MATH 527 FALL 2009 LECTURE 3 (SEP. 14, 2009)

LAPLACE’S EQUATION: EXPLICIT FORMULAS
In the following two lectures, we will consider the Laplace’s equation
Au=0 (1)
and Poisson’s equation
—Au=f. (2)

Here z €U, u:U — R, and U C R" is a given open set. The Laplacian A\ is defined as

Au=3" . Q
1=1

In general, we need to supplement the above equations with boundary conditions, for example the
Dirichlet boundary condition

u=g on OU (4)
or the Neumann boundary condition
% =g on OU. (5)

We notice that the Laplace’s equation with nonhomogeneous boundary condition can be transformed into
Poisson’s equation with homogeneous boundary condition. For example, consider

Au=0 in U; u=g on U, (6)

Suppose we can extend g (currently only defined on dU) to a C? function defined on the whole domain U,
and denote the result by g, then we have

—Au—g)=Ag§ inU, u—¢g=0 ondU. (7)
This shows that when we try to find out the solutions formulas, we should not treat Laplace’s and
Poisson’s equation separately.

In fact, it turns out that the basis for all formulas for the solutions is the formula solving Poisson’s
equation in the whole space:

—Au=f inR™. (8)
Or more precisely, the formula solving Poisson’s equation with a special right hand side:
— Au=4(x) 9)
where §(z) is the Dirac delta function.
1. Fundamental solution.
We start by trying to solve
— Au=46(x). (10)

1.1. The Dirac delta function.
First we explain the rationale behind this strategy. That is, why solving this equation can give us a
formula for the general Poisson’s equation with right hand side f(z).

Definition 1. The Dirac delta function is a non-tradional function which can only be defined by its
action on continuous functions:

[ 8@ f@yde= f10) (1)

Remark 2. It is easy to see that §(x) has to satisfy the following:
1. é(x)=0 for any z = 0;



2. f]Rn o(z)=1.
As a consequence, §(z) cannot be a function and the integrals involved in the above are not really inte-
grals.

One important property of the above definition is that

X 6(z—y) f(y)dy= f(2). (12)
Recalling the definition of convolution:
(f*xg)(x):= X f(x—y)g(y)dy, (13)
we can also write the above as
ox f=f. (14)

The most important property of convolution is the following. Let D be any constant coefficient partial dif-
ferential operator, then we have

D(f+g)=Dfxg=f=Dy. (15)
Thus in particular, if we can solve
—Au=4§ (16)
and denote its solution by @, then for any f(x) we have
— AP f=(—A®)x f=dxf=f. (17)

Therefore, as soon as the obtain ®(z), the solution to the general Poisson’s equation in the whole space
can be written as

u(x)=2x* f= - Q(z—y) f(y)dy. (18)

We will call this ® the fundamental solution.

1.2. Solving — A® =4.

It is clear that 0(z) is radial symmetric, in that its values only depend on the radius r = |z| =
V@i 4+ 22 but not the direction. Therefore it makes sense to look for ® which are radial symmetric
too.

Set @ = ®(r). Simple change of variable shows that — A® now becomes

n—1

- d', (19)

r

To solve — A® = 4, we need to obtain the formula of § as a function of r only. It may be tempting to
guess that the formula is simply d(r), but this is wrong.

Lemma 3. The delta function §(x) in R™, written in polar coordinates, becomes

o(r)

na(n)rn—!

A(r)= (20)

where a(n) is the volumne of the n-dimensional unit ball (thus n a(n) is the area of the (n — 1)-dimen-
stonal sphere.

Proof. The proof is left as an optional exercise. O

With the help of this lemma, we can write — A® =§ in Polar coordinates and reduce it to an ODE:

n—lq),: 1

_ P
r na(n)rn—1!

o(r). (21)




Multiply both sides by 7~ ! we have
1
n—1a&'
( ® ) na(n) o(r)
Integrate, we obtain
n—1 (I)/ 1
na(n)
which finally leads to
——logr n=2
o(r)= 1 1
>
n(n—2)a(n) rm=2 n>3
Definition 4. The function
——log|z| n=2
L 27
®(z): = 1 1
n—2 nz 3
n(n—2)an) |z|

defined for x e R™, x#0, is the fundamental solution of Laplace’s equation.

