
Math 5 2 7 Fall 2 009 Lecture 2 ( S ep . 9 , 2 0 0 9 )

Transport Equations

We will consider the transport equation
{
ut + b · Du = f in Rn × ( 0 , ∞ )

u = g on Rn × { t = 0} ( 1 )

When b = b(x , t) , f = f (x , t) the system is linear; When b = b (x , t , u) and/or f = f ( x , t , u) the system is
quasi-linear. Of course b , f may depend on derivatives of u . We will not discuss those cases in this lec-
ture.

1 . Simplest case.
We start with the simplest case: b is a constant, f = 0 .
The idea is to find the formula of solutions by transforming the equation into an ODE. To do this, we

consider the equation along a curve

x = x( s ) , t = t( s ) . ( 2 )

Along this curve, we can define a function of one variable s :

ũ ( s ) � u(x ( s ) , t( s ) ) . ( 3)

Differentiating, we have
d

ds
ũ ( s ) = ṫ ( s ) ut + ẋ ( s ) · Du. ( 4)

This would help us in transforming the PDE into ODE if

ẋ ( s ) = b ṫ ( s ) . ( 5)

It is clear that we have the freedom here to choose ṫ ( s ) . We choose ṫ ( s ) = 1 . Thus we have

t( s ) = t0 + s , x ( s ) = x0 + b s . ( 6)

The equation becomes
d

ds
ũ ( s ) = 0 . ( 7)

As a consequence, we have

u(x0 , t0 ) = ũ ( 0) = ũ ( − t0 ) = u(x0 − b t0 , 0) = g( x0 − b t0 ) . ( 8)

Since the choice of (x0 , t0 ) is arbitrary, we see that the solution formula is

u(x , t) = g(x − t b ) . ( 9)

Remark 1 . The classical “algorithm” of solving 1 st order PDEs starts with the “chain”

dt

1
=

dx1

b1
= � =

dxn
bn

. ( 1 0)

This gives n first-integrals

x1 − b1 t , � , xn − bn t. ( 1 1 )

As a consequence, the general solution of

ut + b · Du = 0 ( 1 2 )

is

u = F( x1 − b1 t , � , xn − bn t) . ( 1 3)

Comparing with the initial value we see that F = g and

u( x , t) = g( x − t b ) . ( 1 4)

Remark 2. The “transport” effect is clear by considering the case where the initial value g is a “bump”
supported in a ball in Rn . Then the equation “moves” this ball with speed b .
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2. f
�

0 .
We consider the problem

ut + b · Du = f (x , t) in Rn × ( 0 , ∞ ) ; u = g on Rn × { 0} . ( 1 5)

Let x = x0 + s b , t = t0 + s , and

ũ ( s ) � u( x0 + s b , t0 + s ) , ( 1 6)

we have
d

ds
ũ = f (x0 + s b , t0 + s ) . ( 1 7)

Setting s = 0 and − t0 respectively, we have

u( x0 , t0 ) = ũ ( 0)

= ũ ( − t0 ) +

∫

− t0

0 d

ds
ũ ( s ) ds

= g(x0 − t0 b) +

∫

− t0

0

f ( x0 + s b , t0 + s ) ds

= g(x0 − t0 b) +

∫

0

t0

f (x0 + ( s − t0 ) b , s ) ds . ( 1 8)

Realizing the arbitrariness of (x0 , t0 ) , we see that the formula for the solution is

u(x , t) = g(x − t b ) +

∫

0

t

f (x + ( s − t) b , s ) ds . ( 1 9)

Remark 3. If we set

u1 ( x , t)
� g( x − t b) , u2 (x , t) : =

∫

0

t

f ( x + ( s − t) b , s ) ds , ( 20)

then u1 solves

ut + b · Du = 0 , u = g ( 21 )

while u2 solves

ut + b · Du = f , u = 0 . ( 22 )

This is an illustration of the superposition principle for linear PDEs.

Remark 4. We check u2 more carefully. We have

u2 (x , t) =

∫

0

t

f ( x + ( s − t) b , s ) ds =

∫

0

t

f (x − ( t − s ) b , s ) ds . ( 23)

We realize that f (x − ( t − s ) b , s ) is the value of the solution of

wt + b · Dw = 0 in Rn × ( s , ∞ ) ; w (x , s ) = f (x , s ) ( 24)



at time t . We denote such w by w (x , t ; s ) to emphasize its dependence on s . This is an illustration of the
so-called Duhamel’ s principle, which says once we have a formula of the initial value problem of a homoge-
neous evolutions equation, we can simply integrate in time to obtain the solution for the non-homoge-
neous equation.

For example, the solution to the non-homogeneous heat equation

ut − 4u = f , u � t= 0 = 0 ( 25)

can be written as

u(x , t) =

∫

0

t

w (x , t ; s ) ds ( 26)

where w ( x , t ; s ) solves

wt − 4 xw = 0 , w ( x , s ; s ) = f ( x , s ) . ( 27)

3. Interlude: Well-posedness.
We pause to consider the well-posedness of the equation

ut + b · Du = f , u � t= 0 = g ( 28)

where b is a constant.

• Existence: The formula

u( x , t) = g( x − t b) +

∫

0

t

f ( x + ( s − t) b , s ) ds ( 29)

gives a C1 function as long as, for example, g , f are both C1 . It is easy to verify that this function
indeed satisfies the equation and the initial value. Thus existence is guaranteed.

