HEAT EQUATION: EXPLICIT FORMULAS

(First 25 minutes: Quiz 1)

We now turn to the heat equation

$$u_t - \Delta u = f$$
, in U_T ; $u = q$ on $\partial^* U_T$ (1)

where

$$U_T \equiv U \times [0, T); \qquad \partial^* U_T \equiv (\bar{U} \times \{0\}) \cup (\partial U \times [0, T]). \tag{2}$$

with $U \subset \mathbb{R}^n$.

We call $\partial^* U_T$ the reduced boundary of U_T . In this lecture we will find explicit representation formula via fundamental solution, and discuss its maximum principles.

1. Fundamental solutions and homogeneous initial-value problems.

1.1. Deriving the fundamental solution.

Similar to the case of Laplace/Poisson equations, we seek a special solution in the case $\Omega = \mathbb{R}^n$ which can help representing other solutions. We do this through Fourier transform.

We consider the Fourier transform in the spatial variable for the initial value problem

$$u_t - \Delta u = 0, \quad t > 0; \qquad u = g, \quad t = 0. \tag{3}$$

We obtain an ODE for the function $\hat{u}(\xi, t)$:

$$(\hat{u})_t + |\xi|^2 \hat{u} = 0, \qquad \hat{u}(\xi, 0) = \hat{g}(\xi).$$
 (4)

This equation is easy to solve:

$$\hat{u}(\xi, t) = \hat{g}(\xi) e^{-|\xi|^2 t}.$$
(5)

Due to the following property of the Fourier transform:

$$\widehat{f * g}(\xi) = \widehat{f}(\xi) \, \widehat{g}(\xi)$$

Thus all we need to do is to find the inverse Fourier transform of $e^{-|\xi|^2t}$. From properties of the Fourier transform, if

$$\hat{G}(\xi) = e^{-|\xi|^2},\tag{6}$$

then the Fourier transform of $t^{-n/2}G(x/t^{1/2})$ is $e^{-|\xi|^2t}$.

Lemma 1. Let $G(x) = \frac{1}{(4\pi)^{-n/2}} e^{-|x|^2/4}$, then $\hat{G}(\xi) = e^{-|\xi|^2}$.

Proof. All we need to do is to compute

$$\frac{1}{(4\pi)^{-n/2}} \int_{\mathbb{R}^n} e^{-|x|^2/4} e^{-ix\cdot\xi} \, \mathrm{d}x. \tag{7}$$

We have

$$\int_{\mathbb{R}^{n}} e^{-|x|^{2}/4} e^{-ix \cdot \xi} dx = \int_{\mathbb{R}^{n}} e^{-\frac{x_{1}^{2}}{4} - \frac{x_{2}^{2}}{4} - \dots - \frac{x_{n}^{2}}{4} - ix_{1}\xi_{1} - ix_{2}\xi_{2} - \dots - ix_{n}\xi_{n}} dx$$

$$= \left(\int_{\mathbb{R}} e^{-\frac{x_{1}^{2}}{4} - ix_{1}\xi_{1}} dx_{1} \right) \cdots \left(\int_{\mathbb{R}} e^{-\frac{x_{n}^{2}}{4} - ix_{n}\xi_{n}} dx_{n} \right). \tag{8}$$

Thus our task is to compute the integral

$$\int_{\mathbb{R}} e^{-\frac{x^2}{4} - ix\xi} \, \mathrm{d}x \tag{9}$$

where both x and ξ are scalars now.

