
Math 527 Fall 2009 Lecture 7 ( Sep. 28 , 2009)

Wave Equations : Explicit Formulas

In this lecture we derive the representation formulas for the wave equation in the whole space:

�u ≡ ut t − 4u = 0 , Rn × ( 0 , ∞ ) ; u(x , 0) = g( x) , ut( x , 0) = h ( x) . ( 1 )

It turns out that the properties of the solutions depend on the dimension. More specifically, there are
three cases: n = 1 , n > 1 even; n > 1 odd. We will discuss in detail the three representative cases: n = 1 , 2 , 3
( the order is actually n = 1 , 3 , 2 , for reasons that will be clear soon) .

1 . n = 1 .
We consider the 1 D wave equation

ut t − ux x = 0 , R × ( 0 , ∞ ) ; u( x , 0) = g(x ) , ut(x , 0) = h ( x) . ( 2 )

This equation can be solved via the following change of variables:

ξ = x + t ; η = x − t , ( 3)

and to make things clearer we set ũ ( ξ , η ) = u( x , t) .
With this change of variable we compute

ut = ũξ ξt + ũη ηt = ũξ − ũη ( 4)
ut t = ũξξ − 2 ũξη + ũηη ( 5)
ux = ũξ + ũη ( 6)
ux x = ũξξ + 2 ũξη + ũηη ( 7)

Therefore

ut t − ux x = 0
�

ũξη = 0
�

ũ ( ξ , η) = φ ( ξ) + ψ ( η )
�

u(x , t) = φ (x + t) + ψ (x − t) . ( 8)

Now using the initial values we have

φ (x ) + ψ ( x) = g(x ) ; φ ′( x) − ψ ′(x ) = h (x ) ( 9)

which yields

u(x , t) =
1

2
[ g(x + t) + g( x − t) ] +

1

2

∫

x − t

x+ t

h ( y) dy. ( 1 0)

This is d’Alembert’ s formula.

Theorem 1 . Assume g ∈ C2 (R) , h ∈ C1 (R) , define u by

u(x , t) =
1

2
[ g(x + t) + g( x − t) ] +

1

2

∫

x − t

x+ t

h ( y) dy. ( 1 1 )

Then

i. u ∈ C2 (R × [ 0 , ∞ ) ) ;

ii. ut t − ux x = 0 in R × ( 0 , ∞ ) ;

iii. u takes the correct boundary values:

lim
( x , t)→ ( x 0 , 0 )

t> 0

u(x , t) = g( x0 ) ; ( 1 2 )

lim
( x , t)→ ( x 0 , 0 )

t> 0

ut(x , t) = h (x0 ) . ( 1 3)

Proof. The proof is by direct calculation and is left as an exercise. �

Remark 2. It is easy to generalize the above theorem to the case

g ∈ Ck , h ∈ Ck − 1 � u ∈ Ck . ( 1 4)



But in general u cannot be smoother ( in contrast to the heat equation and the Laplace equation) . For
example, consider the case h = g ′ , then u(x , t) = g(x + t) . It is clear that u cannot have better regularity
than g .

Remark 3. One can show that the formula

u( x , t) = φ( x + t) + ψ ( x − t) ( 1 5)

remains true even for distributional solutions of the 1 D wave equation.

2. Spherical means and Euler-Poisson-Darboux equation.
The case n > 2 is much more complicated. The idea is to reduce the wave equation to a 1 D equation

which can be solved explicitly. The reduction is fulfilled through introducing the following auxiliary func-
tions.

Let u = u(x , t) . We define at each x ∈ Rn ,

U (x ; r , t) ≡ 1

| ∂Br |

∫

∂Br ( x )

u(w , t) dSw , ( 1 6)

G (x ; r) ≡ 1

| ∂Br |

∫

∂Br ( x )

g(w ) dSw , ( 1 7)

H(x ; r) ≡ 1

| ∂Br |

∫

∂Br ( x )

h (w ) dSw . ( 1 8)

Note that when u is continuous, we can recover u from U by taking r↘ 0 .
It turns out that U (x ; r , t) as a function of r and t satisfies a 1 D equation.

