MATH 527 A1 HOMEWORK 3 (DUE OCT. 21 IN CLASS)

Exercise 1. (8 pts) (Evans 2.5.17) Let $u \in C^2(\mathbb{R} \times [0, \infty))$ solve the initial-value problem for the wave equation in one dimension:

$$u_{tt} - u_{xx} = 0$$
 in $\mathbb{R} \times (0, \infty)$; $u = g$, $u_t = h$ on $\mathbb{R} \times \{t = 0\}$. (1)

Suppose g, h have compact support. the kinetic energy is $k(t) := \frac{1}{2} \int_{-\infty}^{\infty} u_t^2(x, t) dx$ and the potential energy is $p(t) := \frac{1}{2} \int_{-\infty}^{\infty} u_x^2(x, t) dx$. Prove

- i. (4 pts) k(t) + p(t) is constant in t.
- ii. (4 pts) k(t) = p(t) for all large enough times t.

Exercise 2. (2 pts) (Evans 3.5.3 b) Solve using characteristics:

$$u u_{x_1} + u_{x_2} = 1, u(x_1, x_1) = \frac{1}{2} x_1.$$
 (2)

Exercise 3. (10 pts) (Evans 3.5.5) Write $L = H^*$, if $H: \mathbb{R}^n \mapsto \mathbb{R}$ is convex.

a) (5 pts) Let $H(p) = \frac{1}{r} |p|^r$, for $1 < r < \infty$. Show

$$L(q) = \frac{1}{s} |q|^s$$
, where $\frac{1}{r} + \frac{1}{s} = 1$. (3)

b) (5 pts) Let $H(p) = \frac{1}{2} \sum_{i,j=1}^{n} a_{ij} p_i p_j + \sum_{i=1}^{n} b_i p_i$, where $A = ((a_{ij}))$ is a symmetric, positive definite matrix, $b \in \mathbb{R}^n$. Compute L(q).

Exercise 4. (Optional) (Evans 3.5.6) Let $H: \mathbb{R}^n \to \mathbb{R}$ be convex. We say q belongs to the *subdifferential* of H at p, written

$$q \in \partial H(p) \tag{4}$$

if

$$H(r) \geqslant H(p) + q \cdot (r - p)$$
 for all $r \in \mathbb{R}^n$. (5)

Prove $q \in \partial H(p)$ if and only if $p \in \partial L(q)$ if and only if $p \cdot q = H(p) + L(q)$, where $L = H^*$.

Exercise 5. (10 pts) (Evans 3.5.8) Let E be a closed subset of \mathbb{R}^n . Show that if the Hopf-Lax formula could be applied to the initial-value problem

$$u_t + |Du|^2 = 0 \quad \text{in } \mathbb{R}^n \times (0, \infty); \qquad u = \begin{cases} 0 & x \in E \\ +\infty & x \notin E \end{cases} \quad \text{on } \mathbb{R}^n \times \{t = 0\},$$
 (6)

it would give the solution

$$u(x,t) = \frac{1}{4t}\operatorname{dist}(x,E)^{2}.$$
(7)