
Math 5 2 7 Fall 2 009 Lecture 4 ( S ep . 1 6 , 2 0 0 9 )

Properties and Estimates of Laplace’ s and Poisson’ s Equations

In our last lecture we derived the formulas for the solutions of Poisson’ s equation through Green’ s func-
tion:

u(x ) =

∫

U

G (x , y) f ( y) dy −
∫

∂U

∂G( x , y)

∂ny
g( y) dSy ( 1 )

solves

− 4u = f in U ; u = g on ∂U. ( 2 )

(When U = Rn , the boundary term vanishes, and G (x , y) should be replaced by the fundamental solution
Φ(x − y) ) .

From this formula we can obtain many regularity estimates for u , see the lecture note “Hölder Esti-
mates for the Poisson Equation” for Fall 2008 Math527, or the GTM book “Partial Differential Equations”
by J. Jost for more details.

Note that, such estimates only apply to u given by the above formula. In other words, before we settle
the uniqueness issue, we cannot use the above formula to estimate general solutions of Poisson’ s equation.

Naturally, the uniqueness question leads to the study of Laplace’ s equation with zero boundary condi-
tion:

4u = 0 in U ; u = 0 on ∂U. ( 3)

Thus it is important to study the properties of C2 functions satisfying 4u = 0 . Such functions are called
harmonic functions .

Remark 1 . We will see soon that, somehow surprisingly, the study of harmonic functions leads to much
more than uniqueness of Poisson’ s equation. It turns out that all estimates can be obtained through sev-
eral properties of the equation 4u = 0 and the related 4u > ( 6 ) 0 , without using the exact formula above.

Remark 2. Another reason of studying harmonic functions is that the properties are much more stable
under perturbation of the equation itself. While the exact formula only applies to Poisson equation, the
properties of harmonic functions are shared by general linear elliptic equation

∇ · (A( x) · Du) = f ( 4)

and even nonlinear equations.

1 . Properties of harmonic functions.
Recall the definition

Definition 3. A C2 function satisfying 4u = 0 in U is called a harmonic function in U.

1 . 1 . Mean value formula.

Theorem 4. If u ∈ C2 (U ) is harmonic , then

u( x) =
1

| Br (x ) |

∫

Br ( x )

u dx =
1

| ∂Br (x ) |

∫

∂Br ( x )

u dS ( 5)

for every ball Br ( x) � { y
�
| y − x | < r } b U.

Remark 5. It turns out that

u(x ) =
1

| ∂Br( x) |

∫

∂Br ( x )

u dS ( 6)

is easier to prove. Thus we need to first establish

u( x) =
1

| Br (x ) |

∫

Br ( x )

u dx for all Br (x ) b � u( x) =
1

| ∂Br (x ) |

∫

∂Br ( x )

u dS for all Br (x ) b U. ( 7)

This is left as an exercise.



Proof. We prove

u(x ) =
1

| ∂Br (x ) |

∫

∂Br ( x )

u dS for all Br( x ) b U.

Without loss of generality, set x = 0 and denote Br ( 0) by Br .
We compute

d

dr

[
1

| ∂Br |

∫

∂Br

u dS

]
=

d

dr

[
1∣∣ ∂B1

∫

∂B1

u( r w ) dSw

]

=
1

| ∂B1 |

∫

∂B1

w · Du( r w ) dSw

=
1

| ∂B1 |

∫

∂B1

n · Du( y) dSy

=
1

| ∂B1 |

∫

B 1

4u dy = 0 . ( 8)

Thus
1

| ∂Br |

∫

∂Br

u dS = lim
r↘ 0

1

| ∂Br |

∫

∂Br

u dS = u( 0) ( 9)

due to the continuity of u . �

Theorem 6. If u ∈ C2 (U ) satisfies

u(x ) =
1

| ∂Br (x ) |

∫

∂Br ( x )

u dS ( 1 0)

or

u(x ) =
1

| Br (x ) |

∫

Br ( x )

u dx ( 1 1 )

for al l x ∈ U and all balls Br (x ) � { y � | y − x | < r } b U, then u is harmonic .

Proof. We have already seen that the two conditions are equivalent. Thus we only need to show that

u(x ) =
1

| ∂Br( x) |

∫

∂Br ( x )

u dS for all x ∈ U , Br (x ) b U � 4u = 0 in U. ( 1 2 )

This can be fulfilled by simply reverse the argument in the proof of the above theorem. �

Remark 7. The above “Converse to mean-value property” is kind of trivial and not very useful. If u is
already C2 , we can simply differentiate to see whether at every x 4u = 0 or not, and there is no need to
check the mean value condition for every x and every ball.

