
Math 5 2 7 Fall 2 009 Lecture 1 9 ( Nov. 1 6 , 2 0 0 9 )

Second-Order Elliptic Equations : Weak Solutions

1 . Definitions.
In this and the following two lectures we will study the boundary value problem

Lu = f in U ; u = 0 on ∂U. ( 1 )

Here

Lu = −
∑

i , j

n (
ai j( x) ux i

)
x j

+
∑

i= 1

n

bi(x ) ux i + c(x ) u ≡ − ∇ · (A( x) Du) + b(x ) · Du + c(x ) u , ( 2 )

or

Lu = −
∑

i , j= 1

n

ai j(x ) ux ix j +
∑

i= 1

n

bi( x) ux i + c(x ) u ≡ A( x) : D2u + b( x) · Du + c(x ) u. ( 3)

In the first case it’ s said the equation is in divergence form , in the second nondivergence form .

Remark 1 . If ai j ∈ C1 then the two forms are basically equivalent.

Remark 2. For the equation to be elliptic, we need to assume A(x ) symmetric, and positive definite.

Remark 3. Non-zero boundary values can easily be incorporated. In the following we will see that the
right setting for the weak solution is u ∈ H1 (U ) . In this case, if u = g

�
0 on the boundary, we can extend

g to a H1 function G in U 1 , and then the equation for v = u − G satisfies v = 0 on ∂U .

In the following, we require ai j , bi , c ∈ L∞ , that is uniformly bounded.

Remark 4. Note that under such assumption, the divergence and nondivergence forms are not equivalent
anymore.

Under such assumption, the following definition is meaningful. Denote by B [ · , · ] the bilinear form

B [u , v ] �

∫

U

[ ∑

i , j= 1

n

ai j ux i ux j +
∑

i= 1

n

bi ux i v + c u v

]
dx ( 4)

for u , v ∈ H0
1 (U ) .

Definition 5. We say that u ∈ H0
1 (U ) is a weak solution of the prob lem

Lu = f in U ; u = 0 on ∂U. ( 5)

if

B [u , v ] = ( f , v ) ≡
∫

U

f v dx ( 6)

for al l v ∈ H0
1 (U ) .

Remark 6. Note that the boundary condition u = 0 does not appear in the equation B [u , v ] = ( f , v ) . It’ s
instead guaranteed by the requirement u ∈ H0

1 (U ) . 2

We try to establish a complete theory of such elliptic equations, and hope that we can obtain results
similar to that of the Poisson equation, which is the special case ai j = δi j , bi = 0 , c = 0 . In particular, we
would like to be able to show that f ∈ Hk � u ∈ Hk+ 2 . It turns out that to fulfill this, we need to make
one further assumption, that is the operator L is uniformly elliptic.

1 . Some regularity is required for g . More precisely we need g ∈ H1 / 2 ( ∂U ) . Of course, since g should be the trace of u , it
must sat isfy such requirement .

2 . Suppose we try to form a weak solution formulation for the Neumann problem Lu = f ,
∂u

∂n
= g , what function space

should we take?



Definition 7. We say the partial differential operator L is uniformly el liptic if there exists a constant θ >
0 such that

∑

i , j= 1

n

ai j( x) ξi ξj > θ | ξ | 2 ( 7)

for a. e . x ∈ U and all ξ ∈ Rn .

2. Existence and uniqueness of weak solution.
In our general case here, it is not possible to find an explicit formula as we did for the Poisson equa-

tion. Therefore we need to show existence implicitly. One way is through the Lax-Milgram theorem. We
assume f ∈ L2 (U ) .

Theorem 8. ( Lax-Milgram Theorem) Let H be a real Hilbert space , with norm ‖ · ‖ and inner pro-
duct ( · , · ) . Let 〈 · , · 〉 denote the pairing ofH with its dual. Let

B [ · , · ] : H × H � R ( 8)

be a b ilinear mapping. Let f : H � R be a bounded linear functional on H.
With the above setting, if ther are constants α , β > 0 such that

| B [u , v ] | 6 α ‖ u ‖ ‖ v ‖ (boundedness) ( 9)

and

β ‖ u ‖ 2 6 B [u , u ] (Coercivity) ( 1 0)

then there exists a unique element u ∈ H such that

B [u , v ] = 〈 f , v 〉 ( 1 1 )

for al l v ∈ H.

Remark 9. In our problem, H is the space H0
1 (U ) , whose inner product is

( u , v ) �

∫
u v + Du · Dv dx ( 1 2 )

Its dual is the space H− 1 which contains L2 , and for f ∈ L2 ⊂ H− 1 , the pairing with any v ∈ H0
1 is given

by

〈 f , v 〉 �

∫

U

f v dx. ( 1 3)

For the characterization of H− 1 , see Evans 5 . 9. 1 .

