Math 527 Fall 2009 Lecture 7 (Sep. 28, 2009)

WAVE EQUATIONS: EXPLICIT FORMULAS

In this lecture we derive the representation formulas for the wave equation in the whole space:

$$\Box u \equiv u_{tt} - \Delta u = 0, \quad \mathbb{R}^n \times (0, \infty); \qquad u(x, 0) = g(x), \qquad u_t(x, 0) = h(x). \tag{1}$$

It turns out that the properties of the solutions depend on the dimension. More specifically, there are three cases: n = 1, n > 1 even; n > 1 odd. We will discuss in detail the three representative cases: n = 1, 2, 3 (the order is actually n = 1, 3, 2, for reasons that will be clear soon).

1.
$$n = 1$$

We consider the 1D wave equation

$$u_{tt} - u_{xx} = 0, \mathbb{R} \times (0, \infty); \qquad u(x, 0) = g(x), \qquad u_t(x, 0) = h(x).$$
 (2)

This equation can be solved via the following change of variables:

$$\xi = x + t; \qquad \eta = x - t, \tag{3}$$

and to make things clearer we set $\tilde{u}(\xi, \eta) = u(x, t)$.

With this change of variable we compute

$$u_t = \tilde{u}_{\xi}\xi_t + \tilde{u}_{\eta}\eta_t = \tilde{u}_{\xi} - \tilde{u}_{\eta} \tag{4}$$

$$u_{tt} = \tilde{u}_{\xi\xi} - 2\,\tilde{u}_{\xi\eta} + \tilde{u}_{\eta\eta} \tag{5}$$

$$u_x = \tilde{u}_{\xi} + \tilde{u}_{\eta} \tag{6}$$

$$u_{xx} = \tilde{u}_{\xi\xi} + 2\,\tilde{u}_{\xi\eta} + \tilde{u}_{\eta\eta} \tag{7}$$

Therefore

$$u_{tt} - u_{xx} = 0 \iff \tilde{u}_{\xi\eta} = 0 \iff \tilde{u}(\xi, \eta) = \phi(\xi) + \psi(\eta) \iff u(x, t) = \phi(x+t) + \psi(x-t).$$
(8)

Now using the initial values we have

$$\phi(x) + \psi(x) = g(x); \qquad \phi'(x) - \psi'(x) = h(x)$$
(9)

which yields

$$u(x,t) = \frac{1}{2} \left[g(x+t) + g(x-t) \right] + \frac{1}{2} \int_{x-t}^{x+t} h(y) \, \mathrm{d}y.$$
(10)

This is d'Alembert's formula.

Theorem 1. Assume $g \in C^2(\mathbb{R})$, $h \in C^1(\mathbb{R})$, define u by

$$u(x,t) = \frac{1}{2} \left[g(x+t) + g(x-t) \right] + \frac{1}{2} \int_{x-t}^{x+t} h(y) \, \mathrm{d}y.$$
(11)

Then

- *i.* $u \in C^2(\mathbb{R} \times [0,\infty));$
- *ii.* $u_{tt} u_{xx} = 0$ in $\mathbb{R} \times (0, \infty)$;

iii. u takes the correct boundary values:

 $\lim_{\substack{(x,t) \to (x_0,0) \\ t > 0}} u(x,t) = g(x_0);$ (12)

$$\lim_{\substack{(x,t)\to(x_0,0)\\t>0}} u_t(x,t) = h(x_0).$$
(13)

Proof. The proof is by direct calculation and is left as an exercise.

Remark 2. It is easy to generalize the above theorem to the case

$$g \in C^k, \quad h \in C^{k-1} \implies u \in C^k.$$
 (14)

But in general u cannot be smoother (in contrast to the heat equation and the Laplace equation). For example, consider the case h = g', then u(x, t) = g(x + t). It is clear that u cannot have better regularity than g.

Remark 3. One can show that the formula

$$u(x,t) = \phi(x+t) + \psi(x-t)$$
(15)

remains true even for distributional solutions of the 1D wave equation.

2. Spherical means and Euler-Poisson-Darboux equation.

The case $n \ge 2$ is much more complicated. The idea is to reduce the wave equation to a 1D equation which can be solved explicitly. The reduction is fulfilled through introducing the following auxiliary functions.

