
Math 5 2 7 Fall 2 009 Lecture 1 6 ( Nov. 2 , 2 00 9 )

Sobolev Spaces: Definitions and Basic Properties

1 . Motivation.
The invention and development of Sobolev spaces are motivated by the study of elliptic PDEs, for

example the Poisson equation

4u = f ( 1 )

and more importantly the more complicated general 2nd order elliptic equations

∑
ai j(x )

∂u

∂x i ∂x j
+
∑

bi( x)
∂u

∂x i
+ c( x) u( x) = f . ( 2 )

For PDEs, a natural question is the regularity of solutions. For example, assuming f has certain regu-
larity, how regular can u be?

In calculus, the most natural regularity setting is differentiability. The regularity of a function is mea-
sured by how many derivatives one can take of it. Thus naturally one would ask, suppose f ∈ Ck , then u ∈
C??

Let’ s consider the Poisson equation. The situation in 1 D is very clear. In this case the equation
reduces to

u ′′ = f ( 3)

and naturally f ∈ Ck �
u ∈ Ck+ 2 . It is also clear that this result is optimal.

However the situation changes once we move to higher dimensions. f ∈ Ck �
u ∈ Ck+ 2 is not true

anymore.

Example 1 . ( f continuous but u
�
C2 ) .

4u = f (x ) ≡ x2
2 − x1

2

2 | x | 2

[
n + 2

( − log | x | ) 1 / 2
+

1

2 ( − log | x | ) 3/ 2

]
, x ∈ BR ⊂ Rn . ( 4)

f ( x) is continuous after setting f ( 0) = 0 .
However, the solution

u(x ) =
(
x1

2 − x2
2
)

( − log | x | ) 1 / 2 ( 5)

has
∂2u

∂x1
2

= 2 ( − log | x | ) 1 / 2 + bounded terms � ∞ x→ 0 . ( 6)

Therefore u
�
C2 . 1

However, one can show that the conjecture “The regularity of u is better than that of f by the order
of 2” is in fact true, as soon as we use a slightly different way to measure regularity.

Definition 2. (Hölder continuity) Let f : Ω � R , x0 ∈ Ω , 0 < α < 1 . The function f is called Hölder
continuous at x0 with exponent α if

sup
x ∈ Ω

| f (x ) − f (x0 ) |
| x − x0 | α

< ∞ . ( 7)

f is cal led Hölder continuous in Ω if it is Hölder continuous at each x0 ∈ Ω (with the same exponent α),
denoted f ∈ Cα ( Ω) .

When α = 1 , f is cal led Lipschitz continuous at x0 , denoted f ∈ Lip( Ω) or f ∈ C0 , 1 ( Ω) .

1 . In fact one can show that there is no classical solution to this problem. Assume otherwise a classical solution v exists ,
then the difference u − v is a bounded harmonic function in BR \{ 0} . Such functions can be extended as a harmonic function
in the whole BR which means ∇2u must be bounded, a contradict ion.



Ck , α
(
Ω̄
)
contains f ∈ Ck

(
Ω̄
)
whose kth derivatives are uniformly Hölder continuous with exponent α

over Ω̄ , that is

sup
x , y∈ Ω̄

| f ( x) − f ( y) |
| x − y | α < ∞ . ( 8)

Ck , α ( Ω) contains f ∈ Ck ( Ω) whose kth derivatives are uniformly Hölder continuous with exponent α in
every compact subset of Ω .

Example 3. The functions f (x ) = | x | α , 0 < α < 1 , is Hölder continuous with exponent α at x = 0 . It is
Lipschitz continuous when α = 1 .

We see that f ∈ Ck , α has regularity between Ck and Ck+ 1 . It turns out that, not only for the Poisson
equation, but also for the general elliptic equation, we have ( roughly speaking)

f ∈ Ck , α �
u ∈ Ck+ 2 , α . ( 9)

One drawback of the Hölder spaces is that analysis in this framework is usually highly technical. For-
tunately there is one other framework which is much more user-friendly and is at least as powerful – the
weak solution setting in Sobolev spaces. 2

The weak solution setting of the Poisson equation is as follows. Recall the Poisson equation

4u = f . ( 1 0)

Now we multiply it with φ ∈ C0
∞ , integrate, and then integrate by parts, we get

−
∫
∇u · ∇φ =

∫
f φ. ( 1 1 )

One can show that for any u ∈ C2 , if the above holds for all φ , then u is a classical solution of the original
Poisson equation. Therefore, it makes sense to use this integral relation as a definition for the solution.

Notice that, for the integral relation to make sense, we do not need u ∈ C2 . All we need is ∇u ∈ Lp for
some p. As a consequence, the natural function spaces for the study of this weak formulation is the space
requiring {u : ∇u ∈ Lp} . It is clear that such a requirement does not follow from u ∈ Ck , α for any k , α . 3

These new spaces are Sobolev spaces.

2. Definitions.
As {u : ∇u ∈ Lp} is independent of u ∈ Ck , α , we have to deal with the case when u

�
C1 , and thus ∇u

is not the usual derivative and needs to be defined first.

Definition 4. (Weak partial derivatives) Suppose u , v ∈ L loc
1 (U ) and α is a multiindex. We say that v

is the α th-weak partial derivative of u , written

Dαu = v ( 1 2 )

provided ∫

U

u Dαφ dx = ( − 1 )
| α |

∫

U

v φ dx. ( 1 3)

One can show that

1 . If u ∈ Ck , then for | α | 6 k , Dαu equals the classical α-partial derivative of u .

