MATH 527 FALL 2009 LECTURE 8 (SEP. 30, 2009)

WAVE EQUATIONS: UNIQUENESS AND ASYMPTOTICS

In this lecture we prove the uniqueness for the wave equations. We also prove some asymptotic decay
results.

Recall that to prove uniqueness for the Laplace/Poisson and the heat equations, we have two
approaches. The first one is via maximum principles, the second one via energy estimate. However, for
the wave equation, no maximum principle holds, as can be seen by setting g = u ;=0 =0, and h = u; |t—0
tobelforzxe(—R,R)and 0 for z¢ (— R —1, R+ 1) and positive everywhere else in the 1D wave equa-
tion. Therefore, the only choice left is energy estiamte.

1. Uniqueness via energy method.
Consider the wave equation in a bounded domain 2 C R™.

Ou=wuy—Au = f Qx(0,7) (1)
u =g Q x {0} and 092 x [0, T (2)
u = h Q x {0}. (3)
It is clear that the uniqueness of this problem is equivalent to that the following equation
Ou=uw—Au = 0 Qx(0,7) (4)
u =0 Q2 x {0} and 092 x [0, T (5)
u = 0 Q x {0}. (6)

having only 0 solution.
Now we prove this. Multiply the equation by u; and integrate over Q x (0,T"), we have

0 = / (ugr — Au) ugdz dt
Qx(OT

u%)dxdt—i—/ — Auugdxdt
Qx(0,T)

u%)dxdt—i—/ Vu-Vusda dt
Qx(0,T)

Q><(O T) dt(

N~ N~

QX<0T) dt(
= /on:r) EB ut+|Vu|2)}dxdt
/[ u? + |Vl )]@j)@-/ﬂ[%(ufﬂvuf)]@m)dx
_ /Q[%(ut—HVM )](z,T)d:z:. )

This implies u is a constant at time 7. But this constant must be 0 according to the boundary value.

Remark 1. If we know the solutions decays at infinity, we can use the same method when  is
unbounded and obtain the same result.

2. Domain of dependence.
We have seen from the formulas that the value of u(z,t) only depends on the initial values in the ball
By(x). In other words, if g=h=0 in B,(x), then v must vanish in the cone
|z|+t<r. (8)

We prove this fact now.
Denote by C,. the above mentioned cone. and for T' < r denote by Ur the following domain

Ur={(z,t)eC,, 0<t<T}. (9)
Then naturally the boundary of Ur consists of three parts

OUr=Sr+ So + Sside (10)



where
S“:{(I?t)ecﬁ t:u}v SsidczacrmUT.

Now we compute
0 = / (ugr — Au) upde dt
Ur
= / Upp Up — ANuug da dt
Ur
- / o, <lu§> — V- (Vuug) + V- Vi dz dt
Ur 2

:/ 8t<lut2+l|Vu|2>—V-(Vuut)d:rdt
v 21T

1 2 1 2
:/ vt,w-<5“t+5|vu| )d:vdt
Ur —Vuuy
1 92 1 2
:/ nea-| 2% t3IVEl ) gg
aUr —Vuu,
1 2 1 2 / 1 2 1 2
= —ui +=|Vu|” — —ui+=1|Vu
/5T2 rtglVul 52 5 IVl
1 9,1 2
+/ <nt> i Vel as
Ssige \ T — Vuuy
1 2 1 2 / 1 2 1 2
= —u;+ = |Vu| = —u;+=|Vu
/STz gVl 502 5 1Vl

+/ Bt w2+ 28V — n, - Vuu,ds.
Sside 2 2

(11)

(12)

For the last term, we notice that the equation for Ssqe is |z| + ¢ = r which means n; = |n,| and conse-

quently
e
2
1 2 1 2 1 2 1 2
gt +gIveP< [ Jut+5Ival
/ST 2 2 S0 2 2

for all T' < r and the conclusion follows.

uf+%|Vu|2—nm-Vuut20.

Thus we have shown that

3. Decay of the solution.
We prove the following.

Proposition 2. Let u solve
ur—Au = 0 in R3 x (0, 00)
u=y9g u = h onR3x{t=0}
where g, h are smooth and have compact support. Then there is a constant C' such that
lu(z,t)| < C/t
for all (z,1).
Proof. Recall the Kirchhoff formula:

1

u(z,t) :m/a&(m) th(w) + g(w) + Vg(w) - (y — x) dSy.