What makes the mean value formula useful is the following theorem, which says we do not need the a
priori knowledge that u is C2 .

Theorem 8. If u ∈ C(U ) satisfies

u(x ) =
1

| ∂Br (x ) |

∫

∂Br ( x )

u dS ( 1 3)

for al l x ∈ U and all balls Br (x ) � { y
�
| y − x | < r } b U, then u is harmonic .

Proof. Since we already have shown that the mean value property leads to u harmonic if u ∈ C2 , we only
need to show u ∈ C2 .

Take any radially symmetric function φ = φ( r) supported in Bε with
∫
Bε
φ = 1 . We will show that

(u ∗ φ ) ( x ) =

∫

Rn
u( y) φ (x − y) dy = u(x ) . ( 1 4)

Now recall that

Dα (u ∗ φ) = u ∗ (Dαφ) . ( 1 5)



Obviously we can take φ ∈ C2 and conclude that u ∈ C2 .
Now we show

(u ∗ φ ) ( x ) =

∫

Rn
u( y) φ (x − y) dy = u(x ) . ( 1 6)

Without loss of generality, set x = 0 . Take ε so small such that Bε b U . We compute

(u ∗ φ) ( 0) =

∫

Rn
u( y) φ ( − y) dy

=

∫

Bε

u( y) φ( − y) dy

=

∫

0

ε [ ∫

∂Br

u( y) dSy

]
φ ( r) dr

=

∫

0

ε

| ∂Br | u( 0) φ ( r) dr

= u( 0)

[ ∫

0

ε ∫

∂Br

φ ( r) dS dr

]

= u( 0)

∫

Bε

φ( y) dy

= u( 0) . ( 1 7)

Thus ends the proof. �

Corollary 9. If u is harmonic , then u ∈ C∞ .

Proof. As u is harmonic, u satisfies the mean value formula. Therefore

u ∗ φ = u ( 1 8)

for all φ satisfying the condition in the above theorem. Taking φ ∈ C∞ gives the conclusion. �

The same argument can in fact prove the following Weyl’ s lemma, which relaxes the condition u ∈
C(U ) . Those who are interested in its proof can take a look at the lecture note “Harmonic Functions” for
Fall 2008’ s Math 527.

Lemma 10. (Weyl’ s lemma) Let u : U � R be measurab le and locally integrab le in Ω . Suppose that for
al l ϕ ∈ C0

∞ (U ) , ∫

U

u(x ) 4ϕ (x ) dx = 0 . ( 1 9)

Then u is harmonic and, in particular, smooth.

Remark 1 1 . A question for those who know what a distribution:
Let u be a distribution and

4u = 0 ( 20)

in the distributional sense. Then can we conclude that u is C∞?

1 . 2 . Local estimates for harmonic functions.
Using the mean value formula, we can obtain good estimates for the derivatives of hamonic functions

( recall that harmonic functions are C∞ ) .

Theorem 1 2. Assume u is harmonic in U. Then

| Dαu(x ) | 6 Ck
rn+ k

∫

Br ( x )

| u | dx ( 21 )

for each x ∈ U and Br ( x) b U.

Proof. See p. 29 of Evans. �



Remark 13. From the above estimates, it is easy to show that u is not only C∞ , but in fact analytic.
See pp. 31 – 32 of Evans.

Remark 1 4. The mean value formulas cease to be true for Poisson’ s equation or the more general elliptic
equations. As a consequence, one can not obtain local estimates for these equations using the above
method. A more robust way is to estimate through the following maximum principles.

1 . 3. Harnack inequality.
It turns out that, for nonnegative harmonic functions, its value at two different points are always com-

parable.

Theorem 15. (Harnack’ s inequality) For each connected open set V b U, there exists a positive con-
stant C, depending only on V, such that

sup
V

u 6 C inf
V
u ( 22 )

for al l nonnegative harmonic functions u in U.

