
Math 5 2 7 Fall 2 009 Lecture 1 3 ( Oct. 2 1 , 2 0 0 9 )

The S ingle Conservation Law: Existence, Uniqueness , Asymptotics

In the last lecture we see that an appropriate notion of solutions to the single conservation law

ut + f (u) x = 0 , u( x , 0) = u0 ( 1 )

where f ′ ′ > 0 is the entropy solution , which is a weak solution satisfying the entropy condition:

u(x + a , t) − u( x , t)

a
<
E

t
( 2 )

for all a > 0 , t > 0 and a fixed constant E . In this lecture we will first establish the existence and unique-
ness of such solutions, and then study their asymptotic behaviors.

1 . Existence of entropy solution.
We will not go into the details of the existence proofs, but just mention several approaches.

1 . Explicit formula.
Consider the conservation law

ut + f (u) x = 0 ( 3)

with f uniformly convex. 1 Now consider the Hamilton-Jacobi equation

vt + f ( vx ) = 0 . ( 4)

If we differentiate it with respect to x and then let u � vx , we see that we have recovered the con-
servation law.

Furthermore, notice that when studying conservation law, we usually require u0 to be bounded,
which translates to the boundedness of v0

′ , that is the Lipschitz continuity of v0 .
We know that the Hopf-Lax formula

v (x , t) = min
{
t L

(
x − y
t

)
+ v0 ( y)

}
( 5)

gives the correct weak solution for the Hamilton-Jacobi equation, where L is the Legendre trans-
form of f . This leads to the conjecture that

u( x , t) � ∂

∂x

[
min

{
t L

(
x − y
t

)
+ v0 ( y)

} ]
( 6)

gives the entropy solution for the single conservation law.
Let y(x , t) be the minimizer, we have,

u(x , t) =
∂

∂x

[
t L

(
x − y(x , t)

t

)
+ v0 ( y(x , t) )

]
. ( 7)

The a. e. differentiability of the function in the parenthesis is established in the proof of Theorem 1
on page 1 46 of Evans. Taking the derivative we have

u(x , t) = L ′
(
x − y(x , t)

t

)
( 1 − yx ( x , t) ) +

∂

∂x
v0 ( y( x , t) ) . ( 8)

Now notice that as y(x , t) is the minimizer of

t L

(
x − y
t

)
+ v0 ( y) , ( 9)

x is the minimizer of

t L

(
x − y( z , t)

t

)
+ v0 ( y( z , t) ) . ( 1 0)

1 . One can show that for solutions of single conservation laws, supx | u(x , t) | 6 supx | u0 (x) | , therefore if u0 is init ial
bounded and f ∈ C2 , f ′ ′ > 0 � f ′ ′ > θ > 0 . So the uniform convexity is not really some extra requirement .



As a consequence

L ′
(
x − y(x , t)

t

)
( − yx (x , t) ) +

∂

∂x
v0 ( y(x , t) ) = 0 . ( 1 1 )

This leads to

u(x , t) = L ′
(
x − y(x , t)

t

)
. ( 1 2 )

Now what is L ′? Notice that as L = f∗ , we have

L( x) = sup
y
{x y − f ( y) } . ( 1 3)

For almost every x , we can find a maximizer y = y(x ) . Now simple calculation gives

L ′( x) = y(x ) , f ′( y(x ) ) = x. ( 1 4)

Thus

f ′(L ′( x) ) = x. ( 1 5)

In other words, L ′ is the inverse function of f ′ .
One can check that the solution given by

u(x , t) = ( f ′) − 1

(
x − y( x , t)

t

)
( 1 6)

is indeed a weak solution and satisfy the entropy condition. See pp. 1 48 - 1 50 of Evans.

2 . Approximating using discrete solution.
This approach is taken by J. Smoller in “Shock Waves and Reaction-Diffusion Equations”

( Chapter 1 6, also see Lecture 20 of Fall 2008 Math 527) . The basic idea is as follows.
Consider the following finite difference discretization of the equation

un
k+ 1 −

(
un+ 1
k + un− 1

k
)
/ 2

∆ t
+
f
(
un+ 1
k

)
− f
(
un− 1
k

)

2 ∆x
= 0 ( 1 7)

with initial values

un
0 ≡ u0 (n∆x ) ( 1 8)

It can be shown that the discrete solution exists for all ( discrete) time, and satisfies the discrete
versions of the conditions for the entropy solution. Then one can show that as the grid size tend to
0 , a subsequence of the discrete solutions converges. Finally one shows that the limit function is an
entropy solution.

