MATH 527 A1 HOMEWORK 2 (DUE SEP. 30 IN CLASS)

Exercise 1. (2 pts) (Evans 2.5.2) Prove that Laplace's equation $\Delta u = 0$ is rotation invariant; that is, if O is an orthogonal $n \times n$ matrix and we define

$$v(x) := u(Ox) \qquad (x \in \mathbb{R}^n), \tag{1}$$

then $\triangle v = 0$.

Exercise 2. (6 pts) Prove the mean value formula for harmonic functions using Poisson's formula for the ball (see Evans 2.2.4c for the formula).

Exercise 3. (6 pts)

a) (Evans 2.5.3) Modify the proof of the mean value formulas to show for $n \ge 3$ that

$$u(0) = \frac{1}{|\partial B_r|} \int_{\partial B_r} g \, \mathrm{d}S + \frac{1}{n \left(n-2\right) \alpha(n)} \int_{B_r} \left(\frac{1}{|x|^{n-2}} - \frac{1}{r^{n-2}}\right) f \, \mathrm{d}x. \tag{2}$$

b) (**Optional**) Prove the above using Green's function for the ball B_r .

Exercise 4. (6 pts) (Evans 2.5.5) Prove that there exists a constant C, depending only on n, such that

$$\max_{B_1} |u| \leqslant C \left(\max_{\partial B_1} |g| + \max_{B_1} |f| \right)$$
(3)

whenever u is a smooth solution of

$$-\Delta u = f \text{ in } B_1; \qquad u = g \text{ on } \partial B_1.$$
 (4)

Exercise 5. (4 pts) (Evans 2.5.10) Suppose u is smooth and solves $u_t - \Delta u = 0$ in $\mathbb{R}^n \times (0, \infty)$.

- i. (1 pt) Show $u_{\lambda}(x,t) := u(\lambda x, \lambda^2 t)$ also solves the heat equation for each $\lambda \in \mathbb{R}$.
- ii. (3 pts) Use (i) to show $v(x,t) := x \cdot Du(x,t) + 2t u_t(x,t)$ solves the heat equation as well.

Exercise 6. (6 pts) (Evans 2.5.13) Given $g:[0,\infty)\mapsto\mathbb{R}$, with g(0)=0, derive the formula

$$u(x,t) = \frac{x}{\sqrt{4\pi}} \int_0^t \frac{1}{(t-s)^{3/2}} e^{\frac{-x^2}{4(t-s)}} g(s) \,\mathrm{d}s \tag{5}$$

for a solution of the initial/boundary-value problem

$$u_t - u_{xx} = 0 \text{ in } \mathbb{R}_+ \times (0, \infty); \qquad u = 0 \text{ on } \mathbb{R}_+ \times \{t = 0\}; \qquad u = g \text{ on } \{x = 0\} \times [0, \infty).$$
(6)

(Hint: Let v(x,t) := u(x,t) - g(t) and extend v to $\{x < 0\}$ by odd reflections.)

Exercise 7. (Optional) (Evans 2.5.8) Let u be the solution of

$$\Delta u = 0 \text{ in } \mathbb{R}^n_+; \qquad u = g \text{ on } \partial \mathbb{R}^n_+ \tag{7}$$

given by Poisson's formula for the half-space. Assume g is bounded and g(x) = |x| for $x \in \partial \mathbb{R}^n_+$, $|x| \leq 1$. Show Du is not bounded near x = 0. (Hint: Estimate $\frac{u(\lambda e_n) - u(0)}{\lambda}$).

(For those who know the following stuff: This is the unboundedness of Riesz operators on L^{∞} in disguise.)

Exercise 8. (Optional) Prove that the Dirac delta function $\delta(x)$ in \mathbb{R}^n becomes

$$\frac{1}{n\,\alpha(n)}\frac{\delta(r)}{r^{n-1}}\tag{8}$$

in polar coordinates.