MATH 527 FALL 2009 LECTURE 17 (Nov. 2, 2009)

EXTENSIONS AND TRACES

1. Extensions.

In this lecture we first consider the problem of extending $u \in W^{k,p}(U)$ to $u \in W^{k,p}(\mathbb{R}^n)$. The motivation for doing so is that in many cases the boundary ∂U is rather annoying.

Note that such extension is far from trivial.

Example 1. Let U = (0, 1) and $u \equiv 1$ on U. Then clearly $u \in W^{k, p}(U)$ for any k, p. Now we try to extend this function to a function on \mathbb{R}^n :

- 1. Define $u \equiv 0$ outside U. But one can check that the extended function \tilde{u} is not in $W^{k,p}(\mathbb{R})$ for any $k \ge 1$.
- 2. Seeing that the problem in the previous extension is that discontinuities are created, we extend u to $\tilde{u} \equiv 1$ over \mathbb{R} . But clearly this extension is not even in L^p .

We see from the example that, to obtain a good extension, we need to

- 1. Keep some "continuity" across ∂U ,
- 2. "Cut-off" somewhere outside U.

Theorem 2. Assume U is bounded and ∂U is C^{1_1} . Select a bounded open set V such that $U \in V$. Then there exists a bounded linear operator

$$E: W^{1,p}(U) \mapsto W^{1,p}(\mathbb{R}^n) \tag{1}$$

such that for each $u \in W^{1,p}(U)$:

- i. Eu = u a.e. in U;
- ii. Eu has support within V;

iii.

$$||Eu||_{W^{1,p}(\mathbb{R}^n)} \leqslant C ||u||_{W^{1,p}(U)}$$
(2)

the constant C depending only on p, U, and V.

We call Eu the extension of u to \mathbb{R}^n .

Proof. We sketch the proof. For details see Evans pp.254 – 257.

- 1. First notice that, due to the approximation results, we only need to consider the case where $u \in C^{\infty}(\bar{U})$.
- 2. Next, using a partition of unity, we only need to deal with the extension problem in $U \cap B$ for some ball B which is divided into two parts by ∂U .
- 3. As ∂U is C^1 , we can do a C^1 -change of variable so that $U \cap B = B(r) \cap \{x_n \ge 0\}$.
- 4. Now we try to extend u to $x_n < 0$. The idea is to use a linear combination

$$\tilde{u}(x) := \begin{cases} u(x) & x_n > 0\\ a u(x_1, \dots, x_{n-1}, -x_n) + b u(x_1, \dots, x_{n-1}, -x_n/2) & x_n < 0 \end{cases}$$
(3)

We require \tilde{u} and $\frac{\partial \tilde{u}}{\partial x_n}$ to be continuous across $x_n = 0$. This leads to two linear equations for a, b and thus determine them.

5. Summing all the extension together we get our desired extension. Note that the constant C in

$$\|Eu\|_{W^{1,p}(\mathbb{R}^n)} \leqslant C \, \|u\|_{W^{1,p}(U)} \tag{4}$$

^{1.} This time it cannot be relaxed.

is determined by the number of partitions, the size of the ball B, the power p, and the constants a, b. Thus C depends only on U, V, p.

Remark 3. It is clear that the same proof works for $W^{k,p}$, if we assume ∂U is C^k .

The only difference is that, instead of

$$\tilde{u}(x) := \begin{cases} u(x) & x_n > 0\\ a u(x_1, \dots, x_{n-1}, -x_n) + b u(x_1, \dots, x_{n-1}, -x_n/2) & x_n < 0 \end{cases}$$
(5)

we need the more complicated

$$\tilde{u}(x) := \begin{cases} u(x) & x_n > 0\\ \sum_{j=1}^{k+1} a_1 \ u(x_1, \dots, x_{n-1}, -x_n) + a_2 \ u\left(x_1, \dots, x_{n-1}, -\frac{x_n}{2}\right) + \dots + a_{k+1} \ u\left(\dots, -\frac{x_n}{k+1}\right) & x_n < 0 \end{cases}$$
(6)

2. Traces.

When dealing with PDEs, we often need to perform integration by parts, or equivalently Gauss' theorem for C^1 functions

$$\int_{U} \nabla \cdot F = \int_{\partial U} \boldsymbol{n} \cdot F.$$
(7)

If we would like to use Sobolev spaces in the study of PDEs, we need to extend this formula to $W^{1,p}$ functions. Thus we need to find a good way to define the boundary values of arbitrary $W^{1,p}$ functions.

