
Math 5 2 7 Fall 2 009 Lecture 9 ( Oct. 5 , 2 00 9 )

Method of Characteristics

In this lecture we try to solve the first order equation

F(Du, u , x) = 0 in U ; u = g on Γ ⊆ ∂U. ( 1 )

Recall that, when F is quasi-linear,

F (Du, u , x ) = b(u , x ) · Du − f (u , x ) , ( 2 )

we can try to solve the ODE system:

ẋ ( s ) = b( z , x ) ( 3)
ż ( s ) = f ( z , x ) ( 4)

and then try to represent s using x and finally obtain the solution from

u(x ) = z ( s ) . ( 5)

This approach does not work anymore when F is fully nonlinear. For example, when

F(Du, u , x ) = | Du | 2 − f ( u , x ) , ( 6)

the above approach would give

ẋ ( s ) = Du(x ) ( 7)
ż ( s ) = f (u , x ) . ( 8)

As Du is not known, the ODE system cannot be solved.
Nevertheless, the main idea: reduce the PDE to a system of ODEs along particular curves x( s ) , still

works.

1 . Simplifying the equation.
Consider a curve x ( s ) to be determined. We try to find out whether it is possible to simplify the PDE

along this particular curve.
Clearly x( s ) and z ( s ) � u(x ( s ) ) are unknown functions that need to be solved. How about Du? If we

only consider the function along x ( s ) , then Du and u has no relation except

d

ds
u = ẋ ( s ) · Du. ( 9)

Therefore p( s ) � Du( x( s ) ) should also be treated as an independent unknown function.
Now we derive equations for x , z , p.
First, from the above discussion,

ż ( s ) = ẋ ( s ) · p( s ) . ( 1 0)

To figure out the equation for x , we need to first look at the equation for p, as x will be chosen to make
other equations as simple as possible.

Compute

ṗ( s ) =
d

ds
Du(x ( s ) ) = D2u(x ( s ) ) · ẋ ( s ) . ( 1 1 )

The quantity D2u is not known and has to be cancelled.
To cancel it, we turn to the equation. Differentiating F(Du, u , x ) = 0 we obtain

D2u · DpF + (DzF
)
Du + DxF = 0 � D 2u · DpF = − (DzF

)
Du − DxF. ( 1 2 )

We see that the D2u in the p equation can be cancelled provided we require

ẋ ( s ) = DpF. ( 1 3)



Thus the ODE system we look for is

ẋ = DpF, ( 1 4)
ż = ẋ · p= DpF · p, ( 1 5)
ṗ = − (DzF) p− DxF. ( 1 6)

We see that the system is closed, that is, does not involve any unknown quantities except x , z , p.

Example 1 . When F is quasi-linear, that is

F( p, z , x ) = b( z , x) · p− f ( z , x) , ( 1 7)

we have

ẋ = b( z , x) , ( 1 8)
ż = b( z , x) · p= f ( z , x ) , ( 1 9)
ṗ = − (Dzb · p− Dzf ) p− (Dxb · p− Dxf ) . ( 20)

We see that the first two equations and the third equation are decoupled. Thus we can solve the first two
equations and obtain the solution. There is no need to solve the 3rd equation.

Summarizing, we have shown that if u solves F(Du, u , x ) = 0 , and ẋ ( s ) = DpF(Du, u , x) , then p( s ) �

Du( x( s ) ) , z ( s ) � u(x ( s ) ) solves

ż = DpF · p, ṗ= − (DzF) p− DxF. ( 21 )

Obviously the opposite direction is more important: Suppose we solve the characteristic ODE system,
does the solution gives us the solution to the original equation?

2. Local existence of solutions to F(Du, u , x ) = 0 .
Consider the first order PDE

F(Du, u , x ) = 0 in U ; u = g on Γ ⊆ ∂U. ( 22 )

We will show that as long as Γ is non-characteristic (meaning will be clear later) , the method of charac-
teristics will give us a solution of the equation in a neighborhood of Γ ( which is usually called a “local
solution”) . We break down the whole argument into several steps.

− The equation. Let p, z , x solve the characteristics system.
We compute

d

ds
F( p, z , x ) = DpF · ṗ+ DzFż + DxF · ẋ = 0 . ( 23)

Therefore we have

F( p, z , x ) = 0 ( 24)

as long as there is s 0 such that

F( p( s 0 ) , z ( s 0 ) , x ( s 0 ) ) = 0 . ( 25)

− Cauchy data. How do we pick s 0? It is clear that we should use the Cauchy data

u = g on Γ . ( 26)

We set x ( s 0 ) ∈ Γ and z ( s 0 ) = g(x ( s 0 ) ) . But how do we find out p( s 0 ) ?
First consider the case Γ ⊆ Rn− 1 ∩ {xn = 0} . Then the knowledge of u = g on Γ also gives us the

first n − 1 component of p( s 0 ) :

pi( s 0 ) = Dx iu(x ( s 0 ) ) = Dx ig(x ( s 0 ) ) , i = 1 , 2 , � , n − 1 . ( 27)