Lemma 4. (Euler-Poisson-Darboux equation) Fix x ∈ Rn . Let u(x , t) ∈ Cm , m > 2 so lves the wave
equation. Then

U (x ; r , t) ≡ 1

| ∂Br |

∫

∂Br ( x )

u(w , t) dSw ( 1 9)

belongs to Cm
(
R̄+ × [ 0 , ∞ )

)
, and satisfies

Ut t − Ur r − n − 1

r
Ur = 0 R+ × ( 0 , ∞ ) ; U ( r , 0) = G( r) , Ut( r , 0) = H( r) . ( 20)

Remark 5. Notice that ∂r r − n − 1

r
∂r is just 4 in Rn with radial symmetry.

Proof. Recall that

Ur (x ; r , t) =
r

n

1

| Br (x ) |

∫

Br ( x )

4 yu( y , t) dy =
1

n α (n) rn− 1

∫

Br ( x )

4 yu( y , t) dy ( 21 )

This shows U ∈ C1 , and we can define Ur (x ; 0 , t) = 0 since its limit as r↘ 0 is 0 .
Differentiating w. r. t r again,

Ur r (x ; r , t) =
d

dr

[
1

n α (n) rn− 1

∫

Br ( x )

4 yu( y , t) dy

]

=
1 − n
n

1

| Br |

∫

Br ( x )

4 yu +
1

| ∂Br |

∫

∂Br ( x )

4 yu. ( 22 )

This shows U ∈ C2 and also Ur r ( x ; 0 , t) can be defined.
As

1

| Br |

∫

Br ( x )

4 yu =
1

| B1 |

∫

B 1 ( x )

(4 yu) (x + r z ) dz , ( 23)

It is clear that the regularity of the LHS is the same as the regularity of 4 yu . S imilar argument shows
that the same holds for the term

1

| ∂Br |

∫

∂Br ( x )

4 yu. ( 24)



Therefore Ur r as the same regularity as 4 yu , which shows U ∈ Cm when u ∈ Cm .
We further have

Ut t( x ; r , t) =
1

| ∂Br |

∫

∂Br ( x )

ut t = − 1

| ∂Br |

∫

∂Br ( x )

4 yu ( 25)

using the equation. �

3. n = 3 , Kirchhoff’s formula.
Let U , G , H be the spherical means. We set

Ũ = r U , G̃ = r G , H̃ = r H. ( 26)

Some calculation yields

Ũt t − Ũr r = 0 R+ × ( 0 , ∞ ) ; Ũ = G̃ , Ũt = H̃ . ( 27)

Remark 6. Note that here we used the fact that n = 3 .

Thus we need to solve the wave equation in the first quadrant.

Example 7. Consider the wave equation in the first quadrant:

ut t − ux x = 0 , x > 0 , t > 0; u(x , 0) = g( x) , ut(x , 0) = h (x ) , u = 0 for x = 0 , t > 0 . ( 28)

Let

ũ (x , t) =

{
u(x , t) x > 0
− u( − x , t) x < 0

( 29)

and define similarly g̃ , h̃ . Then it is clear that ũ solves the wave equation with initial values g̃ , h̃ . Thus
we have

ũ ( x , t) =
1

2
[ g̃ ( x + t) + g̃ (x − t) ] +

1

2

∫

x − t

x+ t

h̃ ( y) dy. ( 30)

Therefore the solution to the original problem is

u(x , t) =





1

2
[ g(x + t) + g( x − t) ] +

1

2

∫

x − t

x+ t

h ( y) dy x > t > 0

1

2
[ g(x + t) − g( t − x ) ] +

1

2

∫

t− x

t+ x

h ( y) dy t > x > 0

( 31 )

Now for our purpose, we only need the case t > r ( remember that finally we will let r ↘ 0 and recover u
from U ) . In this case

Ũ (x ; r , t) =
1

2

[
G̃ ( r + t) − G̃ ( t − r)

]
+

1

2

∫

t− r

t+ r

H̃ ( y) dy. ( 32 )

We have

u( x , t) = lim
r↘ 0

Ũ (x ; r , t)

r

= G̃
′
( t) + H̃ ( t)

=
∂

∂t

(
t

| ∂Bt |

∫

∂Bt ( x )

g(w ) dSw

)
+

t

| ∂Bt |

∫

∂Bt ( x )

h (w ) dSw . ( 33)

Further computation yields

u( x , t) =
1

| ∂Bt |

∫

∂Bt ( x )

[ t h (w ) + g(w ) + ∇g(w ) · (w − x ) ] dSw ( 34)

which is Kirchhoff’ s formula.