• Uniqueness: It suffices to show that

ut + b · Du = 0 , u | t= 0 = 0 ( 30)

has only 0 solution. To see this, we define ũ as above. Then it is clear that d

ds
ũ = 0 . S ince ũ ( −

t0 ) = 0 , we conclude that ũ ≡ 0 . Thus shows uniqueness.

• Continuous dependence on data: Consider

u( x , t) = g( x − t b) +

∫

0

t

f ( x + ( s − t) b , s ) ds ( 31 )

and

û ( x , t) = ĝ (x − t b ) +

∫

0

t

f̂
(
x + ( s − t) b̂ , s

)
ds . ( 32 )

Taking the difference we have

u − û = g − ĝ +

∫

0

t

f (x + ( s − t) b , s ) − f̂
(
x + ( s − t) b̂ , s

)
ds . ( 33)

It is easy to see that as long as f ( x , t) is Lipschitz in the x variable, then u − û is bounded by

C
[
| g − ĝ | +

∣∣∣ f − f̂
∣∣∣ +
∣∣∣ b − b̂

∣∣∣
]
which leads to continuous dependence.

4. Non-constant b .
Consider

ut + b (x , t) · Du = 0 , u � t= 0 = g. ( 34)

Set x = x ( s ) , t = t( s ) , we see that the equation can be simplified if

ẋ ( s ) = b( x( s ) , t( s ) ) ṫ ( s ) . ( 35)

This gives
dx

dt
=
ẋ ( s )

ṫ ( s )
= b( x , t) . ( 36)



Such a curve x = x ( t) is called characteristic. Along such a curve ( same as saying setting ũ ( s ) = u(x ( t) , t)
) , the equation becomes

d

dt
ũ = 0 ( 37)

which gives

u(x ( t) , t) = ũ (x ( 0) , 0) = g(x ( 0) ) . ( 38)

Or, written another way,

u( x , t) = g( x0 ( x , t) ) ( 39)

where x0 ( x , t) is such that the solution of

d

dt
X ( t) = b(X, t) , X ( 0) = x0 (x , t) ( 40)

satisfies

X ( t) = x. ( 41 )

Remark 5. The formula shows that the equation still “transports”, but with deformation.

Remark 6. Using Duhamel’ s principle, we can write down that formula for the non-homogeneous
problem

ut + b(x , t) · Du = f (x , t) , u � t= 0 = g( x) ( 42 )

as

u( x , t) = g( x0 (x , t) ) +

∫

0

t

f ( xs (x , t) , s ) ds ( 43)

where xs ( x , t) is such that if
d

dt
X ( t) = b(X, t) , X ( s ) = xs ( x , t) ( 44)

then

X ( t) = x. ( 45)

Remark 7. One popular way to show uniqueness is the “energy method”, which proceeds as follows. We
multiply the equation

ut + b · Du = 0 ( 46)

by u and then integrate over Rn . We obtain
∫
u ut +

∫
( b · Du) u = 0 ( 47)

Now some integration by parts gives

d

dt

[
1

2

∫
u2

]
= −

∫
(∇ · b) u

2

2
6 sup

x , t
| ∇ · b |

[
1

2

∫
u2

]
. ( 48)

Now if 1

2

∫
u2 = 0 at t = 0 , necessarily it has to be 0 at later times.

The energy method is easy to use and almost universally applicable, with one catch:
∫
u2 must be

finite. Thus this method cannot be used to show uniqueness when u(x , 0) does not decay to 0 as x→ ± ∞ .

5. Well-posedness for the case b
�
constant.

• Existence: Guaranteed by ODE theory, as long as b is Lipschitz in x .

• Uniqueness: Guaranteed by ODE theory, as long as b is Lipschitz in x .

• Continuous dependence: If u , ũ and solutions to the equation with data b , g and b̃ , g̃ respectively,
taking the difference e � u − ũ we reach

et + b · De =
(
b̃ − b

)
· Dũ , e � t= 0 = g − g̃ ( 49)



which gives

e( x , t) = ( g − g̃ ) ( x0 ( x , t) ) +

∫

0

t (
b̃ − b

)
· Dũ ( xs (x , t) , s ) ds . ( 50)

From this we see that

1 . Non-homogeneous equations need to be understood when studying homogeneous equations;

2 . Estimates of D ũ is needed. In other words, to study well-posedness, we need to study regu-
larity.

• Regularity: From the formula it is clear that, if g , f are smooth, then u is as regular as x0 ( x , t) .
S tandard ODE theory tells us that the regularity of x0 is the same as that of b .

6. An example of quasi-linear case.
In the quasi-linear case, regularity of data no longer leads to regularity of the solution. For example,

consider the 1D Burgers equation

ut + u ux = 0 , u � t= 0 = g. ( 51 )

The method of characteristics leads to

dx ( t)

dt
= u(x ( t) , t) , x � t= 0 = x0 , u( x( t) , t) = g( x0 ) . ( 52 )

Since u( x( t) , t) is a constant, the characteristics x( t) are straight lines. As a consequence, two characteris-
tics with different slope may intersect. However since the slope is simply 1 /u , “different slope” implies the
values of u along the two characteristics are different. Thus the solution cannot be defined at the intersec-
tion. In other words, the solution cease to be a function in finite time, no matter how smooth g is.


