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Asymptotics

1 . Introduction.
Asymptotics studies the behavior of a function at/near a given point. The simplest asymptotics is the

Taylor expansion:

f (x ) = f ( x0 ) + f ′(x0 ) ( x − x0 ) + � ( 1 )

Of course, when f (x ) can be easily evaluated, for example when f is explicitly given by a simple formula,
there is no practical reason to do asymptotics. Therefore, in practice, asymptotics is often performed in
the following situations:

1 . f is given semi-explicitly by an integral;

2 . f is given implicitly by a differential equation.

In many cases, the point x0 is either 0 or ∞ .

Example 1 . (Viscous Burgers equation) Consider the Burgers equation with viscosity

ut
ε + uε ux

ε − ε ux xε = 0 , uε (x , 0) = g( x) . ( 2 )

The solution can be semi-explicitly given as an integral

uε ( x , t) =

∫
− ∞
∞ x − y

t
e
− K ( x , y , t )

2 ε dy
∫
− ∞
∞ e

− K ( x , y , t )

2 ε dy
( 3)

where

K( x , y , t) � | x − y | 2
2 t

+ h ( y) ( 4)

where h is the antiderivative of g .
The parameter ε is viscosity, and in realistic situations is very small. Thus one is tempted to neglect it

and study the Burgers equation

ut + u ux = 0 . ( 5)

To justify this, we need to study the behavior of uε as ε↘ 0 .

Example 2. (Oscillatory Integrals) Such integrals usually appear in the process of solving wave-
related equations using transform methods. For example, when we try to solve the wave equation in a
cylinder, the solution can be represented by Bessel functions. Such functions are either given by infinite
sums or by integrals. For example, we have

Jn(x ) =
1

π

∫

0

π

cos(n t − x sin t) dt ( 6)

which can be written as
1

2 π

∑

±

∫

0

π

e± int e∓ ix sin t dt. ( 7)

Suppose we want to understand the behavior of Jn(x ) as x→ ∞ . Setting ε = 1 /x , we are left with an inte-
gral of the form ∫

a

b

f ( y) e
i
φ ( y )

ε dy. ( 8)

And our task is to understand its behavior as ε↘ 0 .

Example 3. (Homogenization) Homogenization is a mathematical theory dealing with problems with
multiple spatial scales. Consider a domain filled with two different materials. And let’ s say they form
a “checker board” formation,



1 2 1 2 1 2

and now we would like to study the conductivity of the material. The equation is

∇ · (A(x ) ∇u) = 0 ( 9)

where A(x ) = a1 (x ) I for material 1 and a2 (x ) I for material 2 . One way to do this is to solve the equation.
However, when the grid size ε is very small, this approach is not efficient or even not practical. Therefore
we need to find out what the equation the limit potential satisfies.

2. Evaluation of integrals.

2 . 1 . Laplace’ s method.
Laplace’ s method deals with integrals of the form

∫

− ∞

∞
l ( y) e

− k ( y )

ε dy ( 1 0)

where k , l are continuous functions.
We try to understand the limiting behavior as ε ↘ 0 . Now if we assume k ( y) has a single minimizer,

say at y0 , then clearly e−
k ( y )

ε reaches its maximum at y0 . Furthermore, as ε gets smaller, the “peak” at y0

gets steeper. As a consequence, the integral in a neighborhood of y0 dominates. Thus we expect, when ε
is small, ∫

− ∞

∞
l ( y) e

− k ( y )

ε dy∼ l ( y0 )

∫

− ∞

∞
e
− k ( y )

ε dy. ( 1 1 )

Lemma 4. Suppose k , l : R � R are continuous functions, that l grows at most linearly and that k grows
at least quadratically. Assume also there exists a unique point y0 ∈ R such that

k ( y0 ) = min
y∈ R

k ( y) ( 1 2 )

Then

lim
ε↘ 0

∫
− ∞
∞

l ( y) e
− k ( y )

ε dy
∫
− ∞
∞ e

− k ( y )