4. n=2, Method of descent and Poisson’ s formula.



It is not possible to simplify as we did in the n = 3 case. Instead, we use the so-called “method of
descent”, which treats the solution u( x , t) of the 2D wave equation as a solution to the 3D equation. We
set

ū ( x1 , x2 , x3 , t) ≡ u(x1 , x2 , t) . ( 35)

and define ḡ , h̄ similarly.
Using the Kirchhoff’ s formula we have

u(x , t) = ū ( x̄ , t)

=
1

| ∂Bt( x̄ )

∫

∂B t ( x̄ )

t h̄ ( w̄ ) + ḡ ( w̄ ) + ∇ x̄ ḡ ( w̄ ) · ( w̄ − x̄ ) dSw̄ . ( 36)

where x̄ = (x , x3 ) and Bt( x̄ ) is the ball in R3 .
From definitions of the variaous bar-ed functions, we have

u(x , t) =
1

4 π t2

∫

∂Bt ( x̄ )

t h ( y) + g( y) + ∇yg( y) · ( y − x) dSw̄ ( 37)

where w̄ =

(
y , ± t2 − | y | 2

√ )
.

Finally, let Dt(x ) denote the ball in R2 centered at x with radius t , we have

u(x , t) =
2

4 π t2

∫

D t ( x )

t h ( y) + g( y) + ∇yg( y) · ( y − x)(
1 − | y − x |

2

t2

) 1 / 2
dy

=
1

2

1

| Dt |

∫

D t ( x )

t g( y) + t2 h ( y) + t∇g · ( y − x )(
t2 − | y − x | 2

) 1 / 2
dy. ( 38)

This is the Poisson’ s formula.

Remark 8. (Huygens’ Principle) We notice that the behavior of the solutions for the 2D and 3D
wave equations are drastically different. In 2D, u(x , t) depends on initial data in the whole ball Dt(x )
while in 3D it only depends on the data on the boundary of the ball Bt( x) . Or equivalently, in 3D the
effect of a vibration is only felt at the front of its propagation while in 2D it is felt forever after the front
passed. 1 This is the so-called Huygens’ principle.

Remark 9. For general n , we define

Ũ ( r , t) =

(
1

r
∂r

) k − 1 (
r2 k − 1 U ( x ; r , t)

)
( 39)

and define G̃ , H̃ accordingly. Some calculation yields the solution

u(x , t) =
1

γn



(
∂

∂t

)(
1

t

∂

∂t

) n − 3

2

(
tn− 2 1

| ∂Bt |

∫

∂Bt ( x )

g dS

)
+

(
1

t

∂

∂t

) n − 3

2

(
tn− 2 1

| ∂Bt |

∫

∂B t ( x )

h dS

) 
 ( 40)

for n odd, where γn = 1 · 3 · � · (n − 2) . Then the method of descent yields

u( x , t) =
1

γn



(
∂

∂t

)(
1

t

∂

∂t

) n − 2

2

(
tn

| Bt |

∫

Bt

g( y) dy
(
t2 − | y − x | 2

) 1 / 2

)
+

(
1

t

∂

∂t

) n − 2

2

(
tn

| Bt |

∫

Bt

h ( y) dy
(
t2 − | y − x | 2

) 1 / 2

) 
 .

for n even, where γn = 2 · 4 · � · (n − 2) · n .
See Evans pp. 75–80 for details.

Remark 1 0. (Nonhomogeneous problem) For the nonhomogeneous problem

�u = f , u = 0 , ut = 0 , ( 41 )

1 . If u( x , t) also depends on data in the whole ball Bt( x ) in 3D, we would not be able to clearly hear anything!



we use the Duhamel’ s principle, obtaining

u(x , t) =

∫

0

t

u(x , t ; s ) ds ( 42 )

where u( x , t ; s ) solves

ut t − 4u = 0 , u(x , s ; s ) = 0 , ut( x , s ; s ) = f ( · , s ) . ( 43)

In particular, we have

− n = 1 :

u(x , t) =
1

2

∫

0

t ∫

x − s

x+ s

f ( y , t − s ) dy ds . ( 44)

− n = 3 :

u(x , t) =
1

4 π

∫

Bt ( x )

f ( y , t − | y − x | )
| y − x | dy. ( 45)

Here the integrand is called the “retarded potential”.


