MATH 527 FALL 2009 LECTURE 13 (OcT. 21, 2009)

THE SINGLE CONSERVATION LAW: EXISTENCE, UNIQUENESS, ASYMPTOTICS
In the last lecture we see that an appropriate notion of solutions to the single conservation law
ug+ f(u), =0, u(z,0)=wug (1)
where f' >0 is the entropy solution, which is a weak solution satisfying the entropy condition:

u(x—|—a,t)—u(17at)<% (2)

for all @ > 0,¢ > 0 and a fixed constant E. In this lecture we will first establish the existence and unique-
ness of such solutions, and then study their asymptotic behaviors.

a

1. Existence of entropy solution.
We will not go into the details of the existence proofs, but just mention several approaches.

1. Explicit formula.
Consider the conservation law

ug+ f(u), =0 (3)
with f uniformly convex.! Now consider the Hamilton-Jacobi equation
v+ f(vg) =0. (4)

If we differentiate it with respect to x and then let u:= v,, we see that we have recovered the con-
servation law.

Furthermore, notice that when studying conservation law, we usually require ug to be bounded,
which translates to the boundedness of v, that is the Lipschitz continuity of vq.

We know that the Hopf-Lax formula

v(z,t) =min {tL(%)ﬂo(y)} (5)

gives the correct weak solution for the Hamilton-Jacobi equation, where L is the Legendre trans-
form of f. This leads to the conjecture that

u(m)::%[mm{tL($;y>+vo(y)H (6)

gives the entropy solution for the single conservation law.
Let y(z,t) be the minimizer, we have,

u(m):a—i[tL(%M)+u0(y(x,t))] (7)

The a.e. differentiability of the function in the parenthesis is established in the proof of Theorem 1
on page 146 of Evans. Taking the derivative we have

i) = L EHED Y (1 o) (o0, ®

Now notice that as y(x,t) is the minimizer of

tL(I;y)+vo(y)a (9)

x is the minimizer of

t

tL<w> +oo(y(z, ). (10)

1. One can show that for solutions of single conservation laws, sup, |u(z, t)| < supy |ug(x)|, therefore if wug is initial
bounded and f€C?, f”>0 = f”>60>0. So the uniform convexity is not really some extra requirement.



As a consequence

L’(%) (_yx(x,t))-i-%vo(y(x,t)):(). (11)

u@,t)_y(%w). (12)
Now what is L'? Notice that as L = f*, we have
L(z) =sup{zy— f(y)}- (13)
y

This leads to

For almost every x, we can find a maximizer y =y(x). Now simple calculation gives
L(z)=y(z),  [f(y@)=2 (14)
Thus
(L () = . (15)

In other words, L’ is the inverse function of f’.
One can check that the solution given by

) = (77 (2 (16)

is indeed a weak solution and satisfy the entropy condition. See pp. 148 - 150 of Evans.

2. Approximating using discrete solution.
This approach is taken by J. Smoller in “Shock Waves and Reaction-Diffusion Equations”
(Chapter 16, also see Lecture 20 of Fall 2008 Math 527). The basic idea is as follows.
Consider the following finite difference discretization of the equation

Uﬁ“ - (u’l;:1+1 +uﬁ,1)/2 f(ufwrl) - f(ufzfl)
+ =0

At 2 Ax (17)

with initial values

ub =up(n Az) (18)

It can be shown that the discrete solution exists for all (discrete) time, and satisfies the discrete
versions of the conditions for the entropy solution. Then one can show that as the grid size tend to
0, a subsequence of the discrete solutions converges. Finally one shows that the limit function is an
entropy solution.

3. Approximating using vanishing viscosity.
This is a very popular approach in studying conservation laws. Consider the following reaction-
diffusion equation

ur+ f(u), =€ Ugs- (19)

One can show that for any € > 0, the classical solution to this equation exists for all time. Then one
can try to show that as € ™\, 0, the solutions converge to an entropy solution of the conservation
law.

4. Semigroup method.
This approach applies the abstract theory of semigroups. See 2.6 of Denis Serre “Systems of
Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves” if you are interested.

2. Uniqueness of entropy solution.
To show uniqueness, we need to show that if u,v are two entropy solutions, then necessarily u — v =0
for almost all (z,t). Since u,v € L', we finally see that the only thing need to be shown is

[ w=vo=0 (20)



for all ¢ in, say, C3.

Main idea of the proof.
What we have is the weak formulation which is satisfied by both u and v:

//ui/}t+f(u)1/)x+/t:0 up Y =0, //th—l-f(v)wz—l-/tzo v =0 (21)

where 1 is any C} function.
Subtracting the two equations, and remembering ug= vy, we have

// (u_v){yjﬁM%]_o. (22)

u—v

Now setting F'(z,t) = w, all we need to do is to show that for any ¢ € C}, we can find ¢ €
C} such that

Vi + F(2,t) Yo = ¢. (23)
For initial conditions, we assume ¢ =0 for ¢ >T and take =0 along t =1T.