ε dy
= l ( y0 ) . ( 1 3)

Proof. Let

µε (x ) � e
− k ( x )

ε

∫
− ∞
∞ e

− k ( y )

ε dy
. ( 1 4)

Then all we need to show is that

lim
ε↘ 0

∫

− ∞

∞
µε ( y) l ( y) dy = l ( y0 ) . ( 1 5)

Note that,

µε > 0 ,

∫

− ∞

∞
µε ( y) dy = 1 . ( 1 6)

Thus it suffices to show

lim
ε↘ 0

∫

− ∞

∞
( l ( y) − l ( y0 ) ) µε ( y) dy = 0 . ( 1 7)



For any δ > 0 , we find a > 0 such that

| l ( y) − l ( y0 ) | < δ ( 1 8)

when | y − y0 | < a . Now write
∫

− ∞

∞
( l ( y) − l ( y0 ) ) µε ( y) dy =

∫

| y− y0 | < a
+

∫

| y− y0 | > a
( 1 9)

The first term is clearly bounded by δ . For the second term, let

b � max
| y− y0 | < a

k ( y) − k ( y0 ) > 0 . ( 20)

we have

µε ( y) 6 e
− k ( y ) − k ( y0 )

ε

∫
| y− y0 | < a e

− k ( z ) − k ( y0 )

ε

=
e
− k ( y ) − k ( y0 )

ε

2 a e
− b
ε

=
1

2 a
e
− k ( y ) − k ( y0 ) − b

ε . ( 21 )

Since k ( y) − k ( y0 ) grows quadratically, we have

µε ( y) 6 1

2 a
e
− C ( y − y0 ) 2 − b

ε . ( 22 )

Combine with

| l ( y) − l ( y0 ) | 6 C | y − y0 | , ( 23)

we see that the 2nd term tends to 0 as ε↘ 0 . �

2. 2 . The method of stationary phase.
Now we study the behavior of the integral

∫

a

b

e
i
φ ( y )

ε f ( y) dy ( 24)

as ε↘ 0 .
The idea is as follows. Fix at point y0 , we expand φ ( y) by Taylor expansion.

φ( y) ∼ φ( y0 ) + φ ′( y0 ) ( y − y0 ) +
φ ′′( y0 )

2
( y − y0 )

2 + � ( 25)

Thus the contribution of the integral around y0 is
∫

y0− δ

y0 + δ

e
i
φ 0
ε e i ( y− y0 ) φ ′ ( y0 ) � f ( y) dy. ( 26)

Recall the Riemann-Lebesgue lemma: ∫

a

b

e ik y f ( y) dy � 0 ( 27)

as k↗∞ , we see that those points with φ ′( y0 )
�

0 does not contribute as ε↘ 0 .
Now consider those points with φ ′( y0 ) = 0 . Then around such y0 we have, to the highest order,

e
i
φ ( y 0 )

ε

∫

y0− δ

y0 + δ

e
i φ ′ ′ ( y 0 )

2 ε
( y− y0 )

2

f ( y) dy. ( 28)

Now do a change of variable

z = | φ ′′( y0 ) / 2 ε |
√

( y − y0 ) ( 29)

we reach ( using the fact that f ( y) ∼ f ( y0 ) in this neighborhood)

e
i
φ ( y0 )

ε f ( y0 )
2 ε

| φ ′′( y0 ) |

√ ∫

− | φ ′ ′ | / ε
√

δ

| φ ′ ′ | / ε
√

δ

e i sgn ( φ ′ ′ ) z 2

dz . ( 30)

When ε↘ 0 , the above integral tends to
∫

− ∞

∞
e i sgn ( φ ′ ′ ) z 2

dz = π
√

e
i
π

4
sgn ( φ ′ ′ )

. ( 31 )



As a consequence, we have
∫

a

b

e
i
φ ( y )

ε f ( y) dy∼
∑

φ ′ ( yi ) = 0

f ( yi) e
i
φ ( yi )

ε
2 π ε

| φ ′′( y0 ) |

√
e
i
π

4
sgn ( φ ′ ′ )

. ( 32 )

For rigorous derivation as well as multi-dimensional generalization, see Evans pp. 21 0–21 7.

