
Math 5 2 7 Fall 2 009 Lecture 1 8 ( Nov. 9 , 2 00 9 )

Sobolev Inequalities and Compact Embedding

In the lecture we discuss the relation between different Sobolev spaces, as well as between Sobolev spaces
and Hölder spaces.

1 . Scaling.
It is pretty hard to remember all the Sobolev inequalities. Therefore it is important to have a way to

quickly tell what kind of inequalities are possible. This can be done through scaling. Or more precisely, it
is done through understanding how “bump” function behave in different function spaces. 1

Consider a “bump” function u supported in a ball of radius l ( the length scale) and with height h .
Then we have

‖ u ‖ L q ∼ ( h q ln)
1 / q ; ‖ ∇u ‖ L p∼

( (
h

l

) p
ln
) 1 / p

; sup | u | ∼ h ; [u ]
C0 , α ∼ h

lα
( 1 )

Then an inequality like

‖ u ‖ L q 6 C ‖ ∇u ‖ L pa ( 2 )

translates to

h ln/ q 6 Cha l
n − p
p
a
. ( 3)

As the constant C does not depend on the specific function u ( otherwise such an inequality would be use-
less) , ( 3) has to hold for all possible l and h .

Varying h , we see that ( 3) can hold for a universal C only if a = 1 .
Now suppose our domain is the whole space Rn . In this case the radius of the support, l , can

approach both 0 and ∞ . As a consequence, we must have

n

q
=
n − p
p

� 1

q
=

1

p
− 1

n
. ( 4)

In other words, an inequality

‖ u ‖ L q (Rn ) 6 C ‖ ∇u ‖ L p(Rn ) ( 5)

can hold for all u ∈ W 1 , p(Rn) ∩ Lq (Rn) only if

1

q
=

1

p
− 1

n
. ( 6)

It is clear from here that p6 n . We will see soon that for p< n ,

‖ u ‖ L q (Rn ) 6 C ‖ ∇u ‖ L p(Rn ) ( 7)

indeed holds.

Remark 1 . When p= n , the above gives q = ∞ which corresponds to

‖ u ‖ L∞ 6 ‖ ∇u ‖ Ln . ( 8)

which is incorrect. One should always be cautious when L∞ gets involved.

For p> n , we have

‖ ∇u ‖ L p∼ h l
n − p
p =

h

l
p− n
p

∼ [u ]
C 0 , α , α = 1 − n

p
. ( 9)

This suggests

[u ]
C 0 , α 6 C ‖ ∇u ‖ L p(Rn ) ( 1 0)

which also turns out to be true ( See Evans 5. 6 . 2 ) .

1 . Somehow to me, the following is easier to do than the “re-scaling” argument in Evans ( p. 262 ) . However different
people may feel differently.



Such inequalities, once true, tells us inclusion relations between spaces. For example, Consider 1 6 p <
∞ , and q =

n p

n − p ( that is 1

q
=

1

p
− 1

n
) , then for any u ∈ W1 , p(Rn) , the inequality

‖ u ‖ L q (Rn ) 6 C ‖ ∇u ‖ L p (Rn ) ( 1 1 )

tells us that u ∈ L q . In other words, we have

W1 , p(Rn) ⊂ Lq (Rn) . ( 1 2 )

Remark 2. Such analysis applies to inequalities involving higher derivatives too. It is easy to show that
for

‖ u ‖ L q (Rn ) 6 C ‖ Dku ‖ L p (Rn ) ( 1 3)

to hold, necessarily
1

q
=

1

p
− k

n
. ( 1 4)

This of course leads to the corresponding embedding

Wk , p ⊂ L q . ( 1 5)

The same analysis can also be applied to the situation involving more than two norms. For example, one
can figure out the correct parameters through scaling for the following Gagliardo-Nirenberg type
inequality

‖ Du ‖ L p 6 ‖ u ‖ L qa ‖ D 2u ‖ L r1 − a . ( 1 6)

Remark 3. Note that the scaling

h ln/ q 6 Ch l
n − p
p ( 1 7)

corresponds to both

‖ u ‖ L q 6 C ‖ ∇u ‖ L p ( 1 8)

and

‖ ∇u ‖ L p 6 C ‖ u ‖ L q . ( 1 9)

However, it is clear that it is not possible for the latter to be true.