Let u = u(x, t). We define at each $x \in \mathbb{R}^n$,

$$U(x;r,t) \equiv \frac{1}{|\partial B_r|} \int_{\partial B_r(x)} u(w,t) \,\mathrm{d}S_w,\tag{16}$$

$$G(x;r) \equiv \frac{1}{|\partial B_r|} \int_{\partial B_r(x)} g(w) \,\mathrm{d}S_w, \tag{17}$$

$$H(x;r) \equiv \frac{1}{|\partial B_r|} \int_{\partial B_r(x)} h(w) \,\mathrm{d}S_w.$$
(18)

Note that when u is continuous, we can recover u from U by taking $r \searrow 0$.

It turns out that U(x; r, t) as a function of r and t satisfies a 1D equation.

Lemma 4. (Euler-Poisson-Darboux equation) Fix $x \in \mathbb{R}^n$. Let $u(x, t) \in C^m$, $m \ge 2$ solves the wave equation. Then

$$U(x;r,t) \equiv \frac{1}{|\partial B_r|} \int_{\partial B_r(x)} u(w,t) \,\mathrm{d}S_w \tag{19}$$

belongs to $C^m(\bar{\mathbb{R}}_+ \times [0,\infty))$, and satisfies

$$U_{tt} - U_{rr} - \frac{n-1}{r} U_r = 0 \quad \mathbb{R}_+ \times (0,\infty); \qquad U(r,0) = G(r), \quad U_t(r,0) = H(r).$$
(20)

Remark 5. Notice that $\partial_{rr} - \frac{n-1}{r} \partial_r$ is just \triangle in \mathbb{R}^n with radial symmetry.

Proof. Recall that

$$U_r(x;r,t) = \frac{r}{n} \frac{1}{|B_r(x)|} \int_{B_r(x)} \Delta_y u(y,t) \, \mathrm{d}y = \frac{1}{n \,\alpha(n) \, r^{n-1}} \int_{B_r(x)} \Delta_y u(y,t) \, \mathrm{d}y \tag{21}$$

This shows $U \in C^1$, and we can define $U_r(x; 0, t) = 0$ since its limit as $r \searrow 0$ is 0.

Differentiating w.r.t r again,

$$U_{rr}(x;r,t) = \frac{\mathrm{d}}{\mathrm{d}r} \left[\frac{1}{n\,\alpha(n)\,r^{n-1}} \int_{B_r(x)} \triangle_y u(y,t)\,\mathrm{d}y \right]$$

$$= \frac{1-n}{n} \frac{1}{|B_r|} \int_{B_r(x)} \triangle_y u + \frac{1}{|\partial B_r|} \int_{\partial B_r(x)} \triangle_y u.$$
(22)

This shows $U \in C^2$ and also $U_{rr}(x; 0, t)$ can be defined.

As

$$\frac{1}{|B_r|} \int_{B_r(x)} \Delta_y u = \frac{1}{|B_1|} \int_{B_1(x)} (\Delta_y u) (x+rz) \, \mathrm{d}z, \tag{23}$$

It is clear that the regularity of the LHS is the same as the regularity of $\triangle_y u$. Similar argument shows that the same holds for the term

$$\frac{1}{|\partial B_r|} \int_{\partial B_r(x)} \Delta_y u. \tag{24}$$

Therefore U_{rr} as the same regularity as $\Delta_y u$, which shows $U \in C^m$ when $u \in C^m$.

We further have

$$U_{tt}(x;r,t) = \frac{1}{|\partial B_r|} \int_{\partial B_r(x)} u_{tt} = -\frac{1}{|\partial B_r|} \int_{\partial B_r(x)} \Delta_y u \tag{25}$$

using the equation.

3. n = 3, Kirchhoff's formula.

Let U, G, H be the spherical means. We set

$$\tilde{U} = r U, \quad \tilde{G} = r G, \quad \tilde{H} = r H.$$
(26)

Some calculation yields

$$\tilde{U}_{tt} - \tilde{U}_{rr} = 0 \quad \mathbb{R}_+ \times (0, \infty); \qquad \tilde{U} = \tilde{G}, \quad \tilde{U}_t = \tilde{H}.$$
(27)

Remark 6. Note that here we used the fact that n = 3.