Proof. First we define an operator Ã through
〈
Ã u , v

〉
= B [u , v ] ( 1 4)

for all v ∈ H . As B [u , v ] 6 α ‖ u ‖ ‖ v ‖ , we conclude that Ã u ∈ H∗ . Now apply the Riesz representation the-
orem, we can define another operator A : H � H such that

(Au, v ) =
〈
Ãu , v

〉
( 1 5)

for all v ∈ H . It is easy to check that A is a bounded linear operator. Apply the Riesz representation the-
orem again, we can find f̃ ∈ H such that (

f̃ , v
)

= 〈 f , v 〉 ( 1 6)

for all v .
Now what we need to show becomes

• Existence: For all f̃ ∈ H , we can find u such that (Au, v ) =
(
f̃ , v

)
or equivalently Au = f̃ . In other

words existence is equivalent to that A : H � H is onto.



• Uniqueness: For any f̃ ∈ H there is at most one u such that Au = f̃ . In other words, the mapping
A is one-to-one.

It is easy to check that uniqueness follows immediately from coercivity of B . Now we show that A is
onto, that is R(A) = H . Assume the contrary, that is R(A) is a genuine closed subspace of H . Then since
H is a Hilbert space, we can find a nonzero v ∈ H such that v⊥R(A) . Now compute

0 = (Av , v ) = B ( v , v ) > β ‖ v ‖ 2 � v = 0 ( 1 7)

Contradiction! �

Now we are ready to show the existence and uniqueness of our problem. Note that the boundedness of
the coefficients ai j , bi , c guarantees the boundedness of B . However coercivity is not always satisfied.

Theorem 10. There is a number γ > 0 such that for each µ > γ and each function f ∈ L2 (U ) , there exists
a unique weak so lution u ∈ H0

1 (U ) of the boundary-value prob lem

Lu + µ u = f in U ; u = 0 on ∂U. ( 1 8)

Proof. See Evans pp. 300–301 . �

Remark 1 1 . From the proof we can see that for the Poisson equation, γ can be taken to be 0 . 3

3. Regularity.

Theorem 1 2. ( Interior H2 -regularity) Assume ai j ∈ C1 (U ) , bi , c ∈ L∞ (U ) , and f ∈ L2 (U ) . Suppose
further that u ∈ H1 (U ) is a weak so lution of the el liptic PDE

Lu = f in U. ( 1 9)

Then

u ∈ Hloc
2 (U ) ( 20)

and for each open subset V b U, we have the estimate

‖ u ‖ H 2 (V ) 6 C ( ‖ f ‖ L 2 + ‖ u ‖ L 2 ) . ( 21 )

The constant C depending only on V, U and the coefficients of L .

Remark 1 3. There are several points worth noticing.

1 . As ai j is assumed to be in C1 , it doesn’ t matter whether L is in divergence or nondivergence form.
Note that this assumption is indeed necessary in the proof.

2 . We does not require u ∈ H0
1 (U ) . Thus the important point here is that, even if u only satisfies the

weak form of the equation locally, then it is Hloc
2 there.

3. ”Interior” refers to the fact that our estimate

‖ u ‖ H 2 (V ) 6 C ( ‖ f ‖ L 2 + ‖ u ‖ L 2 ) . ( 22 )

cannot reach the boundary. As we will see in the proof, the constant C tends to infinity as V gets
larger.

Proof. First we illustrate the idea through Poisson equation, whose weak formulation is
∫
Du · Dv =

∫
f v. ( 23)

Now if we can set v = − 4u , then after integration by parts we have
∫

(4u)
2 =

∫
f 4u 6 2

∫
f2 +

1

2

∫
(4u)

2 �
∫

(4u)
2 6 4

∫
f 2 . ( 24)

3 . In fact we can take γ to be negative by taking advantage of the Poincare inequalities .



Furthermore, if we can set v = u , the weak formulation gives
∫
| Du | 2 =

∫
fu 6

∫
f2 +

∫
u2 . ( 25)

The above gives ∫
(4u)

2 +

∫
| Du | 2 +

∫
u2 6 C

( ∫
f 2 +

∫
u2

)
( 26)

which leads to our desired result.
Of course the major problem in the above “proof” is that we cannot take v = − 4u and v = u . The way

to fix this is to “cut-off”.
Fix any V b U , and choose an open set W such that V b W b U . Then we can construct a smooth

function ζ such that

ζ ≡ 1 on V ; ζ ≡ 0 on Rn − W ; 0 6 ζ 6 1 . ( 27)

Now the idea is, instead of using 4u , we use 4 ( ζu) . This test function vanishes at the boundary, which is
necessary for it to be in H0

1 . However, since u ∈ H1 only, we cannot take two derivatives. So finally we
have to take the following more tricky version:

v � − Dk
− h( ζ2 Dk

h u
)

( 28)

where the difference quotient

Dk
hu(x ) �

u(x + h ek ) − u(x )

h
. ( 29)

Now we have
∫ ∑

i , j= 1

n

ai j ux i vx j dx = −
∑

i , j= 1

n ∫

U

ai j ux i

[
Dk
− h( ζ2 Dk

h u
) ]
x j

=
∑

i , j= 1

n ∫

U

Dk
h
(
a i j ux i

) (
ζ2 Dk

hu
)
x j

=
∑

i , j= 1

n ∫

U

ai j(x + h ek )
(
Dk
hux i

) (
ζ2 Dk

hu
)
x j

+
(
Dk
hai j

)
ux i
(
ζ2 Dk

hu
)
x j

=
∑

i , j= 1

n ∫

U

ζ2 ai j( x + h ek )
(
Dk
hux i

) (
Dk
hu
)
x j

+
∑

i , j= 1

n ∫

U

2 ζ ζx j a
i j( x + h ek )

