MATH 527 FALL 2009 LECTURE 17 (Nov. 2, 2009)

EXTENSIONS AND TRACES

1. Extensions.

In this lecture we first consider the problem of extending u € W*P(U) to u € W*P(R"). The motiva-
tion for doing so is that in many cases the boundary 9U is rather annoying.

Note that such extension is far from trivial.

Example 1. Let U= (0,1) and u=1 on U. Then clearly u € W*?(U) for any k, p. Now we try to extend
this function to a function on R™:

1. Define u =0 outside U. But one can check that the extended function @ is not in W*P(R) for any
E>1.

2. Seeing that the problem in the previous extension is that discontinuities are created, we extend u
to uw =1 over R. But clearly this extension is not even in LP.
We see from the example that, to obtain a good extension, we need to
1. Keep some “continuity” across U,
2. "Cut-off” somewhere outside U.

Theorem 2. Assume U is bounded and OU is C'1. Select a bounded open set V such that U € V. Then
there exists a bounded linear operator

E:WLP(U)— WhP(R") (1)
such that for each ue WHP(U):
i. Fu=u a.e. inU;
1. Fu has support within V;
[Eullwromny < C ullwew (2)

the constant C depending only on p,U, and V.
We call Eu the extension of u to R™.

Proof. We sketch the proof. For details see Evans pp.254 — 257.
1. First notice that, due to the approximation results, we only need to consider the case where u €
c> (7).
2. Next, using a partition of unity, we only need to deal with the extension problem in U N B for
some ball B which is divided into two parts by oU.
3. As 9U is C', we can do a C'-change of variable so that U N B = B(r)N{z, >0}.
4. Now we try to extend u to x,, <0. The idea is to use a linear combination
_ oo u() Tn >0
)= { au(@1, .oy Tp—1, = Tn) +bU(T1, .oy Tnm1, = Tn/2) 2, <0 )
ou

Oxy,
and thus determine them.

We require u and to be continuous across xz,, = 0. This leads to two linear equations for a, b

5. Summing all the extension together we get our desired extension. Note that the constant C in

[Eullwromny < C [lullwrew (4)

1. This time it cannot be relazed.



is determined by the number of partitions, the size of the ball B, the power p, and the constants a,
b. Thus C depends only on U,V , p. O

Remark 3. It is clear that the same proof works for W¥?, if we assume OU is C*.
The only difference is that, instead of

a(:c)::{ u(x) >0 (5)

AU(T1y ey Ty—1, — ) +DU(T1, ooy Ty—1, — T f2) T, <0

we need the more complicated

u(z) Ty >0
Q(z) =4 Zn Tn . (6)
Z al U(Il,...,l‘nfl,—xn)+a2u(zl,...,xn71,—7)+"‘+ak+1u 7_k—l—1 Tn <0
j=1
2. Traces.

When dealing with PDEs, we often need to perform integration by parts, or equivalently Gauss’ the-

orem for C! functions
/V~F:/ nF. (1)
U U

If we would like to use Sobolev spaces in the study of PDEs, we need to extend this formula to W7 func-
tions. Thus we need to find a good way to define the boundary values of arbitrary WP functions.

Theorem 4. (Trace Theorem) Assume U is bounded and OU is C*. Then there exists a bounded linear
operator

T: WHP(U)w LP(OU) (8)
such that
i. Tu=ulgu ifuer’p(U)ﬂC'(U), and
.
[ TullLrovy < C [[ullwrrwy, 9)
for each w e WhP(U), with the constant C' depending only on p and U.
Definition 5. We call Tu the trace of u on OU.

Proof. We sketch the main steps. for details see Evans pp. 258-259.

1. It is clear that for u € C°°(U ), we should define Tu = u |gy . Now since C°°(U) is dense in
WLP(U), the only reasonable way to define Tu is through the limiting process:

Tu= lim Tuy, (10)

m, /oo
where u,, € C‘X’(U) converges to u in W1P(U). We need to settle several issues.
i. For any {u,}, this limit exists;
ii. This limit does not depend on the choice of the sequence {uy, };
iii. The limit satisfies
17wl eqovy < C flullwrrw), (11)
From the last point, we see that the convergence of Tu,, should take place in L?, and we need to
establish
[ Tum |l Leovy < C |lumllwrrwy, (12)

for every u,,, with a constant C independent of m.



