
Math 5 2 7 Fall 2 009 Lecture 6 ( S ep . 2 3 , 2 0 0 9 )

Heat Equation: Maximum Principles and Energy Method

We continue the discussion of the heat equation

ut − 4u = f in UT ; u = g on ∂∗UT ( 1 )

where

UT
� U × [ 0 , T) ; ∂∗UT

�
(
Ū × { 0}

)
∪ (∂U × [ 0 , T ] ) , ( 2 )

with U ⊆ Rn .

1 . Maximum principles.
Recall that the motivation for deriving maximum principles is to show uniqueness of the solution. In

our case, to show the uniqueness of the heat equation, all we need to do is to show that

ut − 4u = 0 in UT ; u = 0 on ∂∗UT ( 3)

implies

u ≡ 0 in UT . ( 4)

Further recall that, for harmonic functions ( satisfying 4u = 0 ) , there are two versions of maximum princi-
ples:

• Weak maximum principle:

max
Ū

u = max
∂U

u. ( 5)

• Strong maximum principle: If U is connected and there is x0 ∈ U such that u(x0 ) = maxŪ u , then
u ≡ u(x0 ) in U .

We will show that similar principles hold for the heat equation too.

1 . 1 . Weak maximum principle.
We try to prove the following:

Theorem 1 . (Weak maximum principle for bounded U ) Let U be a bounded domain in Rn . u ∈
C1

2 (UT) ∩ C(UT ∪ ∂∗UT) . Then

max
ŪT

u = max
∂ ∗UT

u. ( 6)

Proof. The basic idea is the following. As ŪT is a bounded closed set in Rn+ 1 , it is compact. As a conse-
quence there is (x0 , t0 ) ∈ ŪT \∂∗UT such that

u(x0 , t0 ) = max
ŪT

u. ( 7)

Now at this particular point, since x0 ∈ U is the maximizer of the function u( · , t0 ) , we have

4u( x0 , t0 ) 6 0 . ( 8)

On the other hand, as u(x0 , t0 ) > u( x0 , t) for all t < t0 , we have

ut(x0 , t0 ) > 0 . ( 9)

As a consequence we have

ut − 4u > 0 at ( x0 , t0 ) . ( 1 0)

Unfortunately we can conclude nothing here – we would have obtained contradiction if > is replaced by
> . Furthermore there is another problem in the above argument. As u ∈ C1

2 (UT) , ut( x0 , t0 ) may not exist
if t0 = T .

In the following we overcome these difficulties through a few tricks.
First, instead of trying to prove

max
ŪT

u = max
∂ ∗UT

u ( 1 1 )



directly, we try to prove

max
ŪT − δ

u = max
∂ ∗UT − δ

u ( 1 2 )

for any δ > 0 . This guarantees that ut exists for any point under consideration. It is clear that once this is
established, we can let δ ↘ 0 to get the original claim.

Next, instead of considering u , we consider v (x , t) ≡ u(x , t) − ε t for some ε > 0 , and show

max
ŪT − δ

v = max
∂ ∗UT − δ

v . ( 1 3)

It is easy to see that once this is shown, we can let ε↘ 0 to get the corresponding relation for u .
For v , we have

vt − 4v = ut − ε − 4u = − ε < 0 . ( 1 4)

Now assume ( x0 , t0 ) is a maximizer for v . Then we have

vt( x0 , t0 ) > 0 , 4v (x0 , t0 ) 6 0 � vt − 4v > 0 at (x0 , t0 ) ( 1 5)

which gives the desired contradiction! �

Remark 2. It is clear that ut − 4u = 0 can be replaced by ut − 4u 6 0 , thus obtaining weak maximum
principle for subsolutions of the heat equation.

Remark 3. It is easy to see that the above proof breaks down when U is not bounded. One can try to
fix as follows.

Consider UR ≡ BR ∩ U . Then apply the weak maximum principle to UT
R and finally let R↗∞ . It is

clear from this approach that the limiting values of u at ∞ matters. In fact, examples can be constructed
to show that non-zero solutions exist for

ut − 4u = 0 in Rn × [ 0 , ∞ ) , u = 0 on Rn × { 0} ( 1 6)

if no restriction is put on how u grows at ∞ . See Lecture 1 3 of Fall 2008 Math 527. Also see Chapter 7 of
F. John’ s Partial Differential Equations for more discussion on this issue.

On the other hand, once we put some “growth condition” onto u , we have weak maximum principle for
the case U = Rn , as the following theorem illustrates.

Theorem 4. (Weak maximum principle for U = Rn) Suppose

ut − 4u 6 0 in UT ; u( x , t) 6 Meλ | x |
2

in UT for M, λ > 0 ; u( x , 0) = g(x ) , ( 1 7)

then

sup
Ω̄T

u 6 sup
Rn

g. ( 1 8)

Proof. First we divide ( 0 , T) into subintervals with size r < 1

4 λ
. It suffices to prove the claim on a sub-

interval. From now on we assume T < 1

4 λ
.

Consider the auxiliary function

v ( x , t) ≡ u( x , t) − δ 1

( 4 π (T + ε − t) ) n/ 2
e

(
| x − y | 2

4 (T+ ε − t )

)

. ( 1 9)

where ε is chosen such that T + ε <
1

4 λ
.

