MATH 527 FALL 2009 LECTURE 2 (SEP. 9, 2009)

TRANSPORT EQUATIONS

We will consider the transport equation

u+b-Du = f in R" x (0,00) (1)
u = g on R"x {t=0}

When b=0b(x,t), f = f(x,t) the system is linear; When b =b(x, ¢, u) and/or f = f(z,t,u) the system is
quasi-linear. Of course b, f may depend on derivatives of u. We will not discuss those cases in this lec-
ture.

1. Simplest case.

We start with the simplest case: b is a constant, f=0.

The idea is to find the formula of solutions by transforming the equation into an ODE. To do this, we
consider the equation along a curve

r=ux(s), t=t(s). (2)
Along this curve, we can define a function of one variable s:

u(s):=u(z(s),t(s))- (3)

d . : .
508 =t(s) wr+i(s) Du. )

Differentiating, we have

This would help us in transforming the PDE into ODE if
i (s)=bi(s). (5)

It is clear that we have the freedom here to choose #(s). We choose (s)=1. Thus we have

t(s)=to+ s, x(s)=xz0+bs. (6)
The equation becomes 1
—u(s)=0. 7
As a consequence, we have ds . "
u(xo, to) = u(0) =u( —to) = u(xo — bto,0) = g(xo — blo). (8)
Since the choice of (zo,tp) is arbitrary, we see that the solution formula is
u(z,t)=g(xr —tb). 9)

Remark 1. The classical “algorithm” of solving 1st order PDEs starts with the “chain”

%:db_“il:...:db_“;n, (10)
This gives n first-integrals
T1—b1t, ...,y —bpt. (11)
As a consequence, the general solution of
u+b-Du=0 (12)
is
u=F(z1—0bit,...,xn —bpt). (13)
Comparing with the initial value we see that F'= g and
u(z,t)=g(z—tb). (14)

Remark 2. The “transport” effect is clear by considering the case where the initial value ¢ is a “bump”
supported in a ball in R"™. Then the equation “moves” this ball with speed b.



-

Figure 1. The n=2 case.

2. f+0.

We consider the problem

ur+b-Du= f(z,t) in R"™ x (0,00); u=g on R"x{0}.

Let r=2¢9+sb,t=1tg+ s, and
u(s):=u(xo+sb,to+s),
we have

d .
Euzf(xo—i—sb,to—i—s).

Setting s =0 and — tg respectively, we have

’U,(J,'Q,lfo) = ’II(O)
= 4 t)+/0 dﬂ(s)ds
= —to =
_¢, ds
0
= g(zo—tob)+ f(zo+sb,to+s)ds
—to
to

= g(xzo—tob) + f(zo+ (s —to) b, s)ds.
0
Realizing the arbitrariness of (zo, ), we see that the formula for the solution is
¢
u(z,t)=g(z —tb)+/ f(x+(s—1t)b,s)ds.
0
Remark 3. If we set
¢
ui(z,t):=g(x —tb), ug(z,t): :/ flx+(s—t)b,s)ds,
then wu; solves 0
u+b-Du=0, u=g

while us solves
ur+b-Du=f, u=0.

This is an illustration of the superposition principle for linear PDEs.

Remark 4. We check us more carefully. We have

uQ(x,t)z/O f(:v—i—(s—t)b,s)ds:/o flx—(t—s)b,s)ds.

We realize that f(x — (¢t —s) b, s) is the value of the solution of

w+b-Dw=0 in R" x (s, 00); w(z,s)= f(x,s)



at time t. We denote such w by w(x,t; s) to emphasize its dependence on s. This is an illustration of the
so-called Duhamel’s principle, which says once we have a formula of the initial value problem of a homoge-
neous evolutions equation, we can simply integrate in time to obtain the solution for the non-homoge-
neous equation.

