)

SECOND-ORDER ELLIPTIC EQUATIONS: MAXIMUM PRINCIPLES
Recall that, for Poisson equation, we have

e Weak maximum principle.
—Au<OinU:>u<n%ainnU (1)
U
and

e Strong maximum principle (assuming U is connected)
—Au<0in U, u(zo)=maxu for some zo €U = u=u(xo). (2)
U

In this lecture we will try to check whether such properties still hold for the general second order elliptic
equations. It turns out, the nondivergence form

n n

Lu=— Z aijuwﬂj—i—z biug, +cu (3)
i,j=1 i=1

is more appropriate for this.

Before listing and proving theorems, we mention a critical difference between the Poisson equation and
the general case. It turns out that the sign of ¢ plays an important role. To see this, consider the 1D case

—u"+cu=0. (4)

When ¢ < 0, we easily check that u = sin(\/E :v) solves the equation. Therefore no maximum principle can
hold.

1. Weak maximum principle.

Theorem 1. (Weak maximum principle) Assume ue C*(U)NC(U) and ¢=0. Then

Lu<0 = maxu=maxu, (5)
U U
and
Lu>0 = minu=minu. (6)
U oU

Proof. It is clear that we only need to prove either one of the two. Without loss of generality we prove

Lu<0 = maxu=maxu, (7)
U U

First consider the case Lu < 0. Assume that there is zg € U such that u(zo) = maxyu(zo). Then we have
Du(z) =0, D?u(z¢) negative semi-definite. (8)
Substitute into the equation, we see that we can have a contradiction if we can show the following:

A, B positive semi-definite = tr(AB) =" A;; B;; >0. (9)
(2%

Take any € > 0. We know that B.: = B + € I is positive definite and thus we can find C positive definite
such that C?= B.. Now we have

tr(AB.)=tr(CAB.C~)=tr(CAC) >0. (10)

Letting € \,0 we get the desired result.
Now consider the general case Lu < 0. Write u(z) := u(z) + € e**! for some A > 0 to be determined
later. We compute

LugzLu—l—aL(e’\wl)<£e>‘$1[—)\2a“+)\b1]. (11)



Now choose A large enough so that the RHS is negative. We see that

maxu‘?:n%axug. (12)
U U

Taking € \,0 we have proved the theorem. O

Theorem 2. (Weak maximum principle for ¢>0) Assume u € CQ(U) N C(U) and ¢=0. Then

Lu<0 = maxu<maxu™, (13)
U oU
and
Lu>0 = minu<minu~. (14)
U U

Remark 3. As we have seen in the example at the beginning of the lecture, when ¢ < 0 we should not
expect maximum principles to hold.

Remark 4. Note that the < here cannot be replaced by ”=". A counterexample is u= — 1. However, if
Lu =0, we can indeed conclude the equality

max |u| =max |u|. (15)
U oU

Proof. Clearly we only need to prove the first one. Let V:={z € U |u(z)>0}. Let Ku:=Lu — cu. Then
we have

Ku<—cu<0 (16)
in V, and therefore we can apply the case ¢ =0 here. The proof is finished after noticing that
maxu=maxu". (17)
ov ou
O

2. Strong maximum principle.
Again we have two cases.

Theorem 5. (Strong maximum principle) Assume u € C2*(U) N C(U) and ¢ =0. Suppose also U is
connected, open and bounded. Then u has to be a constant if either

—  Lu<0 and u attains its mazimum at an interior point, or

—  Lu>0 and u attains its minimum at an interior point.
Theorem 6. (Strong maximum principle with ¢<0) Assume u€ C*(U)N C(U) and ¢ > 0. Suppose
also U is connected, open and bounded. Then u has to be a constant if either

—  Lu<0 and u attains a nonnegative mazximum at an interior point, or

—  Lu>0 and u attains a nonnegative minimum at an interior point.
Recall that we establish the strong maximum principle for the Poisson equation using the mean value for-

mula. Unfortunately for the general equation, the mean value formula does not hold anymore. Instead, we
need the following more technical Hopf lemma.

Lemma 7. (Hopf’s Lemma) Assume u € C*(U)N C(U), Lu <0 in U, and there exists a point x° € OU
such that

u(:vo) > u(x) (18)
for all x € U. Assume finally that U satisfies the interior ball condition at x°; that is, there exists an open

ball B C U such that z°€ OB. Then

— Ifc=0, then %(mo) >0 where v is the outer normal to B at 2°;



— Ifc>0, then the same holds if u(zo) > 0.
Remark 8. The lemma is nontrivial because instead of % >0, we can conclude the strict inequality.

Remark 9. With the help of the Hopf’s lemma, the proof of strong maximum principle is rather easy.
Let V C U be the points where u < maxu. As u€ C2, V NU satisfies the interior ball condition. Take any
20 € OV NU, we have, by Hopf’s Lemma, % > 0. But this 20 is at the same time an interior maximizer of

w which means Du=0=— % = 0. Contradiction.

Proof. It is clear that we can simply take U = B. The idea is to construct an auxliary function v with
% >0 on OB and furthermore u + ¢ v still reaches maximum at 2°.

Without loss of generality, assume B is in fact the ball B,.(0). As we cannot specify where x
sarily v should be radially symmetric. Furthermore since we would like u + ¢ v to reach maximum at z°,
we should take v=0 on JB.

Guided by this, we set

0 is, neces-

2

v(x)::e_’\mz—e_’\r (19)

with A to be specified later.
Thus u 4+ & v =u on B and therefore u(2%) = maxyp (u+ € v). To conclude that u(z") is also larger
than u + e v inside B, we need to show that

L(u+ev)<0 (20)
inside. Or equivalently we need Lv <0.
We compute
Lv = —Z aijvwﬂj—i—z bivg, +cv
i\j i=1
= A=l l Z al (—ANzix;+2)00;5) —Z b2\, —i—c(e*’\|m|2—e—”2)
4, i=1
< e_’\mz(—40/\2|x|2+2)\trA+2)\ o] |x|+c). (21)

Now it is clear that, no matter what A we choose, Lv <0 cannot hold in the whole ball B.
However, if we consider the annular region R := B\B,/(0), then we can take A large enough that
Lv<0in R. Thus we have

L(u+¢ev)<0 in R; r%ax (u—l—sv):u(:z:o). (22)
B
To apply the weak maximum principle, we need
<u(z?). 23
gééfi(z(u—i—sv) u(z°) (23)

This is done as follows. Since u(x?) > u(x) for all z € 8B, /2, u(z) > maxsp, , u. Thus the above is true
as long as ¢ is small enough. 0