2. Existence of limit. Take any {u,,} C C°(U) approximating u in W?(U). All we need to show is
Hum_un”LT’(aU)gOHum_Un”leP(U) (13)
for a uniform constant C'. It suffices to show that
[v]lrovy < C llvllwirwy (14)

for any v € COO(U). We argue through as follows.
Through a partition of unity and change of variables (straighting the boundary), we only need
to consider the case U=BN{z, >0} and u=0 on 0B. In this case, we have

/ lv|Pdy / (Jo|") d=

BA{z,=0} BN {z,>0} o

/ p o] sgn(v) vy, dz
U

<C / o]+ [vz,|” da. (15)
U
Here we have used the Young’s inequality
P pa
ab< Y (16)
p q

where p,qg>1, % + % =1. The Young’s inequality can be proved using the concavity of ln x.

3. The limit is unique. If we take another approximating sequence {ujn}, the above argument shows
that

[wm = tm || ey < C [Jtm — um[lwrr @y (17)
Therefore the limits are the same.

4. The bound holds. This is clear from the above. ]

Now it is easy to see that the Gauss theorem

/V-Fz/ n-F (18)
i U U
still holds for F € WhP(U).

Another application of the trace operator is an alternative characterization of WO1 "P(U). Recall that,
by definition W, P(U) is the closure of C§°(U) in WhP(U). But this characterization is almost useless in
practice. We have the following more user-friendly one.

Theorem. Assume U is bounded and U is C*. Suppose furthermore that u€ WHP(U). Then

ue Wy P(U) <= Tu=0 on dU. (19)
Proof. “="is trivial. Now we prove the other direction, that is Tu =0 implies u € Wol’p(U). The diffi-
culty of this direction lies in the fact that Tu = 0 does not imply that we can find approximating

sequences with zero boundary values.
However, due to

1 Tull Lrovy < C [ullwrewy, (20)
We know that for any approximating sequence u,, € COO(U ),
HumHLp(aU)—>O (21)

as m co. The idea now is to modify u,, and obtain an approximating sequence in C§°(U).
The most natural way to do this is to “cut-off”. Take V,,, € U and let { € C5°(U) be such that (,, =1
on V,,. Now let vy, := (un, € C§°. The question is, do we have

”vm—umHWl*P(U)—)O (22)



asm /oo?

To make things simple, we notice that the u € W1P(U) and Tu = 0 does not change under change of
variables. Thus we can apply a partition of unity and then a “straightening of boundary”, to reduce our
problem to the case

weWHP(RY)NCE(RY,  Tu=0. (23)

Now take V,, ={z,>1/m} and take (,, accordingly. We estimate

[Gmu—ullwromyy < [Cmu—ullpemey+ Y 10n(Cnt) = Ouull Loy
=1

< [[Cmu—ullLrmn) +Z |G (Oziu) — Oz;ul|Lr(rry)
=1

+ H(awncm)UHLT’(0<zn<1/m)' (24)

where we have used the fact that 9,,(, =0 for all i #n, and also 9,,(, =0 for z,, >1/m.
The first two terms clearly converges to 0 as m "oo. For the 3rd term, we have 9., (y ~ 1/m, thus we
need to show that

m |[ullLro<z,<1/m) (25)

can be as small as we like, given that ||u||Lr(s,=0} is as small as we like. To see this, we use

u(y, xn) =u(y,0) + / (0, u) dzp,. (26)
This leads to 0

1/m
llfrgersrim = [ | [, utanray]a,
0 Rn—l
1/m Tn p
[ (o [ @nas) ay s,
0 0
1/m 1/m Tn p
C/ /u(y,())pdydxn—l—/ [/ (/ |Du|ds) dy] dx, (27)
0 0 0

Clearly for any e > 0, the first term can be taken smaller than /m? and thus is no problem. We need to
show that the 2nd term is also of order o(1/m?P). To show this, we use Holder inequality

Tn Tn P;l Tn 1/17
/ |Du|dz, < < / 1> ( / |Du|pdxn> . (28)
This leads to 0 0 0

1/m Tn p 1/m T
/ {/ (/ |Du|ds) dy]dxn < / / (xil/ |Du|pds)dxn dy
0 0 0 0
1/m 1/m
/ / :vffl/ |Du|Pds | dz, | dy
0 0
1/m
/ 2Pt da, / |Du|? dx
0 0<zn<l/m
= Cm™?P / |Dul|”dz |. (29)
0<z,<1/m

/ |Du|?dz — 0 (30)
0<z,<1/m

as m _o0. O

N

N

N

N——

The desired result follows as