3. Approximating using vanishing viscosity.
This is a very popular approach in studying conservation laws. Consider the following reaction-

diffusion equation

ut + f ( u) x = ε ux x . ( 1 9)

One can show that for any ε > 0 , the classical solution to this equation exists for all time. Then one
can try to show that as ε ↘ 0 , the solutions converge to an entropy solution of the conservation
law.

4. Semigroup method.
This approach applies the abstract theory of semigroups. See 2 . 6 of Denis Serre “Systems of

Conservation Laws 1 : Hyperbolicity, Entropies, Shock Waves” if you are interested.

2. Uniqueness of entropy solution.
To show uniqueness, we need to show that if u , v are two entropy solutions, then necessarily u − v = 0

for almost all (x , t) . S ince u , v ∈ L1 , we finally see that the only thing need to be shown is
∫

(u − v ) φ = 0 ( 20)



for all φ in, say, C0
1 .

• Main idea of the proof.
What we have is the weak formulation which is satisfied by both u and v :

∫∫
u ψt + f (u) ψx +

∫

t= 0

u0 ψ = 0 ,

∫∫
v ψt + f ( v ) ψx +

∫

t= 0

v0 ψ = 0 ( 21 )

where ψ is any C0
1 function.

Subtracting the two equations, and remembering u0 = v0 , we have
∫∫

(u − v )

[
ψt +

f (u) − f ( v )

u − v ψx

]
= 0 . ( 22 )

Now setting F(x , t) ≡ f ( u) − f ( v )

u − v , all we need to do is to show that for any φ ∈ C0
1 , we can find ψ ∈

C0
1 such that

ψt + F( x , t) ψx = φ. ( 23)

For initial conditions, we assume φ = 0 for t > T and take ψ = 0 along t = T .

• Where’ s the catch.
The above transport equation can be solved ( formally) by the method of characteristics. Let

x ( t) solves
dx

dt
= F(x ( t) , t) , ( 24)

we obtain
dψ

dt
( x( t) , t) = φ (x ( t) , t) , ψ

�
t=T = 0 ( 25)

which leads to

ψ ( x( t) , t) =

∫

T

t

φ ( x( s ) , s ) ds . ( 26)

Remember that we want ψ ∈ C1 and at the same time has compact support.

− Does ψ have compact support?
Recall first that we solve ψ by setting ψ = 0 for t > T . Next notice that ψ can be non-

zero only along those characteristics which passes the support of φ . Now since F is uni-
formly bounded, the slope of the characteristics are uniformly bounded and the boundedness
of ψ ’ s support follows.

− Is ψ ∈ C1 ?
This is where the catch is. As u , v are only in L1 , F(x , t) is in general not Lipschitz and

therefore the characteristics may collide with one another. When that happens, ψ is not in
C1 anymore. In fact, as F( x , t) can only be expected to be in L1 ∩ L∞ , even the existence of
the solution is questionable!

• Fixing the problem.
We have seen that the obstacle is that F is not Lipschitz. To overcome this, we replace F by a

smooth approximation Fε such that Fε → F locally in L1 , and call the corresponding solution ψε .
Then we have ∫∫

(u − v ) φ =

∫∫
( u − v ) [ψt

ε + Fε ( x , t) ψx
ε ] dx dt. ( 27)

Comparing with the definition of weak solutions, we obtain
∫∫

(u − v ) φ =

∫∫
( u − v ) [F (x , t) − Fε ( x , t) ] ψxε dx dt. ( 28)

As soon as we have shown the uniform boundedness of ψxε , we can take ε↘ 0 and obtain
∫∫

(u − v ) φ = 0 ( 29)



and finish the proof.

• Uniform boundedness of ψxε .
If we naïvely mollify F , there is no way we can obtain this bound as in general ψxε grows as the

Lipschitz constant of Fε grows, and the latter grows like ε− 1 . On the other hand, we can make F
smooth in a more sophisticated manner, which allows us to take advantage of the entropy condition
(which hasn’ t been used so far! ) .