Proof. First consider two points x , y ( denote r � dist( x , y) ) , such that B2 r (x ) b U . Using mean value
formula we have

u( x) =
1

| B2 r |

∫

B2 r ( x )

u > 1

| B2 r |

∫

Br ( y )

u =
1

2n
u( y) . ( 23)

The conclusion easily follows. �

1 . 4. Uniqueness for Poisson equation.
It suffices to establish the following maximum principle:

Theorem 16. (Weak maximum principle) Suppose u ∈ C2 (U ) ∩ C
(
Ū
)
is harmonic in U. Then

max
Ū

u = max
∂U

u. ( 24)

Proof. Assume the contrary, that is maxŪ u > max∂U u . Then there must be a x0 such that

u(x0 ) = max
U

u ( 25)

but u≡u( x0 ) in some neighborhood of x0 . This contradicts the mean value formula. �

In fact, one can establish the stronger

Theorem 17. ( Strong maximum principle) Suppose u ∈ C2 (U ) ∩ C
(
Ū
)
. If U is connected and there

exists a point x0 ∈ U such that

u( x0 ) = max
Ū

u , ( 26)

then u ≡ u(x0 ) in U.

Proof. See p. 27 of Evans. �

Remark 1 8. It is clear that the strong maximum principle ceases to be true when U is not connected.

Theorem 19. The solution to Poisson’ s equation is unique .

Proof. It follows from applying the weak maximum principle to the equation

4u = 0 ( 27)

with 0 boundary condition. �

2. Maximum principles.



2. 1 . Subharmonic and superharmonic functions.
We consider, instead of 4u = 0 , the inequalities

− 4u 6 ( > ) 0 . ( 28)

A simple adaptation of the proof for the Laplace equation then gives

− 4u 6 ( > ) 0 � u(x ) 6 ( > )
1

| Br (x ) |

∫

Br ( x )

u dx ,
1

| ∂Br( x ) |

∫

∂Br ( x )

u dS ( 29)

for all x ∈ U , Br( x) b U . This naturally leads to the following definition.

Definition 20. Let u be continuous. It is cal led subharmonic (superharmonic) if for every Br( x) b U, we
have

u(x ) 6 ( > )
1

| Br (x ) |

∫

Br ( x )

u dx or
1

| ∂Br (x ) |

∫

∂Br ( x )

u dS. ( 30)

Remark 21 . It is easy to see that subharmonic/ superharmonic functions are not necessarily differen-
tiable, as the 1D example u = 1 − | x | shows.

Remark 22. One can show that, v is subharmonic( superharmonic) if and only if for every V b U , and
every harmonic function u on V such that u > ( 6 ) v on ∂V , we have

u > ( 6 ) v in V. ( 31 )

This further justifies the terminology “subharmonic” ( “superharmonic”) .

Remark 23. Question:
Do we still have

u( x) 6 ( > )
1

| Br (x ) |

∫

Br ( x )

u dx � u( x) 6 ( > )
1

| ∂Br ( x) |

∫

∂Br ( x )

u dS ( 32 )

or not?

It is easy to show that

− u subharmonic, then

max
Ū

u 6 max
∂U

u , ( 33)

and if u(x0 ) = maxŪ u for some x0 ∈ U , then u ≡ u( x0 ) ;

− u superharmonic, then

inf
Ū
u > inf

∂U
u , ( 34)

and if u(x0 ) = infŪ u for some x0 ∈ U , then u ≡ u( x0 ) .

This can be applied to obtain various estimates for Laplace’ s and Poisson’ s equations. For example, we
can prove the estimate

sup
B1 / 2

| Du | 6 C sup
∂B 1

| u | ( 35)

for harmonic function u .
To see this, we take a “cut-off” function η ∈ C0

1 (B1 ) such that η ≡ 1 in B1 / 2 . Then we compute

4
(
η2 | Du | 2

)
= 2 η 4 η | Du | 2 + 2 | Dη | 2 | Du | 2 + 8 η (Dη ) · D2u · Du + 2 η2

∣∣ D2u
∣∣ 2

> 2 η 4 η | Du | 2 + 2 | Dη | 2 | Du | 2 −
[

8 | Dη | 2 | Du | 2 + 2 η2
∣∣ D2u

∣∣ 2
]

+ 2 η2
∣∣ D2u

∣∣ 2

=
(

2 η 4 η − 6 | Dη | 2
)
| Du | 2

> − C | Du | 2 . ( 36)



Next we notice that, if 4u = 0 , then

4
(
u2
)

= 2 | Du | 2 . ( 37)

As a consequence, we have

4
(
η2 | Du | 2 + α u2

)
> 0 ( 38)

for some constant α .
Thus η2 | Du | 2 + α u2 is subharmonic, and we have

max
B 1 / 2

| Du | 2 6 max
B1

η2 | Du | 2 + α u2 6 max
∂B 1

η2 | Du | 2 + α u2 = α

(
max
∂B1

u

) 2

. ( 39)

Remark 24. Note that the above argument does not involve mean value formula. Thus this method is
more robust than estimating through mean value formula.