Theorem 4. (Trace Theorem) Assume U is bounded and ∂U is C^1 . Then there exists a bounded linear operator

$$T: W^{1,p}(U) \mapsto L^p(\partial U) \tag{8}$$

 $such\ that$

i. $Tu = u \mid_{\partial U}$ if $u \in W^{1,p}(U) \cap C(\overline{U})$, and ii.

$$||Tu||_{L^{p}(\partial U)} \leq C ||u||_{W^{1,p}(U)},$$
(9)

for each $u \in W^{1,p}(U)$, with the constant C depending only on p and U.

Definition 5. We call Tu the trace of u on ∂U .

Proof. We sketch the main steps. for details see Evans pp. 258–259.

1. It is clear that for $u \in C^{\infty}(\overline{U})$, we should define $Tu = u \mid_{\partial U}$. Now since $C^{\infty}(\overline{U})$ is dense in $W^{1,p}(U)$, the only reasonable way to define Tu is through the limiting process:

$$Tu = \lim_{m \neq \infty} Tu_m \tag{10}$$

where $u_m \in C^{\infty}(\bar{U})$ converges to u in $W^{1,p}(U)$. We need to settle several issues.

- i. For any $\{u_m\}$, this limit exists;
- ii. This limit does not depend on the choice of the sequence $\{u_m\}$;
- iii. The limit satisfies

$$||Tu||_{L^{p}(\partial U)} \leq C ||u||_{W^{1,p}(U)},$$
(11)

From the last point, we see that the convergence of Tu_m should take place in L^p , and we need to establish

$$||Tu_m||_{L^p(\partial U)} \leq C ||u_m||_{W^{1,p}(U)},$$
(12)

for every u_m , with a constant C independent of m.

2. Existence of limit. Take any $\{u_m\} \subset C^{\infty}(\bar{U})$ approximating u in $W^{1,p}(U)$. All we need to show is

$$\|u_m - u_n\|_{L^p(\partial U)} \leqslant C \|u_m - u_n\|_{W^{1,p}(U)}$$
(13)

for a uniform constant C. It suffices to show that

$$\|v\|_{L^{p}(\partial U)} \leqslant C \|v\|_{W^{1,p}(U)}$$
(14)

for any $v \in C^{\infty}(\overline{U})$. We argue through as follows.

Through a partition of unity and change of variables (straighting the boundary), we only need to consider the case $U = B \cap \{x_n > 0\}$ and u = 0 on ∂B . In this case, we have

$$\int_{B \cap \{x_n=0\}} |v|^p dy = \int_{B \cap \{x_n>0\}} (|v|^p)_{x_n} dx
= \int_U p |v|^{p-1} \operatorname{sgn}(v) v_{x_n} dx
\leqslant C \int_U |v|^p + |v_{x_n}|^p dx.$$
(15)

Here we have used the Young's inequality

$$a \, b \leqslant \frac{a^p}{p} + \frac{b^q}{q} \tag{16}$$

where $p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$. The Young's inequality can be proved using the concavity of $\ln x$.

3. The limit is unique. If we take another approximating sequence $\{u'_m\}$, the above argument shows that

$$\|u_m - u'_m\|_{L^p(\partial U)} \leqslant C \,\|u_m - u'_m\|_{W^{1,p}(U)} \tag{17}$$

Therefore the limits are the same.

4. The bound holds. This is clear from the above.

Now it is easy to see that the Gauss theorem

$$\int_{U} \nabla \cdot F = \int_{\partial U} \boldsymbol{n} \cdot F \tag{18}$$

still holds for $F \in W^{1,p}(U)$.

Another application of the trace operator is an alternative characterization of $W_0^{1,p}(U)$. Recall that, by definition $W_0^{1,p}(U)$ is the closure of $C_0^{\infty}(U)$ in $W^{1,p}(U)$. But this characterization is almost useless in practice. We have the following more user-friendly one.

Theorem. Assume U is bounded and ∂U is C^1 . Suppose furthermore that $u \in W^{1,p}(U)$. Then

$$u \in W_0^{1, p}(U) \iff Tu = 0 \text{ on } \partial U.$$
(19)

Proof. " \implies " is trivial. Now we prove the other direction, that is Tu = 0 implies $u \in W_0^{1,p}(U)$. The difficulty of this direction lies in the fact that Tu = 0 does not imply that we can find approximating sequences with zero boundary values.

However, due to

$$||Tu||_{L^{p}(\partial U)} \leq C ||u||_{W^{1,p}(U)},$$
(20)

We know that for any approximating sequence $u_m \in C^{\infty}(\bar{U})$,

$$\|u_m\|_{L^p(\partial U)} \longrightarrow 0 \tag{21}$$

as $m \nearrow \infty$. The idea now is to modify u_m and obtain an approximating sequence in $C_0^{\infty}(U)$.