For example, the solution to the non-homogeneous heat equation

u— Au=f, Uli=0=0 (25)
can be written as
u(z,t)= /t w(z,t;s)ds (26)
where w(x,t; s) solves 0
wy — Dpw=0, w(z,s;s)= f(x,s). (27)
3. Interlude: Well-posedness.
We pause to consider the well-posedness of the equation

ur+b-Du=f, Uli=0=g (28)
where b is a constant.

e Existence: The formula
t
u(x,t):g(x—tb)—l—/ fx+(s—t)b,s)ds (29)
0

gives a C! function as long as, for example, g, f are both C'. It is easy to verify that this function
indeed satisfies the equation and the initial value. Thus existence is guaranteed.
e Uniqueness: It suffices to show that

us+b-Du=0, ult=0=0 (30)

has only 0 solution. To see this, we define @ as above. Then it is clear that %d = 0. Since a( —
to) =0, we conclude that @ =0. Thus shows uniqueness.

e Continuous dependence on data: Consider

u(mt)zg(x—tb)—i—/ot fx+(s—t)b,s)ds (31)
and

ﬁ(x,t)_g(x—tb)—l—/otf(a:+(s—t)5,s)ds. (32)

Taking the difference we have
t ~ ~
u—ﬁ:g—g—i—/ f(:v—i—(s—t)b,s)—f(x—i—(s—t)b,s)ds. (33)
0

It is easy to see that as long as f(x, t) is Lipschitz in the x variable, then v — 4 is bounded by
C [|g —4gl+ ’f - f‘ + ’b - 5H which leads to continuous dependence.

4. Non-constant b.
Consider

ur+b(x,t) Du=0, Ult=0=g. (34)

Set x =x(s),t =1(s), we see that the equation can be simplified if

This gives




Such a curve x = x(t) is called characteristic. Along such a curve (same as saying setting (s) = u(x(t), t)
), the equation becomes

e 0 (37)
which gives
u(z(t),t) =u(z(0),0) = g(x(0)). (38)
Or, written another way,
u(z,t) = g(zo(x,t)) (39)
where z(z,t) is such that the solution of
LXW=b(X,1),  X(0)=wo(x,1) (40)
satisfies
X(t)=u. (41)

Remark 5. The formula shows that the equation still “transports”, but with deformation.

Remark 6. Using Duhamel’s principle, we can write down that formula for the non-homogeneous
problem

us+b(x,t)- Du= f(z,t), U |t=0=g(7) (42)
(e, t) = glao(e, )+ [ sl 0),5)ds (13)

where z4(x,t) is such that if 0
SXO=b(X,1),  X(s)=u(e,1) (44)

then
X(t)=u. (45)

Remark 7. One popular way to show uniqueness is the “energy method”, which proceeds as follows. We
multiply the equation

ur+b-Du=0 (46)

by uw and then integrate over R™. We obtain

/uut+/(b~Du)u:O (47)

Now some integration by parts gives

%[%/nﬂz—/ (V-b)%2<5£$|v-b|[%/u2] (48)

Now if %f u?2=0 at t =0, necessarily it has to be 0 at later times.
The energy method is easy to use and almost universally applicable, with one catch: [ u? must be

finite. Thus this method cannot be used to show uniqueness when u(z,0) does not decay to 0 as x — £ oo.
5. Well-posedness for the case b= constant.

e Existence: Guaranteed by ODE theory, as long as b is Lipschitz in z.

e Uniqueness: Guaranteed by ODE theory, as long as b is Lipschitz in z.

e Continuous dependence: If u, @ and solutions to the equation with data b, g and b , § respectively,
taking the difference e:=u — 4 we reach

et+b-D€:(5_b)'Dﬂv eli=o=9—9 (49)



which gives
t ~
e(z,t) = (g — §)(zo(z, 1)) +/ (b - b) - Dii(x(x, t), 5) ds. (50)
0
From this we see that

1. Non-homogeneous equations need to be understood when studying homogeneous equations;

2. Estimates of D @ is needed. In other words, to study well-posedness, we need to study regu-
larity.
e Regularity: From the formula it is clear that, if g, f are smooth, then u is as regular as zo(z, t).
Standard ODE theory tells us that the regularity of x( is the same as that of b.

6. An example of quasi-linear case.
In the quasi-linear case, regularity of data no longer leads to regularity of the solution. For example,
consider the 1D Burgers equation

U +uu,=0, Ult=0=g. (51)
The method of characteristics leads to
dx(t
SO —uav).1), wlmo=20,  ula(t).1)=g(xo) (52)

Since u(z(t),t) is a constant, the characteristics x(t) are straight lines. As a consequence, two characteris-
tics with different slope may intersect. However since the slope is simply 1/u, “different slope” implies the
values of u along the two characteristics are different. Thus the solution cannot be defined at the intersec-
tion. In other words, the solution cease to be a function in finite time, no matter how smooth g is.