Remark 4. If instead of Rn , we consider a bounded domain U , then l can only approach 0 , but not
infinity. In other words,

l a 6 C l b ( 20)

is true for a > b , instead of a = b in the whole space case. Thus for example we have

‖ u ‖ L q 6 C ‖ ∇u ‖ L p ( 21 )

for all q 6 n p

n − p . But the tradeoff is that, except for q =
n p

n − p , the constant C would depend on not only p,

n , but also U .

2. Gagliardo-Nirenberg-Sobolev inequality.
We prove the follwoing. We denote

p∗ � n p

n − p ( 22 )

which is usually called the Sobolev conjugate of p.

Theorem 5. (Gagliardo-Nirenberg-Sobolev inequality) Assume 1 6 p < n . There exists a constant
C, depending only on p and n , such that

‖ u ‖ L p∗ (Rn ) 6 C ‖ Du ‖ L p (Rn ) ( 23)

for al l u ∈ C0
1 (Rn) .



Remark 6. Note that the compact support is necessary, as the example u ≡ 1 shows.

Proof.

1 . The case p= 1 . In this case p∗ =
n

n − 1
.

S ince u has compact support, we have

u(x ) =

∫

− ∞

x i

ux i(x1 , � , yi , � , xn) dyi , ( 24)

therefore

| u(x ) |
n

n − 1 6
∏

i= 1

n ( ∫

− ∞

∞
| Du( x1 , � , yi , � , xn) | dyi

) 1

n − 1

. ( 25)

Integrating with respect to x1 , we have
∫

− ∞

∞
| u |

n

n − 1 dx1 6
∫

− ∞

∞ ∏ ( ∫

− ∞

∞
| Du | dyi

) 1

n − 1

dx1

=

( ∫

− ∞

∞
| Du | dy1

) 1

n − 1
∫

− ∞

∞ ∏

i= 2

n ( ∫

− ∞

∞
| Du | dyi

) 1

n − 1

dx1 . ( 26)

Now using the general Hölder inequality
∫ ∏

fi 6
∏ ( ∫

fi
pi

) 1 / pi

( 27)

as long as

pi > 0 ,
∑ 1

pi
= 1 , ( 28)

we have
∫

− ∞

∞ ∏

i= 2

n ( ∫

− ∞

∞
| Du | dyi

) 1

n − 1

dx1 6
( ∏

i= 2

n ∫

− ∞

∞ ∫

− ∞

∞
| Du | dx1 dyi

) 1

n − 1

. ( 29)

This gives

∫

− ∞

∞
| u |

n

n − 1 dx1 6
( ∫

− ∞

∞
| Du | dy1

) 1

n − 1

( ∏

i= 2

n ∫

− ∞

∞ ∫

− ∞

∞
| Du | dx1 dyi

) 1

n − 1

. ( 30)

Now integrate with respect to x2 . We have
∫

− ∞

∞ ∫

− ∞

∞
| u |

n

n − 1 dx1 dx2 6
( ∫

− ∞

∞ ∫

− ∞

∞
| Du | dx1 dy2

) 1

n − 1
∫

− ∞

∞ ∏

i
�

2

n

Ii

1

n − 1 dx2 ( 31 )

with

I1 =

∫

− ∞

∞
| Du | dy1 , Ii =

∫

− ∞

∞ ∫

− ∞

∞
| Du | dx1 dyi . ( 32 )

Using Hölder’ s inequality again, we obtain
∫∫

| u |
n

n − 1 dx1 dx2 6
( ∫∫

| Du | dx1 dy2

) 1

n − 1
( ∫∫

| Du | dy1 dx2

) 1

n − 1 ∏

i= 3

n ( ∫∫∫

| Du | dx1 dx2 dyi

) 1

n − 1

. ( 33)

Integrating with respect to x3 , � , xn successively, we finally obtain

∫

Rn
| u |

n

n − 1 dx 6
( ∫

Rn
| Du | dx

) n

n − 1

. ( 34)

Thus proves the p= 1 case.