The most natural way to do this is to "cut-off". Take $V_m \Subset U$ and let $\zeta \in C_0^{\infty}(U)$ be such that $\zeta_m \equiv 1$ on V_m . Now let $v_m := \zeta u_m \in C_0^{\infty}$. The question is, do we have

$$\|v_m - u_m\|_{W^{1,p}(U)} \longrightarrow 0 \tag{22}$$

as $m \nearrow \infty$?

To make things simple, we notice that the $u \in W^{1,p}(U)$ and Tu = 0 does not change under change of variables. Thus we can apply a partition of unity and then a "straightening of boundary", to reduce our problem to the case

$$u \in W^{1,p}(\mathbb{R}^n_+) \cap C_0^\infty(\mathbb{R}^n), \qquad Tu = 0.$$

$$\tag{23}$$

Now take $V_m = \{x_n > 1/m\}$ and take ζ_m accordingly. We estimate

$$\begin{aligned} \|\zeta_{m} u - u\|_{W^{1,p}(\mathbb{R}^{n}_{+})} &\leqslant \|\zeta_{m} u - u\|_{L^{p}(\mathbb{R}^{n}_{+})} + \sum_{\substack{i=1\\n}}^{n} \|\partial_{x_{i}}(\zeta_{m} u) - \partial_{x_{i}} u\|_{L^{p}(\mathbb{R}^{n}_{+})} \\ &\leqslant \|\zeta_{m} u - u\|_{L^{p}(\mathbb{R}^{n}_{+})} + \sum_{\substack{i=1\\i=1}}^{n} \|\zeta_{m} (\partial_{x_{i}} u) - \partial_{x_{i}} u\|_{L^{p}(\mathbb{R}^{n}_{+})} \\ &+ \|(\partial_{x_{n}} \zeta_{m}) u\|_{L^{p}(0 < x_{n} < 1/m)}. \end{aligned}$$
(24)

where we have used the fact that $\partial_{x_i}\zeta_m = 0$ for all $i \neq n$, and also $\partial_{x_n}\zeta_m = 0$ for $x_n > 1/m$.

The first two terms clearly converges to 0 as $m \nearrow \infty$. For the 3rd term, we have $\partial_{x_n} \zeta_m \sim 1/m$, thus we need to show that

$$m \|u\|_{L^p(0 < x_n < 1/m)} \tag{25}$$

can be as small as we like, given that $||u||_{L^p(x_n=0)}$ is as small as we like. To see this, we use

$$u(y, x_n) = u(y, 0) + \int_0^{x_n} (\partial_{x_n} u) \, \mathrm{d}x_n.$$
(26)

This leads to

$$\|u\|_{L^{p}(0 < x_{n} < 1/m)}^{p} = \int_{0}^{1/m} \left[\int_{\mathbb{R}^{n-1}} u(y, x_{n})^{p} dy \right] dx_{n}$$

$$\leq \int_{0}^{1/m} \left[\int \left(|u(y, 0)| + \int_{0}^{x_{n}} (\partial_{x_{n}} u) ds \right)^{p} dy \right] dx_{n}$$

$$\leq C \int_{0}^{1/m} \int u(y, 0)^{p} dy dx_{n} + \int_{0}^{1/m} \left[\int \left(\int_{0}^{x_{n}} |Du| ds \right)^{p} dy \right] dx_{n}$$
(27)

Clearly for any $\varepsilon > 0$, the first term can be taken smaller than ε/m^p and thus is no problem. We need to show that the 2nd term is also of order $o(1/m^p)$. To show this, we use Hölder inequality

$$\int_{0}^{x_{n}} |Du| \, \mathrm{d}x_{n} \leqslant \left(\int_{0}^{x_{n}} 1\right)^{\frac{p-1}{p}} \left(\int_{0}^{x_{n}} |Du|^{p} \, \mathrm{d}x_{n}\right)^{1/p}.$$
(28)

This leads to

$$\int_{0}^{1/m} \left[\int \left(\int_{0}^{x_{n}} |Du| ds \right)^{p} dy \right] dx_{n} \leqslant \int \left[\int_{0}^{1/m} \left(x_{n}^{p-1} \int_{0}^{x_{n}} |Du|^{p} ds \right) dx_{n} \right] dy$$

$$\leqslant \int \left[\int_{0}^{1/m} \left(x_{n}^{p-1} \int_{0}^{1/m} |Du|^{p} ds \right) dx_{n} \right] dy$$

$$= \left(\int_{0}^{1/m} x_{n}^{p-1} dx_{n} \right) \left(\int_{0 < x_{n} < 1/m} |Du|^{p} dx \right)$$

$$= Cm^{-p} \left(\int_{0 < x_{n} < 1/m} |Du|^{p} dx \right). \tag{29}$$

The desired result follows as

$$\int_{0 < x_n < 1/m} |Du|^p \,\mathrm{d}x \longrightarrow 0 \tag{30}$$

as $m \nearrow \infty$.