To determine pn( s 0 ) , we have to use the equation. We must have

F( p1 ( s 0 ) , � , pn( s 0 ) , z ( s 0 ) , x1 ( s 0 ) , � , xn( s 0 ) ) = 0 . ( 28)



The implicit function theorem tells us that pn( s 0 ) can be represented as a function of others (which
are all known to us) if

Fpn
�

0 . ( 29)

For general Γ , one can use a change of variable to transform Γ to the above “flat” case (F is trans-
formed to G) . If after the transformation we have

Gpn
�

0 , ( 30)

then we say Γ is non-characteristic.
In the original variables, the non-characteristic condition can then be shown as

DpF · ν ( x0 )
�

0 ( 31 )

where ν (x0 ) is the unit normal vector of Γ at x0 .

− Defining u . Naturally we try to define

u(x ) = z ( x( s ) ) . ( 32 )

But then there is the question of whether this can be done for all x in a neighborhood of Γ . In
other words, whether the characteristic curves starting from Γ “fill” the neighborhood.

Mathematically, the question can be put as: Let y1 , � , yn− 1 be the coordinate in Γ . Then does
the solution to

x = x ( y1 , � , yn− 1 , s ) ( 33)

exists for any given x in a neighborhood of Γ?
We have the following lemma guaranteeing that the answer is yes given that Γ is non-character-

istic (Without loss of generality, we consider the “flat” case only) :

Lemma 2. (Evans p. 1 06) Assume we have the noncharacteristic condition Fpn
�

0 . Then there
exists an open interval I ⊂ R containing 0 , a neighborhood W of x0 ∈ Γ , and a neighborhood V of x0

in Rn , such that for each x ∈ V there exist unique s ∈ I, y ∈ W such that

x = x( y , s ) . ( 34)

The mappings x � s , y are C2 .

Proof. Using the inverse function theorem, all we need to do is to show that

detDy , sx
�

0 ( 35)

as y =




x 1
0

�

xn − 1
0


 , s = 0 . As

Dy , sx =

(
In− 1 ∇p1 , � , pn − 1

F

0 Fpn

)
, ( 36)

The condition is satisfied when Γ is noncharacteristic. �

Thus we see that u is well-defined.

− We have shown that

F( p( y1 , � , yn− 1 , s ) , u(x ) , x) = 0 ( 37)

in a neighborhood of Γ . The last step is to show that p= Du . This is done as follows.
First from the characteristics equation, we have

Du · ∂x
∂s

= ż = DpF · p= p · ∂x
∂s
. ( 38)

Next we can show that (Evans pp. 1 08-1 09)

Du · ∂x
∂yi

= p · ∂x
∂yi

, i = 1 , 2 , � , n − 1 . ( 39)



Combining these two, we have

Dy , sx · (Du − p) = 0 . ( 40)

As the matrix Dy , sx is nonsingular, we must have

p= Du ( 41 )

as desired.

Thus we have established the local existence of the solutions.

3. Examples.

Example 3. (Conservation laws) Consider the conservation law

ut + divF( u) = 0 in Rn × ( 0 , ∞ ) ; u = g on Rn × { t = 0} . ( 42 )

We let

G ( p, z , x) = pn+ 1 + F ′( z ) ·




p1
�

pn


 . ( 43)

Now the characteristic equations are (with xn+ 1 = t)

ẋ = DpG =

(
F ′( z )

1

)
, ( 44)

ż = DpG · p= 0 , ( 45)
ṗ = � . ( 46)

We didn’ t write the equation for p explicitly because it is decoupled from the equations for x and z .
Solving the first two equations we have

t = s ( 47)
x = F ′( z0 ) t + x0 ( 48)
z = z0 = g( x0 ) . ( 49)

We see that the solution is given implicitly by

u( x , t) = g( x − F ′( u) t) . ( 50)

Example 4. (Hamilton-Jacobi equation) Consider

ut + H(Du, x ) = 0 . ( 51 )

Let

F( p, z , x) = pn+ 1 + H






p1
�

pn


 ,




x1
�

xn




 . ( 52 )

Then we have

ẋ = DpF =

(
D pH

1

)
� ẋ = DpH, ṫ = 1 . ( 53)

ż = DpF · p= pn+ 1 + DpH · p= DpH · p− H, ( 54)

ṗ = − (DzF) p− DxF =

(
− DxH

0

)
� ṗ = − DxH, ṗn+ 1 = 0 . ( 55)

Note that in the above the notation is a bit messy, as x is used for both the spatial variable x and
(
x
t

)
,

and p is used for both Du and
(
D u
ut

)
.

As ṫ = 1 , we can replace s by t . Thus the characteristics equations become

ẋ = DpH, ż = � , ṗ = − DxH, ṗn+ 1 = 0 . ( 56)



Now we recognize that the x , p equations are

ẋ = DpH, ṗ = − DxH ( 57)

which are the so-called Hamiltonian equations which governs the evolution of particles ( x is the location
and p is the momentum of the particle) . This understanding is important in deriving the solution formula
for the H-J equation.