Instead of mollifying F directly, we mollify u , v and define ( recall the trick we used in our proof
of uniqueness for the Hamilton-Jacobi equation! )

Fε (x , t) =
f (uε ) − f ( vε )

uε − vε =

∫

0

1

f ′( θ uε + ( 1 − θ ) vε ) dθ . ( 30)

This gives
∂Fε

∂x
=

∫

0

1

f ′′( θ uε + ( 1 − θ ) vε )
[
θ
∂uε

∂x
+ ( 1 − θ ) ∂v

ε

∂x

]
dθ ( 31 )

which is uniformly bounded from above if ∂uε

∂x
and ∂v ε

∂x
are so – and this is indeed the case due to

the entropy condition.
Thus we obtain

∂Fε

∂x
6 C

t
( 32 )

for some positive constant C . 2

From this bound one can show that3

| ψxε (x , t) | 6 C log t− 1 ( 33)

using the argument presented on p. 287 of J. Smoller’ s book.
Finally, recall that we want to prove

∫∫

t> 0
(u − v ) [F − Fε ] | ψxε | dx dt � 0 ( 34)

as ε→ 0 . It is easy see that F − Fε→ 0 in L1 . Combine this with the fact tat F − Fε is uniformly
bounded, we can show that

Fε � F in Lp for any 1 6 p< ∞ . ( 35)

Now the desired limit holds as | ψxε | is uniformly bounded for any 1 6 q < ∞ . 4

3. Asymptotics.
Our approaches here follows J. Smoller. In Evans, everything is derived from the explicit formula.

3. 1 . Uniform decay for initial values with compact support .
First note that we can always replace f by f − c and also do the change of variables x ′ = x − f ′( 0) t

such that the equation reduces to

ut + f ( u) x = 0 , u
�
t= 0 = u0 ( 36)

with f ( 0) = f ′( 0) = 0 . Recall that we always assume f ′′ > 0 .
We will prove the following theorem.

Theorem 1 . (Uniform decay) Assume that f ′′ > 0 , f ( 0) = f ′( 0) = 0 , and that u0 ( x) is a bounded mea-
surab le function having compact support. Then the unique entropy solution decays to 0 uniformly at a rate
t− 1 / 2 as t↗∞ .

2 . Note that if we solve a transport equation forward, ut + a(x , t) ux = φ , then when a is increasing, that is ax > 0 , the
characterist ics are moving away from one another, which means ux remain bounded; In the current situation, we are solving
backwards from t = T to t = 0 , thus ax 6 0 is “good” and ax > 0 is “bad”. This is why we do not need a lower bound of ∂F

ε

∂x
.

3 . Seems a stronger ( in time) bound is obtained on p. 1 53 of Evans.

4 . For an elementary – and therefore much more tricky – argument , see pp. 2 87 – 290 of J . Smoller’ s book.



Remark 2. We can consider an initial value like

u0 (x ) =

{
0 x < 0 , x > 1
1 x ∈ ( 0 , 1 )

( 37)

to see why the solution should decay. We can see that the variation in the solution is “eaten up” by the
shocks.

• Main idea.
S ince f ′′ > 0 , there is µ > 0 such that f ′′ > µ for all u ∈

[
− ‖ u0 ‖ L∞ , ‖ u0 ‖ L∞

]
which leads to

f ′(u) = f ′( u) − f ′( 0) = f ′ ′( ξ) u � | u | 6 | f ′( u) | / µ. ( 38)

Now recall the equation for ( backward) characteristics,

x = x0 + f ′(u0 ( x0 ) ) t
� | f ′(u0 (x0 ) ) | 6 | x − x0 |

t
. ( 39)

Combine the above, we obtain

| u | 6 c | x − x0 |
t

. ( 40)

The desired result follows if we can show | x − x0 | < C t1 / 2 for all ( x , t) in the support of u . It suf-
fices to show that the support of u( · , t) grows no faster than C t1 / 2 .

• A technical remark.
The equation for characteristics only holds in the smooth part of the solution. According to a

theorem by R. DiPerna, 5 when f ′ ′ > 0 the solution is always piecewise smooth. Furthermore note
that for any entropy solution, the backward characteristic can always reach t = 0 .

• Now we try to obtain the bound on the growth of the support of u( · , t) . Denote by s+ ( t) the
infimum of x such that u( y , t) = 0 for all y > x . s− ( t) is defined similarly. Thus the goal is to show

s+ ( t) − s− ( t) 6 C t1 / 2 . ( 41 )

Fix t = T . Note that u( s+ (T) + , T) = 0 . Now if u( s+ (T) − , T) = 0 , then we have d

dt
s+ ( t) = 0 at t =

T ;
If u( s+ (T) − , T) > 0 ( < 0 is prohibited by the entropy condition) , consider the region enclosed

by the backward characteristic from ( s+ (T) , T) , t = 0 , and x = s+ (T) . Call the three curves Γ1 , Γ2 ,
Γ3 .

