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SOBOLEV SPACES: DEFINITIONS AND BASIC PROPERTIES

1. Motivation.
The invention and development of Sobolev spaces are motivated by the study of elliptic PDEs, for
example the Poisson equation

Au=f (1)

and more importantly the more complicated general 2nd order elliptic equations
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For PDEs, a natural question is the regularity of solutions. For example, assuming f has certain regu-
larity, how regular can u be?

In calculus, the most natural regularity setting is differentiability. The regularity of a function is mea-
sured by how many derivatives one can take of it. Thus naturally one would ask, suppose f € C¥, then u €
C*?

Let’s consider the Poisson equation. The situation in 1D is very clear. In this case the equation
reduces to

u’=f (3)

and naturally f€ C* — w € CF*2. It is also clear that this result is optimal.
However the situation changes once we move to higher dimensions. f € C* = wu € C**? is not true
anymore.

Example 1. (f continuous but u¢ C?).
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f(z) is continuous after setting f(0)=0.
However, the solution
u(z) = (23— 23) (— logla|)"/? (5)
has
0%u 1/2
W=2(—log|:v|) + bounded terms — oo x—0. (6)
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Therefore u ¢ C2.1

However, one can show that the conjecture “The regularity of u is better than that of f by the order
of 2”7 is in fact true, as soon as we use a slightly different way to measure regularity.

Definition 2. (Hélder continuity) Let f: Q+— R, 20 € Q, 0 < o < 1. The function f is called Holder
continuous at xg with exponent « if

[f(z) = f(zo)|
i T "

f is called Holder continuous in § if it is Holder continuous at each xg € Q0 (with the same exponent «),
denoted f € C*(Q).
When a =1, fis called Lipschitz continuous at z, denoted f € Lip(Q2) or f € C%H(Q).

1. In fact one can show that there is no classical solution to this problem. Assume otherwise a classical solution v exists,
then the difference u — v is a bounded harmonic function in Bg\{0}. Such functions can be extended as a harmonic function
in the whole B which means V2u must be bounded, a contradiction.



Ck’a(Q) contains f € Ck(Q) whose kth derivatives are uniformly Hélder continuous with exponent o
over Q, that is
sup |f(x)_f£y)| < 0. (8)
z,yeQ |$ - y|

C*2(Q) contains f € C*(Q) whose kth derivatives are uniformly Hélder continuous with exponent « in
every compact subset of €.

Example 3. The functions f(z) = |z|”% 0 < a < 1, is Holder continuous with exponent o at z = 0. It is
Lipschitz continuous when a=1.

We see that f € C** has regularity between C* and C**+1. It turns out that, not only for the Poisson
equation, but also for the general elliptic equation, we have (roughly speaking)

fecha — yeChtze, 9)

One drawback of the Holder spaces is that analysis in this framework is usually highly technical. For-
tunately there is one other framework which is much more user-friendly and is at least as powerful — the
weak solution setting in Sobolev spaces.?

The weak solution setting of the Poisson equation is as follows. Recall the Poisson equation

Au=f. (10)
Now we multiply it with ¢ € C§°, integrate, and then integrate by parts, we get

—/ w-v(;s:/f¢. (11)

One can show that for any u € C?, if the above holds for all ¢, then u is a classical solution of the original
Poisson equation. Therefore, it makes sense to use this integral relation as a definition for the solution.

Notice that, for the integral relation to make sense, we do not need u € C2. All we need is Vu € L? for
some p. As a consequence, the natural function spaces for the study of this weak formulation is the space
requiring {u: Vu € LP}. It is clear that such a requirement does not follow from u € C*® for any k, a.3
These new spaces are Sobolev spaces.

2. Definitions.
As {u: Vu € LP} is independent of u € C*®, we have to deal with the case when u ¢ C', and thus Vu
is not the usual derivative and needs to be defined first.

Definition 4. (Weak partial derivatives) Suppose u,v € Li,.(U) and o is a multiindex. We say that v
is the o'™-weak partial derivative of u, written
D*u=v (12)
provided
/uDaqsdx:(—l)‘“'/ véda. (13)
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One can show that
1. If ue C*, then for |a| <k, D% equals the classical a-partial derivative of u.
2. Weak derivatives are uniquely defined. (Evans p.243)

1 >0
0 z<0’

z x>0
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Example 5. Let u= { Then v’ = {

2. There seem to be cases where working in Hoélder spaces yield more. An example is the recent development on the
global regularity issue of the critical dissipative surface quasi-geostrophic equation. Using Holder spaces theory, Caffarelli
and Vasseur succeeded in proving the global regularity while up to now no one has been successful in establishing this using
Sobolev spaces.