2 . Now for the general 1 < p < n , we set v � | u | γ with γ to be fixed, and apply the p = 1 estimate to
v :

( ∫
| u |

γn

n − 1

) n − 1

n

6
∫ ∣∣ D | u | γ

∣∣ dx

= γ

∫
| u | γ− 1 | Du | dx

6 γ

( ∫
| u | ( γ− 1 ) q

) 1 / q ( ∫
| Du | p

) 1 / p

. ( 35)

Here
1

q
+

1

p
= 1

�
q =

p

p− 1
. ( 36)

Now we choose γ such that

γn

n − 1
= ( γ − 1 ) q =

( γ − 1 ) p

p− 1
� γn

n − 1
= p∗ . ( 37)

Thus ends the proof of the general case. �

Remark 7. Similar results hold for bounded domains. See Theorems 2 and 3 on page 265 of Evans.

Now we mention the main result for the p> n case.

Theorem 8. Assume n < p6 ∞ . Then there exists a constant C, depending only on p and n , such that

‖ u ‖ C0 , γ (Rn ) 6 C ‖ u ‖ W 1 , p(Rn ) ( 38)

for al l u ∈ C1 (Rn) , where

γ � 1 − n
p
. ( 39)

Proof. See Evans pp. 266 - 268. �

3. Compact embedding.
We have shown that

W1 , p(U ) ⊂ Lp∗ (U ) , ( 40)

and furthermore when U is bounded,

W1 , p(U ) ⊂ L q(U ) ( 41 )

for all q < p∗ too. Now we show that in the latter case, this inclusion is in fact compact. That is, any
bounded set in W 1 , p(U ) , when viewed in Lq (U ) , is in fact compact. In particular, if we have a sequence
um uniformly bounded in W1 , p(U ) , we can subtract a subsequence which is converging in Lq (U ) .

Theorem 9. (Rellich-Kondrachov Compactness Theorem) Assume U is a bounded open subset of
Rn , and ∂U is C1 . Suppose 1 6 p< n . Then

W1 , p(U ) b L q(U ) ( 42 )

for each 1 6 q < p∗ .

Proof. We sketch the proof. For details see Evans pp. 272 – 274.

1 . Take {um } uniformly bounded in W1 , p. We need to find a subsequence which is Cauchy in Lq .

2 . Use the extension theorem to extend um to a larger set V and such that um vanishes outside V .

3 . Now let umε � ηε ∗ um . It turns out that
um
ε � um ( 43)

uniformly in L q . 2



4. Show that for each fixed ε > 0 , {umε } is uniformly bounded and equicontinuous. Thus by the
Arzela-Ascoli theorem, for each fixed ε > 0 , there is a subsequence of {umε } converges uniformly,
and thus converges in L q .

5 . Now for any δ > 0 , we can take ε > 0 such that

‖ umε − um ‖ L q < δ/3 . ( 44)

Now for this particular ε , we can find a subsequence, still denote as umε , and M > 0 such that

‖ umε − um ′ε ‖ < δ/ 3 ( 45)

when m, m ′ > M . This means

‖ um − um ′ ‖ L q < δ/3 ( 46)

as long as m, m ′ > M .

6 . Now taking δ = 1 ,
1

2
,

1

3
, � and repeatly subtract subsequences, we obtain a Cauchy sequence via the

standard diagonal argument. �

2 . We know that uε � u for any u ∈ Lq , thus the significant thing here is that the convergence if uniform in m . This is
due to the uniform boundedness of um in W 1 , p .