Where’s the catch.
The above transport equation can be solved (formally) by the method of characteristics. Let
x(t) solves
= F(a(t),t), (24)
we obtain
(@), t)=o(x(t),1),  Yli=r=0 (25)
which leads to

d@@ﬁzﬁ¢@%$®- (26)

Remember that we want 1) € C' and at the same time has compact support.

— Does 1 have compact support?

Recall first that we solve i by setting ¥ = 0 for ¢ > T. Next notice that i can be non-
zero only along those characteristics which passes the support of ¢. Now since F' is uni-
formly bounded, the slope of the characteristics are uniformly bounded and the boundedness
of ’s support follows.

- Isypect?

This is where the catch is. As u, v are only in L', F(z,t) is in general not Lipschitz and
therefore the characteristics may collide with one another. When that happens, 1 is not in
C*' anymore. In fact, as F(x,t) can only be expected to be in L' N L>, even the existence of
the solution is questionable!

Fixing the problem.

We have seen that the obstacle is that F' is not Lipschitz. To overcome this, we replace F' by a
smooth approximation F¢ such that F° — F locally in L', and call the corresponding solution )°.
Then we have

// (u—v)¢=// (u—0) i+ F(z,t) Yz] dedt. (27)
Comparing with the definition of weak solutions, we obtain

// (u—v)gb:// (u—v) [F(z,t) — F(z, )] ¥< da dt. (28)

As soon as we have shown the uniform boundedness of 5, we can take £ \,0 and obtain

// (u—v)¢=0 (29)



and finish the proof.

e Uniform boundedness of 5.

If we naively mollify F', there is no way we can obtain this bound as in general 15 grows as the
Lipschitz constant of F° grows, and the latter grows like e~1. On the other hand, we can make F
smooth in a more sophisticated manner, which allows us to take advantage of the entropy condition
(which hasn’t been used so far!).

Instead of mollifying F' directly, we mollify u, v and define (recall the trick we used in our proof
of uniqueness for the Hamilton-Jacobi equation!)

Fa(m):w:/l F(Ou + (1—0) v°) db. (30)
This gives 0
€ 1 € €
oL :/O f”(@ua—i—(l—ﬁ)va)[6‘%4—(1—9)% do (31)

which is uniformly bounded from above if % and % are so — and this is indeed the case due to
the entropy condition.
Thus we obtain

oFs _C
<2
or ~t (32)
for some positive constant C'.2
From this bound one can show that?
[05(2, )| < Clog i~ (33)
using the argument presented on p. 287 of J. Smoller’s book.
Finally, recall that we want to prove
// (u—v)[F = F¢|¢5|dedt — 0 (34)
t>0

as € — 0. It is easy see that F' — F° — 0 in L'. Combine this with the fact tat F — F*¢ is uniformly
bounded, we can show that

Ff—F in L? for any 1< p < 0. (35)
Now the desired limit holds as |5 is uniformly bounded for any 1 < ¢ < c0.?

3. Asymptotics.
Our approaches here follows J. Smoller. In Evans, everything is derived from the explicit formula.

3.1. Uniform decay for initial values with compact support.
First note that we can always replace f by f — ¢ and also do the change of variables ' =z — f/(0) ¢
such that the equation reduces to

ur+ f(u), =0, U |1=0=1uo (36)

with f(0)= f/(0)=0. Recall that we always assume f” > 0.
We will prove the following theorem.

Theorem 1. (Uniform decay) Assume that f” >0, f(0)= f'(0) =0, and that uo(x) is a bounded mea-
surable function having compact support. Then the unique entropy solution decays to 0 uniformly at a rate
=12 qs t o00.

2. Note that if we solve a transport equation forward, us + a(x, t) uz = ¢, then when a is increasing, that is a, > 0, the
characteristics are moving away from one another, which means u, remain bounded; In the current situation, we are solving
OF<

backwards from t =T to t=0, thus a; <0 is “good” and a, > 0 is “bad”. This is why we do not need a lower bound of o

3. Seems a stronger (in time) bound is obtained on p. 153 of Evans.

4. For an elementary — and therefore much more tricky — argument, see pp. 287 — 290 of J. Smoller’s book.



Remark 2. We can consider an initial value like

wi={§ 2207 o

to see why the solution should decay. We can see that the variation in the solution is “eaten up” by the

shocks.

e Main idea.
Since f” >0, there is 1> 0 such that f”> p for all u € [ —|[uol|;«, ||uo]| ;-] which leads to

