
Math 527 A1 Homework 1 (Due Sep. 1 6 in Class)

Sep. 9 , 2 009

Exercise 1 . ( 5 pts) ( 1 . 5 . 4) Assume that f : Rn � R is smooth. Prove

f ( x ) =
∑

| α | 6 k

1

α !
Dαf ( 0) xα + O

(
| x | k+ 1

)
as x→ 0

for each k = 1 , 2 , � . This is Taylor’ s formula in mult iindex notation.
( Hint : F ix x ∈ Rn and consider the function of one variable g( t) � f ( t x ) . )
Notation: For α = (α1 , � , αn) , α1 , � , αn > 0 , x = ( x1 , � , xn ) ,

| α | � α 1 + � + αn ;

α ! � α 1 ! α2 ! � αn !

Dα �
∂ | α |

∂x 1
α 1 � ∂xn

α n ;

xα � x 1
α 1 � xn

α n ;

| x | �
(
x 1

2 + � + xn
2
) 1 / 2

.

Exercise 2 . ( 1 5 pts) (Well-posedness for ODE) We develop a complete theory of well-posedness for the init ial
value problem of ODE. Consider an ODE of the form

u̇ = f ( t , u) , u( t0 ) = u0 . ( 1 )

where f is defined on D ⊆ R × Rd and ( t0 , u0 ) ∈ D . Naturally, we say u is a classical solution if u ∈ C1 .

a) ( 3 pts) Existence I: P rove the following theorem.

Theorem. A ssume tha t f is continuous in t and uniformly Lipschitz in u , then there exists an inte rva l
(
t− ,

t+
) 3 t0 , such tha t a t least one c la ssica l so lution u ∈ C1

(
t− , t+

)
exists .

Remark. The proof st ill works when Rd is replaced by any Banach space. Thus it can be applied to many PDEs.

b) ( Optional) Existence II: P rove the following theorem.

Theorem. The “uniform Lipschitz” condition on f in the above theorem can be repla ced b y f ∈ C(D ) .

Hint: On any compact subset of D , approximate f uniformly by Lipschitz functions fn , let un be a solution of
the corresponding ODE, then use Ascoli-Arzela Theorem ( a uniformly bounded, equicontinuous sequence has a
subsequence which converges uniformly) .

c) Uniqueness :

i . ( 3 pts) Show that the solution obtained in a) is in fact the only solution for the initial value problem.

ii . ( 3 pts) Construct an example to show that under the condition of the theorem in b) , uniqueness may fail.

i i i . ( Optional) Show that uniqueness still holds when the “uniform Lipschitz” condit ion on f in a) is replaced
by the following weaker “Osgood” condition :

| ( f ( t , u) − f ( t , v ) ) · (u − v ) | 6 g( | u − v | ) ( 2 )

where the modulus g sat isfies ∫

0

δ 1
g( r)

dr = ∞ ( 3 )

for any δ > 0 .

d) ( 3 pts) Continuous dependence on initial value:
P rove that the unique solution obtained in a) depends continuously on ( t0 , u0 ) . Note that continuous depen-

dence on data automatically fails when the solution is not unique.

e) ( 3 pts) Different definit ions of solution , regularity:
One can integrate and obtain the following “weak” formulation

u( t) = u0 +

∫

t 0

t

f ( s , u( s ) ) ds . ( 4)

We say u ∈ C( I) is a “weak solution” of the ODE if it sat isfies this integral formulation. Prove that, u ∈ Cm if f ∈
Cm− 1 ( as a function of ( t , u) ) for m > 1 . Thus any weak solution is automatically classical and even smooth.

Remark 1 . This problem shows that how much more complicated PDE theory is compared with ODE theory.
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Exercise 3 . ( 5 pts) ( 2 . 5 . 1 ) Write down an explicit formula for a function u solving the initial-value problem
{
ut + b · Du + c u = 0 in Rn × ( 0 , ∞ )

u = g on Rn × { t = 0} .
Here c ∈ R and b ∈ Rn are constants .

Exercise 4. ( 5 pts) ( 3. 5 . 2 )

a) ( 3 pts) Write down the characterist ic equations for the PDE

ut + b · Du= f in Rn × ( 0 , ∞ ) , ( ∗ )

where b ∈ Rn , f = f ( x , t) .

b) ( 2 pts) Use the characteristic ODE to solve ( ∗ ) sub ject to the init ial condit ion

u= g on Rn × { t = 0} .
Make sure your answer agrees with formula ( 5 ) in § 2 . 1 . 2 .

Exercise 5 . ( Optional) Consider the eikonal equation

ux 1

2 + � + uxn
2 = 1 x ∈ B �

{
x1

2 + � + xn
2 < 1

}
,

u= 0 x ∈ ∂B �
{
x 1

2 + � + xn
2 = 1

}
.

C learly, the natural class of functions for the solution is C
(
B̄
)
∩ C1 (B ) , that is , functions that are continuously differen-

t iable in B , while continuous up to the boundary. We call such solutions “classical”.

a) Show that no classical solution exists . Thus the equation is not well-posed if we consider only classical solutions.

b) One way to define “weak solutions” is through “test ing” by smooth functions. For example, suppose we try to
define “weak solutions” for the equation ux 1

= f in B , u = 0 on ∂B , then we can mult iply the equation by a smooth
function ϕ with ϕ = 0 on ∂B and ( formally) integrate by parts and obtain

∫
u ϕx 1

= −
∫
f ϕ.

and use this integral relat ion ( which we require to hold for all smooth ϕ ) as the definition . We see that as a con-
sequence u need not be in C1 anymore, in fact u being integrable is enough for the definition to make sense.

Try to define “weak solutions” for the eikonal equation this way. What difficulty do you meet?

c) Another way to relax the regularity requirement is to require u ∈ C
(
B̄
)
but not C1 (B ) , only differentiable almost

everywhere. Consider the case n = 1 . By this definition u = 1 − | x | solves the eikonal equation. Can you establish
well-posedness for such kind of “weak solutions” in the n = 1 case? If not, why?
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