One can show that the perturbation term satisfies the heat equation. Thus we have

vt − 4v 6 0 . ( 20)

The strategy is the show first

v ( x , t) 6 sup
Rn

g ( 21 )

for any ( x , t) and then letting δ ↘ 0 .



We first notice that, on the sphere | x − y | = R, we have

v ( x , t) 6 Meλ ( | x | +R )
2 − δ 1

( 4 π (T + ε − t) ) n/ 2
e

(
R2

4 (T+ ε − t )

)

6 sup
Rn

g ( 22 )

once R is big enough. Now apply the weak maximum principle on the domain BR × ( 0 , T) , we obtain v ( x ,
t) 6 sup g . �

Corollary 5. (Uniqueness) The solution to the heat equation

ut − 4u = f in UT ; u = g on ∂∗UT ( 23)

is unique when either U is bounded, or U = Rn with u satisfying the growth estimate

| u(x , t) | 6 Meλ | x |
2

( 24)

for constants M, λ > 0 .

1 . 2 . Strong maximum principle.
As in the case of harmonic functions, to establish strong maximum principle, we have to obtain first

some kind of mean value property. It turns out, the mean value property for the heat equation looks very
weird.

Theorem 6. (Mean value property for the heat equation) Let u ∈ C1
2 (UT) so lve the heat equation,

then

u(x , t) =
1

4 rn

∫∫

E ( x , t ; r )

u( y , s )
| x − y | 2
( t − s ) 2

dy ds . ( 25)

for each E( x , t ; r) ⊂ UT. Here the “heat bal l” E (x , t ; r) is defined as

E (x , t ; r) ≡
{

( y , s ) ∈ Rn+ 1 � s 6 t , Φ( x − y , t − s ) > 1

rn

}
. ( 26)

Proof. The proof is quite technical. See pp. 53 – 54 of Evans. Also see p. 4 of Lecture 1 3 of Fall 2008
Math 527 for the “details” omitted in Evans. �

Remark 7. Recall that for harmonic functions, we have not only a “ball” version of mean value formula

u( x) =
1

| Br |

∫

Br ( x )

u( y) dy , ( 27)

but also a “sphere” version

u(x ) =
1

| ∂Br |

∫

∂Br ( x )

u( y) dS ( y) . ( 28)

The situation is similar for the heat equation. The “sphere” version is as follows:

u(x , t) =
1

rn

∫

∂E ( x , t ; r )

u( y , s )
| x − y |
2 ( t − s ) dS. ( 29)

See J. Jost Partial Differential Equations , pp. 81 – 83 for details.

Now we can prove the strong maximum principle for the heat equation.

Theorem 8. ( Strong maximum principle) If U is connected and there is x0 ∈ U such that u( x0 ) =
maxUT u , then u ≡ u(x0 ) in UT.

Proof. Suppose there is (x0 , t0 ) ∈ UT such that u( x0 , t0 ) = maxŪT u , then by picking r small enough so
that E( x0 , t0 ; r) ⊂ UT , and using the mean value property, we conclude that u is constant inside E (x0 , t0 ;
r) .



Next for any ( y0 , s 0 ) ∈ UT such that the line segment connecting x0 , y0 is in U , we can show that u( y0 ,
s 0 ) = u(x0 , t0 ) whenever s 0 < t0 by covering the line segment connecting ( y0 , s 0 ) and ( x0 , t0 ) with the heat
balls.

Finally, since U is connected, any y0 can be connected from x0 via finitely many line segments. And
therefore u( y , s ) = u( x0 , t0 ) for all y ∈ Ω , s < t0 . �

2. Energy method.
A particularly effective approach to evolution equations ( such as the heat equation) is to estimate a

certain quantity called “energy”. For example, the uniqueness of solutions to the heat equation can be
shown easily as follows.

Consider the initial/boundary-value problem

ut − 4u = f in UT ; u = g on ∂∗UT . ( 30)

We assume U ⊂ Rn is open, bounded, and that ∂U is C1 . Let T > 0 be fixed.

Theorem 9. (Uniqueness) There exists at most one so lution in C1
2
(
ŪT
)
.

Proof. If ũ , u are two different solutions, we set w = u − ũ . Then w solves

wt − 4w = 0 in UT ; w = 0 on ∂∗UT . ( 31 )

Now set

e( t) ≡
∫

U

w2 (x , t) dx. ( 32 )

It is clear that it suffices to show e( t) ≡ 0 for 0 6 t 6 T . We compute

d

dt
e ( t) =

d

dt

∫

U

w2 (x , t) dx

=

∫

U

d

dt

(
w2 (x , t)

)
dx

=

∫

U

2 w ( x , t) wt(x , t) dx

= 2

∫

U

w (x , t) 4w( x , t) dx (We have used the equation here)

= − 2

∫

U
| ∇w (x , t) | 2 dx 6 0 . ( 33)

Combined with e ( 0) = 0 , we conclude that

e ( t) ≡ 0 ( 34)

for all 0 6 t 6 T and ends the proof. �

Remark 1 0. The above argument can also be applied to the unbounded case. However we need to
require the solutions to decay at ∞ , or more precisely u( · , t) ∈ L2 . This is much more restrictive than the
condition in the uniqueness theorem following from the weak maximum principle.