Thus we need to solve the wave equation in the first quadrant.

Example 7. Consider the wave equation in the first quadrant:

$$u_{tt} - u_{xx} = 0, \quad x > 0, t > 0; \qquad u(x,0) = g(x), \quad u_t(x,0) = h(x), \quad u = 0 \text{ for } x = 0, t > 0.$$
 (28)

Let

$$\tilde{u}(x,t) = \begin{cases} u(x,t) & x > 0 \\ -u(-x,t) & x < 0 \end{cases}$$
(29)

and define similarly \tilde{g}, \tilde{h} . Then it is clear that \tilde{u} solves the wave equation with initial values \tilde{g}, \tilde{h} . Thus we have

$$\tilde{u}(x,t) = \frac{1}{2} \left[\tilde{g}(x+t) + \tilde{g}(x-t) \right] + \frac{1}{2} \int_{x-t}^{x+t} \tilde{h}(y) \,\mathrm{d}y.$$
(30)

Therefore the solution to the original problem is

$$u(x,t) = \begin{cases} \frac{1}{2} \left[g(x+t) + g(x-t) \right] + \frac{1}{2} \int_{x-t}^{x+t} h(y) \, \mathrm{d}y \ x \ge t \ge 0 \\ \frac{1}{2} \left[g(x+t) - g(t-x) \right] + \frac{1}{2} \int_{t-x}^{t+x} h(y) \, \mathrm{d}y \ t \ge x \ge 0 \end{cases}$$
(31)

Now for our purpose, we only need the case $t \ge r$ (remember that finally we will let $r \searrow 0$ and recover u from U). In this case

$$\tilde{U}(x;r,t) = \frac{1}{2} \left[\tilde{G}(r+t) - \tilde{G}(t-r) \right] + \frac{1}{2} \int_{t-r}^{t+r} \tilde{H}(y) \, \mathrm{d}y.$$
(32)

We have

$$u(x,t) = \lim_{r \searrow 0} \frac{\tilde{U}(x;r,t)}{r}$$

= $\tilde{G}'(t) + \tilde{H}(t)$
= $\frac{\partial}{\partial t} \left(\frac{t}{|\partial B_t|} \int_{\partial B_t(x)} g(w) \, \mathrm{d}S_w \right) + \frac{t}{|\partial B_t|} \int_{\partial B_t(x)} h(w) \, \mathrm{d}S_w.$ (33)

Further computation yields

$$u(x,t) = \frac{1}{|\partial B_t|} \int_{\partial B_t(x)} \left[t h(w) + g(w) + \nabla g(w) \cdot (w-x) \right] \mathrm{d}S_w \tag{34}$$

which is Kirchhoff's formula.

4. n=2, Method of descent and Poisson's formula.

It is not possible to simplify as we did in the n = 3 case. Instead, we use the so-called "method of descent", which treats the solution u(x, t) of the 2D wave equation as a solution to the 3D equation. We set

$$\bar{u}(x_1, x_2, x_3, t) \equiv u(x_1, x_2, t). \tag{35}$$

and define \bar{g} , \bar{h} similarly.

Using the Kirchhoff's formula we have

$$u(x,t) = \bar{u}(\bar{x},t) = \frac{1}{|\partial B_t(\bar{x})|} \int_{\partial B_t(\bar{x})} t \,\bar{h}(\bar{w}) + \bar{g}(\bar{w}) + \nabla_{\bar{x}}\bar{g}(\bar{w}) \cdot (\bar{w} - \bar{x}) \,\mathrm{d}S_{\bar{w}}.$$
(36)

where $\bar{x} = (x, x_3)$ and $B_t(\bar{x})$ is the ball in \mathbb{R}^3 .

From definitions of the variaous bar-ed functions, we have

$$u(x,t) = \frac{1}{4\pi t^2} \int_{\partial B_t(\bar{x})} t \, h(y) + g(y) + \nabla_y g(y) \cdot (y-x) \, \mathrm{d}S_{\bar{w}}$$
(37)

where $\bar{w} = \left(y, \pm \sqrt{t^2 - \left|y\right|^2}\right)$.