We construct the following contour in \mathbb{C} : Let R > 0 be real.

$$\{-R \to +R\} \cup \{R \to R - 2\xi i\} \cup \{R - 2\xi i \to -R - 2\xi i\} \cup \{-R - 2\xi i \to -R\} \equiv \Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \cup \Gamma_4. \tag{10}$$

The function

$$e^{-z^2/4 - iz\xi} \tag{11}$$

is analytic inside this contour, therefore

$$\int_{\Gamma_1} + \int_{\Gamma_2} + \int_{\Gamma_3} + \int_{\Gamma_4} = 0. \tag{12}$$

We further notice that

$$\left| \int_{\Gamma_2(\Gamma_4)} e^{-z^2/4 - iz\xi} \right| \leqslant C e^{-R^2/4} \to 0 \tag{13}$$

and

$$\int_{\Gamma_1} e^{-z^2/4 - iz\xi} \to \int_{\mathbb{R}} e^{-\frac{x^2}{4} - ix\xi} \, \mathrm{d}x \tag{14}$$

as $R \nearrow + \infty$. Thus

$$\int_{\mathbb{R}} e^{-\frac{x^2}{4} - ix\xi} \, \mathrm{d}x = \lim_{R \to \infty} -\int_{\Gamma_3} e^{-z^2/4 - iz\xi} \, \mathrm{d}z. \tag{15}$$

We compute

$$-\int_{\Gamma_{3}} e^{-z^{2}/4 - iz\xi} dz = \int_{-R - 2\xi i}^{R - 2\xi i} e^{-z^{2}/4 - iz\xi} dz$$

$$= \int_{-R}^{R} e^{-(y - 2\xi i)^{2}/4 - i(y - 2\xi i)\xi} dy$$

$$= \int_{-R}^{R} e^{-y^{2}/4} e^{-\xi^{2}} dy \rightarrow (4\pi)^{1/2} e^{-\xi^{2}}.$$
(16)

Definition 2. The function

$$\Phi(x,t) \equiv \begin{cases}
\frac{1}{(4\pi t)^{n/2}} e^{-\frac{|x|^2}{4t}} & t > 0 \\
0 & t = 0
\end{cases}$$
(17)

is called the fundamental solution of the heat equation.

1.2. Properties of the fundamental solution.

The fundamental solution enjoys the following properties.

1. For each time t > 0,

$$\int_{\mathbb{R}^n} \Phi(x,t) \, \mathrm{d}x = 1. \tag{18}$$

2. Treating t as a parameter,

$$\lim_{t \to 0} \Phi(x, t) = \delta \tag{19}$$

in the sense of distributions. In other words, we have

$$\lim_{t \searrow 0} \int_{\mathbb{R}^n} \Phi(x, t) f(x) = f(0)$$
(20)

for any continuous function f.

1.3. Homogeneous initial value problem.

From the above properties we immediately obtain the explicit formula for solutions for the initial-value problem:

$$u_t - \Delta u = 0$$
 in $\mathbb{R}^n \times (0, \infty)$; $u = g$ on $\mathbb{R}^n \times \{t = 0\}$. (21)

Theorem 3. (Solution of initial-value problem) Assume $g \in C(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$, and define u by

$$u(x,t) = \int_{\mathbb{R}^n} \Phi(x-y,t) g(y) dy = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4t}} g(y) dy, \qquad t > 0,$$
 (22)

then

$$i. \ u \in C^{\infty}(\mathbb{R}^n \times (0, \infty)),$$

ii.
$$u_t - \triangle u = 0$$
 when $t > 0$,

iii. u takes q as its initial value, that is

$$\lim_{\substack{(x,t)\to(x_0,0)\\x\in\mathbb{R}^n\ t>0}} u(x,t) = g(x_0) \tag{23}$$

for all $x_0 \in \mathbb{R}^n$.

Proof. See Evans P. 47. \Box

2. Nonhomogeneous problem, Duhamel's principle.

Now let us consider the nonhomogeneous case

$$u_t - \Delta u = f \quad \text{in } \mathbb{R}^n \times (0, \infty); \qquad u = g \quad \text{on } \mathbb{R}^n \times \{t = 0\}.$$
 (24)

It is clear that we can immediately simplify the situation to the case of zero initial data:

$$u_t - \Delta u = f \quad \text{in } \mathbb{R}^n \times (0, \infty); \qquad u = 0 \quad \text{on } \mathbb{R}^n \times \{t = 0\}.$$
 (25)

By Duhamel's principle we can write down the solution:

$$u(x,t) = \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s) f(y,s) \, dy \, ds = \int_0^t \frac{1}{(4\pi(t-s))^{n/2}} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4(t-s)}} f(y,s) \, dy \, ds.$$
 (26)

Now we can prove the following theorem.