Since h, g, Vg vanishes outside their respective supports, we can write

1

o) =g [ H) () + Vg(w) () dS

(13)

(14)



where A is the union of the three supports. Now the conclusion easily follows after we notice that the

area of 0B¢(z)N A is bounded by a constant independent of t.

O

Remark 3. The above estimate behaves badly when ¢ is small. But this is easily remedied by noticing
that when ¢ is small, the area of dB;(x) N A scales as t* and therefore u is uniformly bounded. Integrating

this observation into the estimate gives
lu(z, )| < C (1+¢) "
Proposition 4. Let u solve

ur—Au = 0 in R? x (0, 00)
u=g9g u = h on R? x {t=0}

where g, h are smooth and have compact support. Then there is a constant C' such that

u(z, )| <O (L+t) "2 (14|t —|z|) "2
for all (z,1).

Proof. Assume that the supports of g, h are contained in the ball Br. Recall the Poisson’s formula:

LRNEE / Lo(y) +h(y) +tVg - (y—x) ,
De(x)

2mt2 (t2—|y—x|2)1/2

By taking the supreme of g, h, Vg and noticing that |y —z| <t we have

dy —1/2 dy
|u(:1c,t)|<C/ <Ct S —
Do) (t =y =)/ (t+ |y —a|)"/? D) (t =y —=|)'/?

Now let z=y — x we have

dz
u(x,t gct—l/Q/ B —
Ju(z, )] b (|2

Here note that the integral is in fact over DN {|z + x| < R}. We have
— |z|>t+R: u(z,t)=0.

(20)

(24)

— t—2R < |z| <t+ R: We use polar coordinates, note that the angle is of order R/t (we only con-

sider the case ¢>> R here), thus we have

/ _dz R RORER rdr
pinflz+al<ry (=272~ t Jia-r (t—r)'/?
min (t,|x |4 R) -1/2
< R/ (t=r) dr
lz|-R
1/2
< C(t—(|;v|—R))/
< CBR)Y2

since t —2R<|z|<t+ R implies t —3 R < |z| - R<t. As
—R<t—|z|<2R,
we have
L+t —|z||<2R = (1+[t—|z|)~ > 2R~
Thus

dz —1/2
— < CRY1+t—|x
/Dm{'m@} g <O (= lel)

in this case.



— |z|<t—2R: Wehave (t—|2]) >t — (R+|z])=(t— |z]) ~ R> 5 (t — |2|) > 57

/m(l—Ft— |$|)1, and
therefore

dz —1/2
— = < COR)(1+t—|x . 32
/Dm{|z+z|<R} (t—|z])'/? ot ol %)

Combining the above, we see that when ¢ is large (for example ¢ > 100 max (R, 1)), we have
Ju(e, )| <CEY2 (1 + [t —[2]) 72 (33)

On the other hand, when ¢ <100 max (R, 1) we have
dz
O/ 2 2\1/2
Dy (t —|Z| )

¢ rdr
C/O (t2—r2)1/2
= Ct<C(R). (34)

u(z, )]

N

Thus u is bounded by a constant when ¢ is small and by C'¢t~%/2 (1 + |t — |373||)_1/2 when t is large, as a
consequence, we can write

u(z, )| SC(1+6) 21+t —|z|) 72 (35)
as desired. Note that the constant C is heavily dependent on R. O

Remark 5. In general, we have

— n>1odd:

n—1

lu(t,z)| <C(1+t) = (36)

— n>1even:
—1

ju(t,@)| <C(1+6)" 7 (L4t —|z[])

_n—1
2

(37)

Remark 6. Such algebraic decays are also characteristic in other dispersive equations, for example the
Schrodinger equation.

Remark 7. It is clear that no decay can be expected for the solutions to the 1D wave equation:

1 1 T+t
u(e.) =5 lola+0) +o—0]+5 [ h)dy (39)
r—1
1. Since |z| <t —2R, we have
t—jr|>2R= L <Ly 1 ZRFI (31)

t—|z| 2R t—|z| 2R