3. Unless the domain is bounded.



Now we can define Sobolev spaces. Let 1 < p< oo and k be a nonnegative integer.

Definition. (Sobolev Spaces) The Sobolev space W*P(U) consists of all L, (U) functions u such that
for each multiindex o with |a| <k, D%u exists in the weak sense and belongs to LP(U).

Remark 6. When p=2, we usually write
HRU)=Wk2(U). (14)

It turns out that we can define a norm on W¥*? and make it a Banach space. This norm is defined as
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Naturally, we say {u,} C W*P(U) converges to u € WkP(U), writing
U — U in WkP(U) (16)
if
Tim [~ wllt oy =0, (17)
We also use the notation
Un—su 0 WEP(U) (18)
to mean
Uy, — U in Wkp(V) (19)

for every V eU.
It is clear that C§°(U) C Wk-P(U) for every k, p. As a consequence, we can consider the closure of
C§°(U) in Wk P(U). Tt turns out that the resulting space is in general smaller than W*:?(U). We denote

it by W P(U). One can easily shown that for any u € W§?(U), there is {un,} € C§°(U) such that
Uy, — U in WkP(U). (20)
3. Basic Properties.

Theorem 7. (Properties of weak derivatives) Assume u,v € WkP(U), |a|<k. Then
i. Do e WF=1ebP(U) and DP(Du) = D“(Dﬁu) = DBy for all multiindices a, 3 with |a|+|B| < k.
ii. For each A\, p € R, Au+ pv e WrEP(U) and D¥(Au+ pv) =\ D%+ pu D, |a| <k.
iii. If Vis an open subset of U, then u € W*P(V).
w. If (€ C§°(U), then (u € WFP(U) and

Do(¢u)=Y" (a) DACDY By, (21)
BLa

Proof. See Evans pp.247-248. O
Theorem 8. W*?(U) is a Banach space.
Proof. See Evans p. 249. 0

4. Approximation.

4. Of course § ¢ L.



One of the main reasons why Sobolev spaces are highly popular is the following approximation prop-
erty.

Theorem 9. (Global approximation by smooth functions) Assume U is bounded, and suppose u €
WkP(U) for some 1<p<oc. Then there exist functions u,, € C°(U)NW¥*P(U) such that

U — U in WkP(U). (22)

Proof. We sketch the major steps. Fix any € > 0. It suffices to construct v € C*°(U) such that
o =l <= (23)
1. First notice that, for any Us:= {z € U: dist(x,0U) >}, p**u— u in W*P(Us). In other words, we
can find C* function so that the difference in W*P(Us) is as small as we want.
2. Now we write U = U2 U;, with
Uii={z € U: dist(zx,0U)>1/i}. (24)
Let V;=U;3\U; 1. choose Vj such that U =U2, V;.
3. Let (; be the partition of unity subordinate to the partition {V;}.

4. Now for each 7, choose a smooth function v; such that

€
||vi_<iuHkaP(U)<W' (25)

5. Sum up the v;s.
For details see Evans pp.250 — 252. O

Theorem 10. (Global approximation by smooth functions up to the boundary) Assume U is
bounded and OU is CL. Suppose u € WkP(U) for some 1 < p < oo. Then there erist functions u,, €
COO(U)ﬁ such that

U — U in WEP(U). (26)
Proof. See Evans pp.252-254. O

Remark 11. The assumption U is C' may be a bit misleading. In fact, checking the proof, we see that
no where is the differentiability of the boundary used. All we need is the local representation (after rota-
tion and relabeling of the axes) U N B(xo,r) ={x € B(xo,7): Tn>y(z1,...,xn—1)} for some function ~.

Remark 12. The benefit of these approximation theorems will be seen soon. Roughly speaking, these
theorems allow us to do calculation involving W¥*:? functions as if they are C'>°.

5. Try to figure out why C°(U) ¢ WF-P(U).
6. Try to understand the difference between C*°(U) and C*°(U).