Theorem 4. (Solution of nonhomogeneous problem) Let $f \in C_1^2(\mathbb{R}^n \times [0, \infty))^1$ and have compact support. Then

$$i. \ u \in C_1^2(\mathbb{R}^n \times (0, \infty)),$$

ii.
$$u_t - \triangle u = f$$
 for $t > 0$,

iii. For each $x_0 \in \mathbb{R}^n$,

$$\lim_{\substack{(x,t)\to(x_0,0)\\x\in\mathbb{R}^n,t>0}}u(x,t)=0. \tag{27}$$

Proof. See Evans p. 50.

Combining the above results, we can present the formula for the solution in the general case in the whole space:

$$u_t - \Delta u = f \quad t > 0; \qquad u = g \quad t = 0. \tag{28}$$

The solution is

$$u(x,t) = \int_{\mathbb{R}^n} \Phi(x-y,t) g(y) dy + \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s) f(y,s) dy ds.$$
 (29)

3. Regularity.

Theorem 5. (Smoothing effect of heat kernel) Suppose $u \in C_1^2(\bar{\Omega}_T)$ solves the heat equation in Ω_T , then

$$u \in C^{\infty}(\Omega_T). \tag{30}$$

We introduce the typical region considered when doing parabolic regularity:

$$C(x,t;r) \equiv \{(y,s): |x-y| \leqslant r, t-r^2 \leqslant s \leqslant t\}.$$
 (31)

^{1.} $C_n^m(\mathbb{R}^n \times [0,\infty))$ means f has m continuous derivatives in x and n continuous derivatives in t.

It suffices to prove that if $u \in C_1^2(C(x,t;r))$ solves the equation, then $u \in C^\infty$ inside C(x,t;r/2).

Proof. See Evans pp. 59 - 61. The main idea is the following.

Fix (x_0, t_0) . Take a "cut-off" function η which is 0 outside $C(x_0, t_0; r)$ and 1 inside $C(x_0, t_0; 3 r/4)$. Then consider $v(x, t) \equiv \eta(x, t) u(x, t)$. We have

$$v_t - \triangle v = \eta_t \, u - 2 \, \nabla \eta \cdot \nabla u - u \, \triangle \eta. \tag{32}$$

Now we can use the explicit formula to obtain

$$u(x,t) = v(x,t) = \int_{C(x_0,t_0;r)} \Phi(x-y,t-s) \left[(\eta_s - \triangle \eta) \, u - 2 \, \nabla \eta \cdot \nabla u \right] (y,s) \, \mathrm{d}y \, \mathrm{d}s. \tag{33}$$

for all $(x, t) \in C(x_0, t_0; 3r/4)$.

Finally notice that, $\eta_s, \triangle \eta, \nabla \eta$ vanishes inside $C(x_0, t_0; 3r/4)$ which means

$$u(x,t) = \int_{C(x_0,t_0;r)\backslash C(x_0,t_0;3r/4)} \Phi(x-y,t-s) \left[(\eta_s - \Delta \eta) u - 2 \nabla \eta \cdot \nabla u \right] (y,s) \, \mathrm{d}y \, \mathrm{d}s.$$
 (34)

As a consequence, for any $(x, t) \in C(x_0, t_0; r/2)$, the integrand is uniformly bounded and can be differentiated arbitrarily.

We further have the following estimate for derivatives.

Theorem 6. We have

$$\max_{C(x,t;r/2)} \left| \partial_x^{\alpha} \partial_t^l u \right| \leqslant \frac{C(\alpha,l)}{r^{k+2l+n+2}} \int_{C(x,t;r)} |u| \, \mathrm{d}x \, \mathrm{d}t. \tag{35}$$

Proof. This follows naturally from the proof of the last theorem. Evans pp. 61 - 62 for details.