Integrating the equation

ut + f (u) x = 0 ( 42 )

over this region and using the jump condition, we obtain
∫

Γ 1 ∪ Γ 2 ∪ Γ 3

u dx − f (u) dt = 0 . ( 43)

Now along Γ1 , u = u( s+ (T) + , T) ( denote by ū ) which gives
∫

Γ 1

=

∫

0

T

[u f ′(u) − f ) dt = T [ ū f ′( ū ) − f ( ū ) ] . ( 44)

Along Γ2 we have ∫

Γ 2

= −
∫

y

∞
u0 (x ) dx ( 45)

where y is the intersection of Γ1 and t = 0 .

5 . R. J . DiPerna, S ingularit ies of solutions of nonlinear hyperbolic systems of conservation laws, Arch. Rat . Mech .
Anal. , 60 , 75–1 00 , 1 975 .



Along Γ3 we have ∫

Γ 3

= 0 . ( 46)

Therefore we have

T [ ū f ′( ū ) − f ( ū ) ] 6 max
y

∫

y

∞
u0 ( x) dx 6 C. ( 47)

Expanding f at 0 , we have

u( s+ (T) + , T) 6 C t− 1 / 2 ( 48)

which leads to

s+ 6 C t1 / 2 . ( 49)

The bound on s− is estimated similarly.

3. 2 . Asymptotic profile for initial values with compact support .
We use the following notation:

q ≡ max
y

∫

y

∞
u0 ( x) dx , − p≡ min

y

∫

− ∞

y

u0 ( x) dx , k = f ′′( 0) . ( 50)

Define

w (x , t) =

{ x

k t
s− − 2 k p

√
t1 / 2 < x < s+ + 2 k q

√
t1 / 2

0 otherwise
. ( 51 )

This function is called an “N-wave” due to its shape at every fixed t . Then we have

‖ u( · , t) − w ( · , t) ‖ L 1 (R )
= O

(
t− 1 / 2

)
as t↗∞ . ( 52 )

In other words, as t↗∞ , all the details in the initial data are lost.
To see why such convergence makes sense, we take any ( x , t) and let y(x , t) be the intersection of the

backward characteristic and the x-axis. Thus we have

u(x , t) = u0 ( y , t) ( 53)

and

x = y( x , t) + f ′(u0 ( y( x , t) ) ) t = y( x , t) + f ′(u(x , t) ) t = y( x , t) + f ′ ′( 0) u t + O
(
u2
)
t. ( 54)

Since u = O
(
t− 1 / 2

)
as t↗∞ , and therefore

x = y(x , t) + f ′′( 0) u t + O
(
u2
)
t = y(x , t) + k u t + O ( 1 ) . ( 55)

This leads to ( note that as u0 has compact support, y(x , t) is bounded)

u(x , t) =
x

k t
+ O

(
t− 1
)
. ( 56)

Combine with

s+ ( t) 6 s+ +
[

2 k q
√

+ O
(
t− 1 / 2 ln t

) ]
t1 / 2 , s− ( t) > s− −

[
2 k p
√

+ O
(
t− 1 / 2 ln t

) ]
t1 / 2 ( 57)

leads to the result.
For details see J. Smoller book pp. 295 – 297.

3. 3. Convergence for periodic solutions.
When the initial value is periodic, we have better decay rate.

Theorem 3. Let f ′′ > 0 and let u0 ∈ L∞ (R) be piecewise monotonic periodic function of period p. Then
we have

| u( x , t) − ū0 | 6 2 p

h t
( 58)

where ū0 =
1

p

∫
0

p
u0 (x ) dx , and h ≡ min

{
f ′ ′(u) : | u | 6 ‖ u0 ‖ L∞

}
.



The idea again is the consider backward characteristics. S ince u0 is piecewise monotonic and periodic,
so is u at any time t . Let y1 , � , yn be the points where u changes from increasing to decreasing or vice
versa, at time t . Then due to periodicity,

Total variation of u = 2
∑

i odd

u( yi , t) − u( yi+ 1 , t) = 2
∑

i even

u( yi , t) − u( yi− 1 , t) . ( 59)

Here we have assumed that [ y1 , y2 ] , [ y3 , y4 ] , � are the decreasing intervals.
Now if we consider backward characteristics (which are straight lines! ) starting from yi ’ s, we would

have

p>
∑

i odd

( yi+ 1 − yi) +
[ ∑

i odd

u( yi , t) − u( yi+ 1 , t)

]
t >
[ ∑

i odd

u( yi , t) − u( yi+ 1 , t)

]
t. ( 60)

This shows the total variation of u decays like t− 1 , and the desired result follows.