Now we see that the solution to the Poisson’s equation
—Au=f
is

uw)= [ ®la=y) f5)d.

The theorem justifying this formula is Theorem 1 on p. 23 of Evans.

2. Poisson’s equation in bounded domain.
Now we move on to the case

—Au=f in U; u=g on JU.

Our first try is to explore to what extend the “naive” adaptation

/ Bz —y) f(y)dy
U

can work.

(25)

(28)

(29)

Let u be the solution to the equation. Then we have (note that all the differentiation in the following

computation is with respect to y)

/U d(r—y) f(y)dy

[ o= (- 2uay
/V (x —y) Vu] + /V@Vu

/ @(x—)‘%ds+/v 4 VP] — /mu
oU on

- —/w @(x—y)(%dser/aUM)Ty)u(y)dsyw(x). (30)
We see that
uw)= [ wa—y) v+ [ a@-pgeds,~ [ EEZDyyas, (31)
Since u= g on AU, we have
uw)= [ wo—y) fay+ [ o=y gias,~ [ FZD ) as, (32)



Inspecting the above formula, we see that the first and the third terms on the RHS only involve known
quantities, while the second one involves 6871: which cannot be obtained without knowing the solution w
itself.

Now observe that, if &(z — y) =0 for y € 9U, then this trouble term vanishes. Of course ®(z — y) # 0
in general. However we can try to modify ® in the following manner.

First, consider any function

with ¢(x,y) satisfying
ANyp(z,y)=0 inU. (34)
Then one can show that
- ou 0G(z,y)
ww)= [ G @+ [ G gitas,— [ X g)as, (3)

But now we can try to choose ¢(z,y) such that
¢z, y)+(x—y)=0 forallzelU, yedlU. (36)
If we are successful, then the function G(z,y) is called the Green’s function related to the problem
—Au=f in U; u=g on JU. (37)

When the explicit formula of the Green’s function is available, the solution can be written as

uw)= [ Gty [ LD gy as, (39)
U U Yy
In particular, when f =0, we have
L 0G(x,y)
u(z) = /8U —57%, g(y) dS,. (39)

Remark 5. In general G(z, y) cannot be written as a function of |z — y| anymore. However, one can still
show that G(z,y) =G(y,x). See Theorem 13 on p.35 of Evans.

Remark 6. The Green’s function always exists. However for general U, an explicit formula of G is either
too hard to find or to complicated to be useful.

3. Well-posedness.
How does the above discussion help in the study of well-posedness for the problem — Au=f in U, u=
g on oU?

e Existence. An explicit formula is given. However the formula involves the Green’s function G(z, y)
whose formula is not available for all U. Therefore existence is only shown for special domains.

e Uniqueness. As the uniqueness of G(x, y) is not established, the above discussion does not say any-
thing about uniqueness.

e Continuous dependence on data. Since this is a stronger requirement than uniqueness, nothing can

be said at this stage.

Remark 7. Comparing with last lecture, we see that as the equation gets more complicated, explicit for-
mulas alone yields less information. On the other hand, as we will see later, qualitative theory also has its
limitations. A satisfying complete theory is a consequence of a symbiosis of theory and formulas.

4. Poisson’s formulas.
One can apply the above theory to the problem

Au=0 in U; u=g on 9U. (40)



and get explicit formulas for © when U are special domains. For example,
e U is the half-space
{(Z1y s Tn) | Tn, >0}
We have

22n / gly) . _
u(z) = =dy= K(z,y) g(y)dy.
( ) na(n) R |;[;—y| ORY ( ) ( )
e U is the ball
{(@1, 00 mn) | 2T+ + 27 <12}

We have

r?— |z 9(y) /
uU(r) =—7— =dS(y) = K(x, dy.
(z) nalm) T Josom 7~ o] (v) o0 (z,y) 9(y)dy

These formulas are called Poisson’s formulas, and the kernels K (z, y) are called Poisson’s kernels.

See 2.2.4b, 2.2.4c of Evans for details.