(
Dk
hux i

) (
Dk
hu
)

+
∑

i , j= 1

n ∫

U

2 ζ ζx j
(
Dk
ha i j

)
ux i
(
Dk
h u
)

+
∑

i , j= 1

n ∫

U

ζ2
(
Dk
hai j

)
ux i
(
Dk
hu
)
x j
. ( 30)

Now the first term can be estimated as

∑

i , j= 1

n ∫

U

ζ2 ai j(x + h ek )
(
Dk
hux i

) (
Dk
hu
)
x j
> θ
∫

U

ζ2
∣∣∣ Dk

hDu
∣∣∣
2
> θ

∫

V

∣∣∣ Dk
hDu

∣∣∣
2
. ( 31 )

If we can find a uniform ( in h ) upper bound for this term, we are done.
To do this, we need to give upper bounds for the other three terms. The key observation is that, each

of them is bounded either by

C

∫

U

∣∣ D 2u
∣∣ | Du | ( 32 )

or by

C

∫

U
| Du | 2 . ( 33)



Same is true for all the terms coming from b · Du, c u and f . Thus we obtain

‖ u ‖ H 2 (V ) 6 C
(
‖ f ‖ L 2 (U ) + ‖ u ‖ H 1 (U )

)
. ( 34)

To obtain the desired result, we need to estimate ‖ u ‖ H 1 (U ) by ‖ f ‖ L 2 and ‖ u ‖ L 2 . 4

Unfortunately this is not possible. On the other hand fortunately the above argument works not only
for U but also for any Ũ b U satisfying V b Ũ . Thus we have

‖ u ‖ H 2 (V ) 6 C
(
‖ f ‖

L 2
(
Ũ
) + ‖ u ‖

H 1
(
Ũ
)
)
. ( 35)

To estiamte ‖ u ‖
H 1
(
Ũ
) , we take v = ζ2 u with ζ ≡ 1 on Ũ instead of V , and go through estimates similar

( but simpler) to what we have done above. �

Remark 1 4. There is no difficulty extending this result to higher order, basically getting f ∈ Hm � u ∈
Hloc
m+ 2 (U ) , as long as we are willing to assume ai j , bi , c ∈ Cm+ 1 (U ) . See Evans pp. 31 4–31 6.

Now what happens at the boundary?

Theorem 15. (Boundary H2 regularity) Assume ai j ∈ C1
(
Ū
)
, bi , c ∈ L∞ (U ) and f ∈ L2 (U ) . Suppose

that u ∈ H0
1 (U ) is a weak so lution of the el liptic boundary-value prob lem

Lu = f in U ; u = 0 on ∂U. ( 36)

Assume finally ∂U is C2 . Then u ∈ H2 (U ) and we have the estimate

‖ u ‖ H 2 (U ) 6 C
(
‖ f ‖ L 2 (U ) + ‖ u ‖ L 2 (U )

)
. ( 37)

The constant C depending only on U and the coefficients ofL .

Remark 1 6. Note the differences!

1 . a i j ∈ C1
(
Ū
)
instead of C1 (U ) .

2 . Assumption on the regularity of ∂U is necessary.

3. u needs to solve the boundary value problem, not just satisfy the equation.

Proof. We only sketch the main ideas. For details see Evans pp. 31 7– 322 .

− First consider the case where the boundary is xn = 0 . Now we can take the cuf-off function ζ such
that ζ ≡ 1 on B ( 0 , 1 /2 ) but ≡ 0 outside B ( 0 , 1 ) . Now it is easy to check that

v � − Dk
− h( ζ2 Dk

hu
)

( 38)

can serve as a test function ( that is, in H0
1 ) as long as k

�
n . This way we can obtain bounds for all

entries in D2u except uxnxn .

− To estimate uxnxn , write the equation in nondivergence form, and move all terms to the RHS
except for ann uxn xn .

− Now we have

‖ u ‖ H 2 (U ) 6 C ( ‖ f ‖ L 2 + ‖ u ‖ H 1 ) . ( 39)

This time no trick is needed to estimate ‖ u ‖ H 1 , since u ∈ H0
1 allows us to use Poincare inequality.

− Finally, in the general case, we first do a partition of unity and then apply a change of variables
to “straighten” the boundary locally. It turns out that, under the assumption ∂U ∈ C2 , the new
equation still satisfies the conditions in the theorem. �

4. If we only want a bound for ‖ u ‖ H 1 (U ) , no work needs to be done as u is assumed to be in H1 .



Remark 1 7. One can also obtain higher order versions of boundary regularity under the assumption that

ai j , bi , c ∈ Cm+ 1
(
Ū
)
, ∂U ∈ Cm+ 2 . ( 40)

See Evans pp. 323–326.