2 . Weak derivatives are uniquely defined. (Evans p. 243)

Example 5. Let u =

{
x x > 0
0 x < 0

. Then u ′ =
{

1 x > 0
0 x < 0

, u ′′ = δ . 4

2 . There seem to be cases where working in Hölder spaces yield more. An example is the recent development on the
global regularity issue of the critical dissipative surface quasi-geostrophic equation. Using Hölder spaces theory, Caffarelli
and Vasseur succeeded in proving the global regularity while up to now no one has been successful in establishing this using
Sobolev spaces.

3 . Unless the domain is bounded.



Now we can define Sobolev spaces. Let 1 6 p6 ∞ and k be a nonnegative integer.

Definition. ( Sobolev Spaces) The Sobolev space Wk , p(U ) consists of all L loc
1 (U ) functions u such that

for each multiindex α with | α | 6 k , Dαu exists in the weak sense and be longs to Lp(U ) .

Remark 6. When p= 2 , we usually write

Hk (U ) = Wk , 2 (U ) . ( 1 4)

It turns out that we can define a norm on Wk , p and make it a Banach space. This norm is defined as

‖ u ‖ W k , p (U ) �





( ∑

| α | 6 k

∫

U
| Dαu | p dx

) 1 / p

( 1 6 p< ∞ )

∑

| α | 6 k
ess sup

U
| Dαu | ( p= ∞ )

. ( 1 5)

Naturally, we say {um } ⊂ Wk , p(U ) converges to u ∈ Wk , p(U ) , writing

um � u in Wk , p(U ) ( 1 6)

if

lim
m→∞

‖ um − u ‖ W k , p (U ) = 0 . ( 1 7)

We also use the notation

um � u in Wloc
k , p(U ) ( 1 8)

to mean

um � u in Wk , p(V ) ( 1 9)

for every V b U .
It is clear that C0

∞ (U ) ⊂ Wk , p(U ) for every k , p. As a consequence, we can consider the closure of
C0
∞ (U ) in Wk , p(U ) . It turns out that the resulting space is in general smaller than Wk , p(U ) . We denote

it by W0
k , p(U ) . One can easily shown that for any u ∈ W0

k , p(U ) , there is {um } ⊂ C0
∞ (U ) such that

um � u in Wk , p(U ) . ( 20)

3. Basic Properties.

Theorem 7. ( Properties of weak derivatives) Assume u , v ∈ Wk , p(U ) , | α | 6 k . Then

i. Dαu ∈ Wk − | α | , p(U ) and Dβ(Dαu) = Dα
(
Dβu

)
= Dα+ βu for al l multiindices α , β with | α | + | β | 6 k .

ii. For each λ , µ ∈ R , λ u + µ v ∈ Wk , p(U ) and Dα (λ u + µ v ) = λ Dαu + µ Dαv, | α | 6 k .
iii. IfV is an open subset ofU, then u ∈ Wk , p(V ) .

iv. If ζ ∈ C0
∞ (U ) , then ζ u ∈ Wk , p(U ) and

Dα ( ζ u) =
∑

β6 α

(
α
β

)
DβζDα− βu. ( 21 )

Proof. See Evans pp. 247-248. �

Theorem 8. Wk , p(U ) is a Banach space .

Proof. See Evans p. 249. �

4. Approximation.

4. Of course δ
�
L l o c

1 .



One of the main reasons why Sobolev spaces are highly popular is the following approximation prop-
erty.

Theorem 9. (Global approximation by smooth functions) Assume U is bounded, and suppose u ∈
Wk , p(U ) for some 1 6 p< ∞ . Then there exist functions um ∈ C∞ (U ) ∩Wk , p(U ) 5 such that

um � u in Wk , p(U ) . ( 22 )

Proof. We sketch the major steps. Fix any ε > 0 . It suffices to construct v ∈ C∞ (U ) such that

‖ v − u ‖ W k , p(U ) < ε. ( 23)

1 . First notice that, for any Uδ � {x ∈ U : dist( x , ∂U ) > δ } , ρε ∗ u→ u in Wk , p(Uδ) . In other words, we
can find C∞ function so that the difference in Wk , p(Uδ ) is as small as we want.

2 . Now we write U = ∪ i= 1
∞ Ui , with

Ui � {x ∈ U : dist(x , ∂U ) > 1 / i } . ( 24)

Let Vi = Ui+ 3\ Ūi+ 1 . choose V0 such that U = ∪ i= 0
∞ Vi .

3 . Let ζi be the partition of unity subordinate to the partition {Vi } .
4. Now for each i , choose a smooth function vi such that

‖ vi − ζi u ‖ W k , p (U ) <
ε

2 i+ 1
. ( 25)

5 . Sum up the vis.

For details see Evans pp. 250 – 252 . �

Theorem 10. (Global approximation by smooth functions up to the boundary) Assume U is
bounded and ∂U is C1 . Suppose u ∈ Wk , p(U ) for some 1 6 p < ∞ . Then there exist functions um ∈
C∞

(
Ū
)
6 such that

um � u in Wk , p(U ) . ( 26)

Proof. See Evans pp. 252–254. �

Remark 1 1 . The assumption ∂U is C1 may be a bit misleading. In fact, checking the proof, we see that
no where is the differentiability of the boundary used. All we need is the local representation ( after rota-
tion and relabeling of the axes) U ∩ B ( x0 , r) = {x ∈ B ( x0 , r) : xn > γ(x1 , � , xn− 1 ) } for some function γ .

Remark 1 2. The benefit of these approximation theorems will be seen soon. Roughly speaking, these
theorems allow us to do calculation involving Wk , p functions as if they are C∞ .

5 . Try to figure out why C∞ (U )
�
Wk , p(U ) .

6 . Try to understand the difference be tween C∞ (U ) and C∞
(
Ū
)
.


