MATH 527 FALL 2009 LECTURE 5 (SEP. 21, 2009)

HeAT EQUATION: EXPLICIT FORMULAS

(First 25 minutes: Quiz 1)

We now turn to the heat equation
ug—Au=f, in Ur; u=g on *Ur (1)
where
Ur=U x[0,T); 6*UTE(U><{O})U(6U><[O,T]). (2)
with U C R™

We call 0*Ur the reduced boundary of Urp. In this lecture we will find explicit representation formula
via fundamental solution, and discuss its maximum principles.

1. Fundamental solutions and homogeneous initial-value problems.

1.1. Deriving the fundamental solution.

Similar to the case of Laplace/Poisson equations, we seek a special solution in the case {2 = R™ which
can help representing other solutions. We do this through Fourier transform.

We consider the Fourier transform in the spatial variable for the initial value problem

u— Au=0, t>0; u=g, t=0. (3)
We obtain an ODE for the function (&, t):
(@), +]€Fa=0,  a(£,0=4(&). (4)
This equation is easy to solve:
a(E ) =g(g)e I (5)

Due to the following property of the Fourier transform:

Fxa(©)=F(©)§()

Thus all we need to do is to find the inverse Fourier transform of e~ !¢I°t. From properties of the Fourier
transform, if

G(&)=e I, (6)

then the Fourier transform of t*"/QG(x/tl/Q) is e~ 1§°t,

=L _e-lel/4 I(e) = e IEF
Lemma 1. Let G(z) a7 ¢ , then G(§)=e .

Proof. All we need to do is to compute
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Thus our task is to compute the integral

/ e Ty 9)
where both = and £ are scalars now. R
We construct the following contour in C: Let R >0 be real.

{-R—-+R}U{R—R-2¢i}U{R—-2&i——R—-2¢&i}U{—-R—-2¢i——R}=TUTUT'sUly. (10)



The function
6—22/4—iz£ (11)

is analytic inside this contour, therefore
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We further notice that

<Ce B0 (13)

and

as R~ 4 oo. Thus
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Definition 2. The function
1 _l=?
. 4t t
oo, t)={ @nty 2 >0 (17)
0 t=0

is called the fundamental solution of the heat equation.

1.2. Properties of the fundamental solution.
The fundamental solution enjoys the following properties.

1. For each time ¢t >0,
/ O(z,t)de=1. (18)
2. Treating t as a parameter,

lim ®(z,t) =0 19
Jim @z 1) (19)

in the sense of distributions. In other words, we have
lim [ ®(z,t) f(z)= f(0) (20)
t\.0 R™

for any continuous function f.

1.3. Homogeneous initial value problem.
From the above properties we immediately obtain the explicit formula for solutions for the initial-value
problem:

us—Au=0 in R" x (0,00); u=g¢g on R"x {t=0}. (21)

Theorem 3. (Solution of initial-value problem) Assume g € C(R™) N L>®(R"™), and define u by

U(%t):/n q’(iv—yi)g(y)dy:m/ne_m“y g(y)dy, >0, (22)



then
i. ue C*(R™ x (0,00),
1. up— Au=0 when t >0,

1. u takes g as its initial value, that is

lim u(z,t) = g(zo) (23)
(z,t)—(20,0)
zER™,t>0
for all xg e R™.
Proof. See Evans P. 47. O

2. Nonhomogeneous problem, Duhamel’s principle.
Now let us consider the nonhomogeneous case

us—Au=f in R"x (0,00); u=g¢g on R"x{t=0}. (24)
It is clear that we can immediately simplify the situation to the case of zero initial data:
ur—Au=f in R" x (0, 00); u=0 on R"x {t=0}. (25)
By Duhamel’s principle we can write down the solution:
_ [ e _ ek
u(:zc,t)—/J /nfb(x y,t s)f(y7s)dyd8—/0 W/}R"e f(y,s)dyds. (26)

Now we can prove the following theorem.
Theorem 4. (Solution of nonhomogeneous problem) Let f € CZ(R" x [0, 00))! and have compact
support. Then

i. ue€ CHR" x (0,00)),

1. ug— Au=f fort>0,

11. For each xog € R",

lim u(zx,t)=0. (27)
(z,t) = (20,0)
zeR™,t>0
Proof. See Evans p. 50. O

Combining the above results, we can present the formula for the solution in the general case in the
whole space:

u—Au=f t>0; u=g t=0. (28)
The solution is
t
u(x,t):/ O(z—y,t) g(y)dy—i—/o / O(z—y,t—s) f(y,s)dyds. (29)
3. Regularity.

Theorem 5. (Smoothing effect of heat kernel) Suppose u € Cf(QT) solves the heat equation in Qrp,
then

ue = (Qr). (30)

We introduce the typical region considered when doing parabolic regularity:

Clz,t;r)={(y,8): |z —y|<r, t—r?<s<t}. (31)

1. CM(R™ x [0,00)) means f has m continuous derivatives in x and n continuous derivatives in t.



It suffices to prove that if u € Cf(C(z,t;7)) solves the equation, then u € C* inside C(z,t;7/2).

Proof. See Evans pp. 59 — 61. The main idea is the following.
Fix (zo, to). Take a “cut-off” function n which is 0 outside C(xzo, to; r) and 1 inside C(zo, to; 3 r/4).
Then consider v(z,t) =n(z,t) u(z,t). We have

ve—Av=mnu—2Vn-Vu—uAn. (32)
Now we can use the explicit formula to obtain
u(a:,t):v(x,t):/ O(x—y,t—s)[(ns—An)u—2Vn-Vul(y, s)dyds. (33)
C(zxo,to;T)

for all (z,t) € C(xo,to;37/4).
Finally notice that, ns, An, Vn vanishes inside C/(zo, to; 37/4) which means

u(x,t):/ Oz —y,t—9)[(ns—An)u—2Vn-Vu|(y,s)dyds. (34)
C(z0,t0;7)\C(20,t0;37/4)

As a consequence, for any (x,t) € C(xo, to; 7/2), the integrand is uniformly bounded and can be differenti-
ated arbitrarily. O

We further have the following estimate for derivatives.
Theorem 6. We have

C(a,l)

aql
C(arcr,lz&i(ﬂ) }8x6tu| <m‘/c(m)t;,~) |u|dx dt. (35)

Proof. This follows naturally from the proof of the last theorem. Evans pp. 61 — 62 for details. 0



