Nov. 12

UNIQUENESS AND ASYMPTOTICS

In this lecture we prove the uniqueness for the wave equations. We also prove some asymptotic decay
results.

1. Uniqueness via energy method.
Consider the wave equation in a bounded domain 2 C R™.

Ou=wuy—Au = f Qx(0,7) (1)
u =g Q x {0} and 092 x [0, 7] (2)
w = h  Qx{0}. (3)

It is clear that the uniqueness of this problem is equivalent to that the following equation

Ou=wu—Au = 0 Qx(0,7) (4)
u =0 Q2 x {0} and 092 x [0, T (5)

having only 0 solution.
Now we prove this. Multiply the equation by u; and integrate over Q x (0,T"), we have

0 = / (ugr — Au) ugdz dt
Qx(0,T)

)dxdt—i—/ — Auupdx dt
Qx(0,T)

u%)dxdt—i—/ Vu-Vugdz dt
Qx(0,T)
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(u%+ |Vu|2)} de dt

- /Q[;(uf—HVuF)](z,T)dx—/Q[%(u%—HVUF)](I,O)dx

= /Q [% (uf+|Vu|2)](:v7T)dx. (7)

This implies v is a constant at time 7. But this constant must be 0 according to the boundary value.
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Remark 1. If we know the solutions decays at infinity, we can use the same method when  is
unbounded and obtain the same result.

2. Domain of dependence.
We have seen from the formulas that the value of u(z,t) only depends on the initial values in the ball
By(x). In other words, if g=h=0 in B,(x), then v must vanish in the cone
|z|+t<r. (8)

We prove this fact now.
Denote by C,. the above mentioned cone. and for T' < r denote by Ur the following domain

Ur={(z,t)eC,, 0<t<T}. (9)
Then naturally the boundary of Ur consists of three parts
OUr = St + S0+ Sside (10)

where
Su={(z,t)€Cy, t=u}, Sside=0C,NUr. (11)



Now we compute

(ugr — Au) updz dt

Upr Up — ANuug da dt
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For the last term, we notice that the equation for Ssige is || + ¢ = r which means n; = |n;| and conse-
quently

%uf+%|Vu|2—nm-Vuut20. (13)
Thus we have shown that
1 2 1 2 / 1 2 1 2
—u; +—=|Vul“ < —u; +=|Vu 14)
[ guteglvuis [ uteg v (
for all T'<r and the conclusion follows.
3. Decay of the solution.
We prove the following.
Proposition 2. Let u solve
ur—Au = 0 in R3 x (0, 00) (15)
u=g9 u = h on R3 x {t=0} (16)
where g, h are smooth and have compact support. Then there is a constant C' such that
lu(z,t)| < C/t (17)
for all (z,1).
Proof. Recall the Kirchhoff formula:
1
u(w,t) =—05 th(w)+ g(w)+Vg(w) - (y —x) dS,. (18)
47Tt aBt(;E)
Since h, g, Vg vanishes outside their respective supports, we can write
1
u(:c7t):—2/ th(w)+ g(w)+Vg(w) - (y —z)dSy (19)
47t? JoB,(z)na

where A is the union of the three supports. Now the conclusion easily follows after we notice that the
area of 0B;(z) N A is bounded by a constant independent of ¢. O



Remark 3. The above estimate behaves badly when ¢ is small. But this is easily remedied by noticing
that when ¢ is small, the area of dB;(x) N A scales as t* and therefore u is uniformly bounded. Integrating
this observation into the estimate gives

lu(z, )| <C (14+) " (20)

Proposition 4. Let u solve
ur—Au = 0 in R? x (0, 00) (21)
u=g9 u = h on R? x {t=0} (22)

where g, h are smooth and have compact support. Then there is a constant C' such that

u(z, )| SC(1+6) "2 (A4t —|z|) 2 (23)
for all (z,1).
Proof. Assume that the supports of g, h are contained in the ball Br. Recall the Poisson’s formula:

2 . —
__1 2/ tg(y) +1t h(y)+lfV91 2(y %) 4y (24)
27t De(z) (t2_|y—.’lf|2) /

u(x,t)

By taking the supreme of g, h, Vg and noticing that |y —z| <t we have

dy —1/2 dy
u(z, ) <C <ot A (25)
Diw) (t—|y—a|)' 2 (t+]y—z|)'/? Duw) (t— |y —x|)'/?

Now let z=y — x we have

dz
u(z,t gcfl/?/ L
| ( )| D, (t—|Z|)1/2

Here note that the integral is in fact over DN {|z + x| < R}. We have
- Jz|>t+ R: u(z,t)=0.

— t—2R < |z| <t+ R: We use polar coordinates, note that the angle is of order R/t (we only con-
sider the case ¢>> R here), thus we have

dz < R min (¢,|z|+R) rdr
/Dm{|z+z<R} (t—=1zD"* ~ t Jiw-r (t—=m)'/?
min (¢,|z|+R) _1)2
< R/ (t—r) dr
lz|—R
< C(t—(lz|-R)'*<C. (27)

— Jz|<t—2R: We have (t —|z|) 2 c(1+t—|z]|), and therefore

dz 12
————=<C(1+t—|x Bgl. (28)
/Dm{z+m<R} (t—|z|)1/2 ( |z]) |Br|

Combining the above, we see that when ¢ is large (for example ¢ >3 R), we have

Ju(z, )| <CEY2 (1 + [t —[2]) "2 (29)
When t <3 R, we have
dz

t rdr
C/J (t2—r2)1/2
= Ct<3CR. (30)

lu(z,t)] C
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Thus u is bounded by a constant when ¢ <3 R and by C't /2 (1 + |t — |:1:||)71/2 when t >3 R, as a conse-
quence, we can write

lu(z,t)| <C (L+6) 21+t —|2|)) 2 (31)
as desired. O

Remark 5. In general, we have

—  nodd:

n—1

lu(t, z)| SC (1+t) 2 (32)

— n even:
—1

ju(t,@)| <C(1+6)" 7 (L4t —|z]])

_n—1
2

(33)

Remark 6. Such algebraic decays are also characteristic in other dispersive equations, for example the
Schrédinger equation.

Remark 7. It is clear that no decay can be expected for the solutions to the 1D wave equation:

e )=o)+ g0+ 5 [ hw)dy (34)
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Exercises.

Exercise 1. Consider the 1D wave equation with variable coefficients a(z,t) € C*°(R" x [0, 00)) with a(z,t) > ag> 0 for
some constant ag
utt—a(:c)zumczo. (35)

Find out and prove its domain of dependence.