F) =)= f0)=f"(u = Ju[<[f(u)]/p (38)
Now recall the equation for (backward) characteristics,

| — o

w =0+ ['(uo(wo))t = [ f'(uo(x0))| S —

Combine the above, we obtain
|z — z0

lul<e ;

(40)

The desired result follows if we can show |z — 20| < C't*/2 for all (x,t) in the support of u. It suf-
fices to show that the support of u(-,t) grows no faster than Cctl/?.

e A technical remark.
The equation for characteristics only holds in the smooth part of the solution. According to a
theorem by R. DiPerna,® when f” > 0 the solution is always piecewise smooth. Furthermore note
that for any entropy solution, the backward characteristic can always reach ¢t =0.

e Now we try to obtain the bound on the growth of the support of wu( -, t). Denote by s;(t) the
infimum of x such that u(y,t) =0 for all y >x. s_(t) is defined similarly. Thus the goal is to show

s (t) —s_(t) <CtY/2 (41)

Fix t=T. Note that u(s+(T)+,T)=0. Now if u(s4(T) —,T) =0, then we have %s"’(t) =0att=
T;

If u(sy(T)—,T)>0 (<0 is prohibited by the entropy condition), consider the region enclosed
by the backward characteristic from (s4(7"),T), t =0, and « = s4(T"). Call the three curves I'y, I'y,
Is.

Integrating the equation

ug+ f(u), =0 (42)

over this region and using the jump condition, we obtain

/ udx — f(u)dt=0. (43)
I UT,UTs

Now along I'1, u=wu(s+(T) +,T) (denote by @) which gives

/F:/O [u f'(u) = f)de=T[a f'(a) - f(a)]. (44)

/ =- /y " o) da (45)

where y is the intersection of I'; and ¢ =0.

Along I's we have

5. R. J. DiPerna, Singularities of solutions of nomnlinear hyperbolic systems of conservation laws, Arch. Rat. Mech.
Anal., 60, 75-100, 1975.



Along I's we have

Therefore we have

T[df’(d)—f(ﬂ)]gmax/ up(z)dz < C (47)
v Jy
Expanding f at 0, we have
u(s(T)+,T)<Ct™1/? (48)
which leads to
sT< Ot/ (49)

The bound on s~ is estimated similarly.

3.2. Asymptotic profile for initial values with compact support.
We use the following notation:

[e'e) )
q= max/ uo(z)dz, —p= min/ uo(z) dz, k= f"(0). (50)
Define
x _ 1/2 1/2
wz,t) =1 Tt sS_—\2kpt/ <x<sy++2kqt ' (51)
0 otherwise
This function is called an “N-wave” due to its shape at every fixed t. Then we have
fu(- ) =w(- Dl gy =0(t72)  as t/o. (52)

In other words, as t 0o, all the details in the initial data are lost.
To see why such convergence makes sense, we take any (x,t) and let y(z, t) be the intersection of the
backward characteristic and the z-axis. Thus we have

u(z,t) =uo(y,t) (53)
and

r=y(x,t)+ f'(uo(y(z, 1)) t=y(x,t) + f'(u(z, b)) t=y(z,t) + f"(0) ut + O(u?)t. (54)
Since u = O(til/Q) as t /00, and therefore
z=y(z,t)+ f"0)ut+O0(v?) t=y(z,t) + kut+O(1). (55)
This leads to (note that as up has compact support, y(z,t) is bounded)

T _
u(a:,t):H—I—O(t 1. (56)
Combine with
s+(t)§s++[\/2kq+0(t’1/21nt)]t1/2, s,(t)>s,—[\/2kp+0(t*1/21nt)]t1/2 (57)
leads to the result.
For details see J. Smoller book pp. 295 — 297.
3.3. Convergence for periodic solutions.

When the initial value is periodic, we have better decay rate.

Theorem 3. Let f” >0 and let ug € L°(R) be piecewise monotonic periodic function of period p. Then
we have

2
u(z, t) — | gh—’t’ (58)

where ﬂ():% fop uo(z) dz, and h=min {f”(u): lu| < Hu0||Lm}.



The idea again is the consider backward characteristics. Since ug is piecewise monotonic and periodic,

so is u at any time t. Let yi, ..., ¥, be the points where u changes from increasing to decreasing or vice
versa, at time ¢. Then due to periodicity,
Total variation of u=2 Z w(Yi, t) —u(Yiy1,t) =2 Z w(yi, t) —u(yi—1,1). (59)
i odd i even
Here we have assumed that [y1, y2|, [y3, ¥4, ... are the decreasing intervals.

Now if we consider backward characteristics (which are straight lines!) starting from y;’s, we would
have

P>y <yi+1—yi>+[ 3 u(yz-,w—u(yiﬂ,t)}»[ S ulynt) —ulyisnt) | ¢ (60)

i odd i odd i odd

This shows the total variation of u decays like ¢t~ !, and the desired result follows.