Finally, let $D_t(x)$ denote the ball in \mathbb{R}^2 centered at x with radius t, we have

$$\begin{aligned}
\iota(x,t) &= \frac{2}{4\pi t^2} \int_{D_t(x)} \frac{t h(y) + g(y) + \nabla_y g(y) \cdot (y-x)}{\left(1 - \frac{|y-x|^2}{t^2}\right)^{1/2}} \,\mathrm{d}y \\
&= \frac{1}{2} \frac{1}{|D_t|} \int_{D_t(x)} \frac{t g(y) + t^2 h(y) + t \nabla g \cdot (y-x)}{\left(t^2 - |y-x|^2\right)^{1/2}} \,\mathrm{d}y.
\end{aligned} \tag{38}$$

This is the Poisson's formula.

Remark 8. (Huygens' Principle) We notice that the behavior of the solutions for the 2D and 3D wave equations are drastically different. In 2D, u(x, t) depends on initial data in the whole ball $D_t(x)$ while in 3D it only depends on the data on the boundary of the ball $B_t(x)$. Or equivalently, in 3D the effect of a vibration is only felt at the front of its propagation while in 2D it is felt forever after the front passed.¹ This is the so-called Huygens' principle.

Remark 9. For general n, we define

$$\tilde{U}(r,t) = \left(\frac{1}{r}\partial_r\right)^{k-1} \left(r^{2k-1}U(x;r,t)\right)$$
(39)

and define \tilde{G}, \tilde{H} accordingly. Some calculation yields the solution

$$u(x,t) = \frac{1}{\gamma_n} \left[\left(\frac{\partial}{\partial t} \right) \left(\frac{1}{t} \frac{\partial}{\partial t} \right)^{\frac{n-3}{2}} \left(t^{n-2} \frac{1}{|\partial B_t|} \int_{\partial B_t(x)} g \, \mathrm{d}S \right) + \left(\frac{1}{t} \frac{\partial}{\partial t} \right)^{\frac{n-3}{2}} \left(t^{n-2} \frac{1}{|\partial B_t|} \int_{\partial B_t(x)} h \, \mathrm{d}S \right) \right]$$
(40)

for n odd, where $\gamma_n = 1 \cdot 3 \cdot \dots \cdot (n-2)$. Then the method of descent yields

$$u(x,t) = \frac{1}{\gamma_n} \left[\left(\frac{\partial}{\partial t}\right) \left(\frac{1}{t} \frac{\partial}{\partial t}\right)^{\frac{n-2}{2}} \left(\frac{t^n}{|B_t|} \int_{B_t} \frac{g(y) \,\mathrm{d}y}{\left(t^2 - |y - x|^2\right)^{1/2}}\right) + \left(\frac{1}{t} \frac{\partial}{\partial t}\right)^{\frac{n-2}{2}} \left(\frac{t^n}{|B_t|} \int_{B_t} \frac{h(y) \,\mathrm{d}y}{\left(t^2 - |y - x|^2\right)^{1/2}}\right) \right].$$

for *n* even, where $\gamma_n = 2 \cdot 4 \cdot \dots \cdot (n-2) \cdot n$. See Evans pp. 75–80 for details.

Remark 10. (Nonhomogeneous problem) For the nonhomogeneous problem

$$\Box u = f, \qquad u = 0, \qquad u_t = 0, \tag{41}$$

^{1.} If u(x,t) also depends on data in the whole ball $B_t(x)$ in 3D, we would not be able to clearly hear anything!

we use the Duhamel's principle, obtaining

$$u(x,t) = \int_0^t u(x,t;s) \,\mathrm{d}s$$
 (42)

where u(x,t;s) solves

$$u_{tt} - \Delta u = 0, \qquad u(x,s;s) = 0, \quad u_t(x,s;s) = f(\cdot,s).$$
 (43)

In particular, we have

- n = 1:

$$u(x,t) = \frac{1}{2} \int_0^t \int_{x-s}^{x+s} f(y,t-s) \,\mathrm{d}y \,\mathrm{d}s.$$
(44)

$$- n = 3:$$

$$u(x,t) = \frac{1}{4\pi} \int_{B_t(x)} \frac{f(y,t-|y-x|)}{|y-x|} \,\mathrm{d}y.$$
(45)

Here the integrand is called the "retarded potential".