3. Homogenization.
We discuss the following 1D model problem to get some idea of the homogenization procedure. Con-

sider the 1D problem (
a
( x
ε

)
u ′
) ′

= 0 , u( 0) = 0 , u( 1 ) = 1 . ( 33)

Here a( y) is assumed to be periodical. The basic approach is to treat y =
x

ε
as an independent variable,

thus the original derivative becomes

· ′ = ∂x +
1

ε
∂y . ( 34)

assume

u = u0

(
x ,
x

ε

)
+ ε u1

(
x ,
x

ε

)
+ ε2 u2 + � ( 35)

where each ui( x , y) is periodic in the variable y .
Substituting this into the equation, we have

(
a( y) ( u0 + ε u1 + � )

′ ) ′ = 0 ( 36)

Using the new variables x , y we reach
(
∂x + ε− 1∂y

) {
a( y)

[
ε− 1 ∂yu0 + (∂xu0 + ∂yu1 ) + ε (∂xu1 + ∂yu2 ) + �

] }
= 0 . ( 37)

Expanding, we have

ε− 2 ∂y( a ∂yu0 ) + ε− 1 [∂x ( a ∂yu0 ) + ∂y( a (∂xu0 + ∂yu1 ) ) ] + ∂x ( a (∂xu0 + ∂yu1 ) ) + ∂y( a (∂xu1 + ∂yu2 ) ) + � =

0 . ( 38)

Now if our expansion of u is correct, all of u1 , u2 , � should remain bounded as ε ↘ 0 . Thus necessarily
the quantities at each scale should be 0 .

At O
(
ε− 2

)
, we have

∂y( a( y) ∂yu0 ( x , y) ) = 0 ( 39)

with periodic boundary condition. This implies u0 ( x , y) , for any fixed x , is a constant. In other words we
have

u0 (x , y) = u0 (x ) . ( 40)

Now move on to the next scale O
(
ε− 1

)
. We have

∂x ( a( y) ∂yu0 ) + ∂y( a( y) (∂xu0 + ∂yu1 ) ) = 0 . ( 41 )

As ∂yu0 = 0 we have

∂y( a ∂yu1 ) = − (∂ya) (∂xu0 ) . ( 42 )

If we set χ = χ( y) be such that

∂y( a ∂yχ) = − ∂ya , ( 43)

then

u1 = χ( y) ∂xu0 + ũ1 (x ) . ( 44)

Next consider scale O ( 1 ) . We have

∂x ( a ∂xu0 ) + ∂x ( a ∂yu1 ) + ∂y( a ∂xu1 ) + ∂y( a ∂yu2 ) = 0 . ( 45)



Integrate from 0 to 1 in y , we obtain

∂x

( ∫

0

1

a ∂xu0

)
+ ∂x

( ∫

0

1

a ∂yu1 dy

)
= 0 . ( 46)

Recall

u1 = χ( y) ∂xu0 + ũ1 (x ) . ( 47)

we have

∂x

[ ( ∫

0

1

a( y) ( 1 + χ ′( y) ) dy

)
∂xu0

]
= 0 . ( 48)

This is the equation u0 satisfies.
In our case ( 1D) , the situation can be further simplified. As

( a χ ′) ′ = − a ′ , ( 49)

we have

( a ( 1 + χ ′) ) = A. ( 50)

To find out this constant, we divide both sides by a , and integrate over ( 0 , 1 ) :

1 =

∫
1 + χ ′ = A

∫
1

a
dy. ( 51 )

Thus

A =

( ∫

0

1 1

a( y)
dy

) − 1

. ( 52 )

As a consequence, the equation satisfied by u0 is
( ∫

0

1 1

a( y)
dy

) − 1

u0
′′ = 0 . ( 53)
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